3,087 research outputs found

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    A taxonomy of network threats and the effect of current datasets on intrusion detection systems

    Get PDF
    As the world moves towards being increasingly dependent on computers and automation, building secure applications, systems and networks are some of the main challenges faced in the current decade. The number of threats that individuals and businesses face is rising exponentially due to the increasing complexity of networks and services of modern networks. To alleviate the impact of these threats, researchers have proposed numerous solutions for anomaly detection; however, current tools often fail to adapt to ever-changing architectures, associated threats and zero-day attacks. This manuscript aims to pinpoint research gaps and shortcomings of current datasets, their impact on building Network Intrusion Detection Systems (NIDS) and the growing number of sophisticated threats. To this end, this manuscript provides researchers with two key pieces of information; a survey of prominent datasets, analyzing their use and impact on the development of the past decade’s Intrusion Detection Systems (IDS) and a taxonomy of network threats and associated tools to carry out these attacks. The manuscript highlights that current IDS research covers only 33.3% of our threat taxonomy. Current datasets demonstrate a clear lack of real-network threats, attack representation and include a large number of deprecated threats, which together limit the detection accuracy of current machine learning IDS approaches. The unique combination of the taxonomy and the analysis of the datasets provided in this manuscript aims to improve the creation of datasets and the collection of real-world data. As a result, this will improve the efficiency of the next generation IDS and reflect network threats more accurately within new datasets

    A taxonomy of network threats and the effect of current datasets on intrusion detection systems

    Get PDF
    As the world moves towards being increasingly dependent on computers and automation, building secure applications, systems and networks are some of the main challenges faced in the current decade. The number of threats that individuals and businesses face is rising exponentially due to the increasing complexity of networks and services of modern networks. To alleviate the impact of these threats, researchers have proposed numerous solutions for anomaly detection; however, current tools often fail to adapt to ever-changing architectures, associated threats and zero-day attacks. This manuscript aims to pinpoint research gaps and shortcomings of current datasets, their impact on building Network Intrusion Detection Systems (NIDS) and the growing number of sophisticated threats. To this end, this manuscript provides researchers with two key pieces of information; a survey of prominent datasets, analyzing their use and impact on the development of the past decade's Intrusion Detection Systems (IDS) and a taxonomy of network threats and associated tools to carry out these attacks. The manuscript highlights that current IDS research covers only 33.3% of our threat taxonomy. Current datasets demonstrate a clear lack of real-network threats, attack representation and include a large number of deprecated threats, which together limit the detection accuracy of current machine learning IDS approaches. The unique combination of the taxonomy and the analysis of the datasets provided in this manuscript aims to improve the creation of datasets and the collection of real-world data. As a result, this will improve the efficiency of the next generation IDS and reflect network threats more accurately within new datasets

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    corecore