10 research outputs found

    Relaying in the Internet of Things (IoT): A Survey

    Get PDF
    The deployment of relays between Internet of Things (IoT) end devices and gateways can improve link quality. In cellular-based IoT, relays have the potential to reduce base station overload. The energy expended in single-hop long-range communication can be reduced if relays listen to transmissions of end devices and forward these observations to gateways. However, incorporating relays into IoT networks faces some challenges. IoT end devices are designed primarily for uplink communication of small-sized observations toward the network; hence, opportunistically using end devices as relays needs a redesign of both the medium access control (MAC) layer protocol of such end devices and possible addition of new communication interfaces. Additionally, the wake-up time of IoT end devices needs to be synchronized with that of the relays. For cellular-based IoT, the possibility of using infrastructure relays exists, and noncellular IoT networks can leverage the presence of mobile devices for relaying, for example, in remote healthcare. However, the latter presents problems of incentivizing relay participation and managing the mobility of relays. Furthermore, although relays can increase the lifetime of IoT networks, deploying relays implies the need for additional batteries to power them. This can erode the energy efficiency gain that relays offer. Therefore, designing relay-assisted IoT networks that provide acceptable trade-offs is key, and this goes beyond adding an extra transmit RF chain to a relay-enabled IoT end device. There has been increasing research interest in IoT relaying, as demonstrated in the available literature. Works that consider these issues are surveyed in this paper to provide insight into the state of the art, provide design insights for network designers and motivate future research directions

    Security–Reliability Tradeoff Analysis for SWIPT- and AF-Based IoT Networks With Friendly Jammers

    Get PDF
    Radio-frequency (RF) energy harvesting (EH) in wireless relaying networks has attracted considerable recent interest, especially for supplying energy to relay nodes in the Internet of Things (IoT) systems to assist the information exchange between a source and a destination. Moreover, limited hardware, computational resources, and energy availability of IoT devices have raised various security challenges. To this end, physical-layer security (PLS) has been proposed as an effective alternative to cryptographic methods for providing information security. In this study, we propose a PLS approach for simultaneous wireless information and power transfer (SWIPT)-based half-duplex (HD) amplify-and-forward (AF) relaying systems in the presence of an eavesdropper. Furthermore, we take into account both static power splitting relaying (SPSR) and dynamic power splitting relaying (DPSR) to thoroughly investigate the benefits of each one. To further enhance secure communication, we consider multiple friendly jammers to help prevent wiretapping attacks from the eavesdropper. More specifically, we provide a reliability and security analysis by deriving closed-form expressions of outage probability (OP) and intercept probability (IP), respectively, for both the SPSR and DPSR schemes. Then, simulations are also performed to validate our analysis and the effectiveness of the proposed schemes. Specifically, numerical results illustrate the nontrivial tradeoff between reliability and security of the proposed system. In addition, we conclude from the simulation results that the proposed DPSR scheme outperforms the SPSR-based scheme in terms of OP and IP under the influences of different parameters on system performance

