29 research outputs found

    Parameter optimization for local polynomial approximation based intersection confidence interval filter using genetic algorithm: an application for brain MRI image de-noising

    Get PDF
    Magnetic resonance imaging (MRI) is extensively exploited for more accuratepathological changes as well as diagnosis. Conversely, MRI suffers from variousshortcomings such as ambient noise from the environment, acquisition noise from theequipment, the presence of background tissue, breathing motion, body fat, etc.Consequently, noise reduction is critical as diverse types of the generated noise limit the efficiency of the medical image diagnosis. Local polynomial approximation basedintersection confidence interval (LPA-ICI) filter is one of the effective de-noising filters.This filter requires an adjustment of the ICI parameters for efficient window size selection.From the wide range of ICI parametric values, finding out the best set of tunes values is itselfan optimization problem. The present study proposed a novel technique for parameteroptimization of LPA-ICI filter using genetic algorithm (GA) for brain MR imagesde-noising. The experimental results proved that the proposed method outperforms theLPA-ICI method for de-noising in terms of various performance metrics for different noisevariance levels. Obtained results reports that the ICI parameter values depend on the noisevariance and the concerned under test image

    A local Rayleigh model with spatial scale selection for ultrasound image segmentation

    Full text link

    Spatially adaptive estimation via fitted local likelihood techniques

    Get PDF
    This paper offers a new technique for spatially adaptive estimation. The local likelihood is exploited for nonparametric modelling of observations and estimated signals. The approach is based on the assumption of a local homogeneity of the signal: for every point there exists a neighborhood in which the signal can be well approximated by a constant. The fitted local likelihood statistics is used for selection of an adaptive size of this neighborhood. The algorithm is developed for quite a general class of observations subject to the exponential distribution. The estimated signal can be uni- and multivariable. We demonstrate a good performance of the new algorithm for Poissonian image denoising and compare of the new method versus the intersection of confidence interval (ICI)(ICI) technique that also exploits a selection of an adaptive neighborhood for estimation

    Algoritam za brzo uklanjanje šuma iz video signala temeljen na ICI postupku

    Get PDF
    In this paper, we have proposed a fast method for video denoising using the modified intersection of confidence intervals (ICI) rule, called fast ICI (FICI) method. The goal of the new FICI based video denoising method is to maintain an acceptable quality level of the denoised video estimate, and at the same time to significantly reduce denoising execution time when compared to the original ICI based method. The methods are tested on real-life video signals and their performances are analyzed and compared. It is shown that the FICI method outperforms the ICI method in terms of the execution time reduction by up to 96% (or up to 25 times). However, practical application demands dictate the choice of the video denoising method. If one wants fast denoising method with decent denoising results, the FICI based video denoising method is a better choice. The original ICI method, however, should be used in applications where significant noise suppression is an imperative regardless the computational complexity.U ovom smo radu predložili brzi postupak za uklanjanje šuma iz video signala koristeći modificirano pravilo presjecišta intervala pouzdanosti (eng. intersection of confidence intervals - ICI), nazvano brzim ICI (eng. fast ICI -- FICI) postupkom. Cilj novog FICI postupka za uklanjanje šuma iz video signala jest da se, uz zadržavanje prihvatljive razine kvalitete odšumljenog video signala, značajno smanji vrijeme izvršavanja algoritma u usporedbi s izvornim ICI postupkom. Postupci su testirani na realnim video signalima, a njihove su performanse analizirane i uspoređene.Pokazano je da FICI postupak ima do 96% kraće vrijeme izvršavanja (odnosno kraće i do 25 puta) u usporedi s izvornim ICI postupkom. Međutim, zahtjevi praktične primjene određuju izbor postupka za uklanjanje šuma iz video signala. Ukoliko je potrebno brzo izvršavanje s pristojnim performansama uklanjanja šuma, FICI postupak je bolji izbor. Međutim, u aplikacijama kojima je imperativ značajno suzbijanje šuma bez obzira na računsku složenost, trebao bi se koristiti izvorni ICI postupak

    Spatially adaptive estimation via fitted local likelihood techniques

    Get PDF
    This paper offers a new technique for spatially adaptive estimation. The local likelihood is exploited for nonparametric modelling of observations and estimated signals. The approach is based on the assumption of a local homogeneity of the signal: for every point there exists a neighborhood in which the signal can be well approximated by a constant. The fitted local likelihood statistics is used for selection of an adaptive size of this neighborhood. The algorithm is developed for quite a general class of observations subject to the exponential distribution. The estimated signal can be uni- and multivariable. We demonstrate a good performance of the new algorithm for Poissonian image denoising and compare of the new method versus the intersection of confidence interval (ICI)(ICI) technique that also exploits a selection of an adaptive neighborhood for estimation

    Optical Coherence Tomography Noise Reduction Using Anisotropic Local Bivariate Gaussian Mixture Prior in 3D Complex Wavelet Domain

    Get PDF
    In this paper, MMSE estimator is employed for noise-free 3D OCT data recovery in 3D complex wavelet domain. Since the proposed distribution for noise-free data plays a key role in the performance of MMSE estimator, a priori distribution for the pdf of noise-free 3D complex wavelet coefficients is proposed which is able to model the main statistical properties of wavelets. We model the coefficients with a mixture of two bivariate Gaussian pdfs with local parameters which are able to capture the heavy-tailed property and inter- and intrascale dependencies of coefficients. In addition, based on the special structure of OCT images, we use an anisotropic windowing procedure for local parameters estimation that results in visual quality improvement. On this base, several OCT despeckling algorithms are obtained based on using Gaussian/two-sided Rayleigh noise distribution and homomorphic/nonhomomorphic model. In order to evaluate the performance of the proposed algorithm, we use 156 selected ROIs from 650 × 512 × 128 OCT dataset in the presence of wet AMD pathology. Our simulations show that the best MMSE estimator using local bivariate mixture prior is for the nonhomomorphic model in the presence of Gaussian noise which results in an improvement of 7.8 ± 1.7 in CNR

    Shape-adaptive DCT for denoising and image reconstruction

    Full text link

    Contributions à la segmentation d'image : phase locale et modèles statistiques

    Get PDF
    Ce document presente une synthèse de mes travaux apres these, principalement sur la problematique de la segmentation d’images
    corecore