48 research outputs found

    A Review on Evaluation of BER in CDMA using SGA Technique

    Get PDF
    In today’s era wireless communication systems are one of the most essential part of this digitized world and evolution of CDMA system has made it more convenient and secure to communicate the information within the system. From past one decade CDMA system has met the rapidly developing need of a communication system by improving in terms of several problems like multipath fading, interference, cross-talk etc. This paper summarizes all the clusters of specific analysis techniques with different constraints and conditions to evaluate the performance of CDMA system. The major emphasis of this paper lies on the reasons behind the problems and their remedy technologies to find out the most efficient technique for a noise and distortion free communication system suitable for today’s environment

    Mathematics and Digital Signal Processing

    Get PDF
    Modern computer technology has opened up new opportunities for the development of digital signal processing methods. The applications of digital signal processing have expanded significantly and today include audio and speech processing, sonar, radar, and other sensor array processing, spectral density estimation, statistical signal processing, digital image processing, signal processing for telecommunications, control systems, biomedical engineering, and seismology, among others. This Special Issue is aimed at wide coverage of the problems of digital signal processing, from mathematical modeling to the implementation of problem-oriented systems. The basis of digital signal processing is digital filtering. Wavelet analysis implements multiscale signal processing and is used to solve applied problems of de-noising and compression. Processing of visual information, including image and video processing and pattern recognition, is actively used in robotic systems and industrial processes control today. Improving digital signal processing circuits and developing new signal processing systems can improve the technical characteristics of many digital devices. The development of new methods of artificial intelligence, including artificial neural networks and brain-computer interfaces, opens up new prospects for the creation of smart technology. This Special Issue contains the latest technological developments in mathematics and digital signal processing. The stated results are of interest to researchers in the field of applied mathematics and developers of modern digital signal processing systems

    Design and implementation of DA FIR filter for bio-inspired computing architecture

    Get PDF
    This paper elucidates the system construct of DA-FIR filter optimized for design of distributed arithmetic (DA) finite impulse response (FIR) filter and is based on architecture with tightly coupled co-processor based data processing units. With a series of look-up-table (LUT) accesses in order to emulate multiply and accumulate operations the constructed DA based FIR filter is implemented on FPGA. The very high speed integrated circuit hardware description language (VHDL) is used implement the proposed filter and the design is verified using simulation. This paper discusses two optimization algorithms and resulting optimizations are incorporated into LUT layer and architecture extractions. The proposed method offers an optimized design in the form of offers average miminimizations of the number of LUT, reduction in populated slices and gate minimization for DA-finite impulse response filter. This research paves a direction towards development of bio inspired computing architectures developed without logically intensive operations, obtaining the desired specifications with respect to performance, timing, and reliability

    Acoustic Feedback Noise Cancellation in Hearing Aids Using Adaptive Filter

    Get PDF
    To enhance speech intelligibility for people with hearing loss, hearing aids will amplify speech using gains derived from evidence-based prescriptive methods, in addition to other advanced signal processing mechanisms. While the evidence supports the use of hearing aid signal processing for speech intelligibility, these signal processing adjustments can also be detrimental to hearing aid sound quality, with poor hearing aid sound quality cited as a barrier to device adoption. In general, an uncontrolled environment may contain degradation components like background noise, speech from other speakers etc. along with required speech components. In this paper, we implement adaptive filtering design for acoustic feedback noise cancellation in hearing aids. The adaptive filter architecture has been designed using normalized least mean square algorithm. By using adaptive filters both filter input coefficients are changeable during run-time and reduce noise in hearing aids. The proposed design is implemented in matlab and the simulations shows that the proposed architecture produces good quality of speech, accuracy, maintain stable steady state. The proposed design is validated with parameters like Noise Distortion, Perceptual Evaluation of Speech Quality, Signal to Noise Ratio, and Speech Distortion. The feedback canceller is implemented in MATLAB 9.4 simulink version release name of R2018a is used for validation with Echo Return Loss Enhancement (ERLE). The ERLE of the NMLS is reduced when the filter order is increases. Around 10% of the power spectrum density (PSD) is less when compared with existing designs

    Acoustic Feedback Noise Cancellation in Hearing Aids Using Adaptive Filter

    Get PDF
    To enhance speech intelligibility for people with hearing loss, hearing aids will amplify speech using gains derived from evidence-based prescriptive methods, in addition to other advanced signal processing mechanisms. While the evidence supports the use of hearing aid signal processing for speech intelligibility, these signal processing adjustments can also be detrimental to hearing aid sound quality, with poor hearing aid sound quality cited as a barrier to device adoption. In general, an uncontrolled environment may contain degradation components like background noise, speech from other speakers etc. along with required speech components. In this paper, we implement adaptive filtering design for acoustic feedback noise cancellation in hearing aids. The adaptive filter architecture has been designed using normalized least mean square algorithm. By using adaptive filters both filter input coefficients are changeable during run-time and reduce noise in hearing aids. The proposed design is implemented in matlab and the simulations shows that the proposed architecture produces good quality of speech, accuracy, maintain stable steady state. The proposed design is validated with parameters like Noise Distortion, Perceptual Evaluation of Speech Quality, Signal to Noise Ratio, and Speech Distortion. The feedback canceller is implemented in MATLAB 9.4 simulink version release name of R2018a is used for validation with Echo Return Loss Enhancement (ERLE). The ERLE of the NMLS is reduced when the filter order is increases. Around 10% of the power spectrum density (PSD) is less when compared with existing designs

    Overview of Existing and Future Advanced Satellite Systems

    Get PDF
    This chapter presents an overview of legacy, existing, and future advanced satellite systems for future wireless communications. The overview uses top-down approach, starting with a comparison between a typical commercial regular satellite system and a high-throughput satellite (HTS) system, following by a discussion on commonly used satellite network topologies. A discussion on the design of satellite payload architectures supporting both typical regular satellite and HTS with associated network topologies will be presented. Four satellite payload architectures will be discussed, including legacy analog bent-pipe satellite (ABPS); existing digital bent-pipe satellite (DBPS) and advanced digital bent-pipe satellite using digital channelizer and beamformer (AdDBPS-DCB); and future advanced regenerative on-board processing satellite (AR-OBPS) payload architectures. Additionally, various satellite system architectures using AdBP-DCBS and AR-OBPS payloads for the fifth-generation (5G) cellular phone applications will also be presented

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link
    corecore