    Physical layer security in 5G and beyond wireless networks enabling technologies

    Get PDF
    Information security has always been a critical concern for wireless communications due to the broadcast nature of the open wireless medium. Commonly, security relies on cryptographic encryption techniques at higher layers to ensure information security. However, traditional cryptographic methods may be inadequate or inappropriate due to novel improvements in the computational power of devices and optimization approaches. Therefore, supplementary techniques are required to secure the transmission data. Physical layer security (PLS) can improve the security of wireless communications by exploiting the characteristics of wireless channels. Therefore, we study the PLS performance in the fifth generation (5G) and beyond wireless networks enabling technologies in this thesis. The thesis consists of three main parts. In the first part, the PLS design and analysis for Device-to-Device (D2D) communication is carried out for several scenarios. More specifically, in this part, we study the underlay relay-aided D2D communications to improve the PLS of the cellular network. We propose a cooperative scheme, whereby the D2D pair, in return for being allowed to share the spectrum band of the cellular network, serves as a friendly jammer using full-duplex (FD) and half-duplex (HD) transmissions and relay selection to degrade the wiretapped signal at an eavesdropper. This part aims to show that spectrum sharing is advantageous for both D2D communications and cellular networks concerning reliability and robustness for the former and PLS enhancement for the latter. Closed-form expressions for the D2D outage probability, the secrecy outage probability (SOP), and the probability of non-zero secrecy capacity (PNSC) are derived to assess the proposed cooperative system model. The results show enhancing the robustness and reliability of D2D communication while simultaneously improving the cellular network’s PLS by generating jamming signals towards the eavesdropper. Furthermore, intensive Monte-Carlo simulations and numerical results are provided to verify the efficiency of the proposed schemes and validate the derived expressions’ accuracy. In the second part, we consider a secure underlay cognitive radio (CR) network in the presence of a primary passive eavesdropper. Herein, a secondary multi-antenna full-duplex destination node acts as a jammer to the primary eavesdropper to improve the PLS of the primary network. In return for this favor, the energy-constrained secondary source gets access to the primary network to transmit its information so long as the interference to the latter is below a certain level. As revealed in our analysis and simulation, the reliability and robustness of the CR network are improved, while the security level of the primary network is enhanced concurrently. Finally, we investigate the PLS design and analysis of reconfigurable intelligent surface (RIS)-aided wireless communication systems in an inband underlay D2D communication and the CR network. An RIS is used to adjust its reflecting elements to enhance the data transmission while improving the PLS concurrently. Furthermore, we investigate the design of active elements in RIS to overcome the double-fading problem introduced in the RISaided link in a wireless communications system. Towards this end, each active RIS element amplifies the reflected incident signal rather than only reflecting it as done in passive RIS modules. As revealed in our analysis and simulation, the use of active elements leads to a drastic reduction in the size of RIS to achieve a given performance level. Furthermore, a practical design for active RIS is proposed

    Physical layer security solutions against passive and colluding eavesdroppers in large wireless networks and impulsive noise environments

    Get PDF
    Wireless networks have experienced rapid evolutions toward sustainability, scalability and interoperability. The digital economy is driven by future networked societies to a more holistic community of intelligent infrastructures and connected services for a more sustainable and smarter society. Furthermore, an enormous amount of sensitive and confidential information, e.g., medical records, electronic media, financial data, and customer files, is transmitted via wireless channels. The implementation of higher layer key distribution and management was challenged by the emergence of these new advanced systems. In order to resist various malicious abuses and security attacks, physical layer security (PLS) has become an appealing alternative. The basic concept behind PLS is to exploit the characteristics of wireless channels for the confidentiality. Its target is to blind the eavesdroppers such that they cannot extract any confidential information from the received signals. This thesis presents solutions and analyses to improve the PLS in wireless networks. In the second chapter, we investigate the secrecy capacity performance of an amplify-andforward (AF) dual-hop network for both distributed beamforming (DBF) and opportunistic relaying (OR) techniques. We derive the capacity scaling for two large sets; trustworthy relays and untrustworthy aggressive relays cooperating together with a wire-tapper aiming to intercept the message. We show that the capacity scaling in the DBF is lower bounded by a value which depends on the ratio between the number of the trustworthy and the untrustworthy aggressive relays, whereas the capacity scaling of OR is upper bounded by a value depending on the number of relays as well as the signal to noise ratio (SNR). In the third chapter, we propose a new location-based multicasting technique, for dual phase AF large networks, aiming to improve the security in the presence of non-colluding passive eavesdroppers. We analytically demonstrate that the proposed technique increases the security by decreasing the probability of re-choosing a sector that has eavesdroppers, for each transmission time. Moreover, we also show that the secrecy capacity scaling of our technique is the same as for broadcasting. Hereafter, the lower and upper bounds of the secrecy outage probability are calculated, and it is shown that the security performance is remarkably enhanced, compared to the conventional multicasting technique. In the fourth chapter, we propose a new cooperative protocol, for dual phase amplify-andforward large wireless sensor networks, aiming to improve the transmission security while taking into account the limited capabilities of the sensor nodes. In such a network, a portion of the K relays can be potential passive eavesdroppers. To reduce the impact of these untrustworthy relays on the network security, we propose a new transmission protocol, where the source agrees to share with the destination a given channel state information (CSI) of source-trusted relay-destination link to encode the message. Then, the source will use this CSI again to map the right message to a certain sector while transmitting fake messages to the other sectors. Adopting such a security protocol is promising because of the availability of a high number of cheap electronic sensors with limited computational capabilities. For the proposed scheme, we derived the secrecy outage probability (SOP) and demonstrated that the probability of receiving the right encoded information by an untrustworthy relay is inversely proportional to the number of sectors. We also show that the aggressive behavior of cooperating untrusted relays is not effective compared to the case where each untrusted relay is trying to intercept the transmitted message individually. Fifth and last, we investigate the physical layer security performance over Rayleigh fading channels in the presence of impulsive noise, as encountered, for instance, in smart grid environments. For this scheme, secrecy performance metrics were considered with and without destination assisted jamming at the eavesdropper’s side. From the obtained results, it is verified that the SOP, without destination assisted jamming, is flooring at high signal-to-noise-ratio values and that it can be significantly improved with the use of jamming

    Physical-Layer Security in Cognitive Radio Networks

    Get PDF
    The fifth-generation (5G) communications and beyond are expected to serve a huge number of devices and services. However, due to the fixed spectrum allocation policies, the need for cognitive radio networks (CRNs) has increased accordingly. CRNs have been proposed as a promising approach to address the problem of under-utilization and scarcity of the spectrum. In CRNs, secondary users (SUs) access the licensed spectrum of the primary users (PUs) using underlay, overlay, or interweave paradigms. SUs can access the spectrum band simultaneously with the PUs in underlay access mode provided that the SUs’ transmission power does not cause interference to the PUs’ communication. In this case, SUs should keep monitoring the interference level that the PU receiver can tolerate and adjust the transmission power accordingly. However, varying the transmission power may lead to some threats to the privacy of the information transfer of CRNs. Therefore, securing data transmission in an underlay CRN is a challenge that should be addressed. Physical-layer security (PLS) has recently emerged as a reliable method to protect the confidentiality of the SUs’ transmission against attacks, especially for the underlay model with no need for sharing security keys. Indeed, PLS has the advantage of safeguarding the data transmission without the necessity of adding enormous additional resources, specifically when there are massively connected devices. Apart from the energy consumed by the various functions carried out by SUs, enhancing security consumes additional energy. Therefore, energy harvesting (EH) is adopted in our work to achieve both; energy efficiency and spectral efficiency. EH is a significant breakthrough for green communication, allowing the network nodes to reap energy from multiple sources to lengthen battery life. The energy from various sources, such as solar, wind, vibration, and radio frequency (RF) signals, can be obtained through the process of EH. This accumulated energy can be stored to be used for various processes, such as improving the users’ privacy and prolonging the energy-constrained devices’ battery life. In this thesis, for the purpose of realistic modelling of signal transmission, we explicitly assume scenarios involving moving vehicles or nodes in networks that are densely surrounded by obstacles. Hence, we begin our investigations by studying the link performance under the impact of cascaded κ−μ fading channels. Moreover, using the approach of PLS, we address the privacy of several three-node wiretap system models, in which there are two legitimate devices communicating under the threat of eavesdroppers. We begin by a three-node wiretap system model operating over cascaded κ − μ fading channels and under worst-case assumptions. Moreover, assuming cascaded κ − μ distributions for all the links, we investigate the impact of these cascade levels, as well as the impact of multiple antennas employed at the eavesdropper on security. Additionally, the PLS is examined for two distinct eavesdropping scenarios: colluding and non-colluding eavesdroppers. Throughout the thesis, PLS is mainly evaluated through the secrecy outage probability (SOP), the probability of non-zero secrecy capacity (Pnzcr ), and the intercept probability (Pint). Considering an underlay CRN operating over cascaded Rayleigh fading channel, with the presence of an eavesdropper, we explore the PLS for SUs in the network. This study is then extended to investigate the PLS of SUs in an underlay single-input-multiple-output (SIMO) CRN over cascaded κ-μ general fading channels with the presence of a multi-antenna eavesdropper. The impact of the constraint over the transmission power of the SU transmitter due to the underlay access mode is investigated. In addition, the effects of multiple antennas and cascade levels over security are well-explored. In the second part of our thesis, we propose an underlay CRN, in which an SU transmitter communicates with an SU destination over cascaded κ-μ channels. The confidentiality of the shared information between SUs is threatened by an eavesdropper. Our major objective is to achieve a secured network, while at the same time improving the energy and spectrum efficiencies with practical modeling for signals’ propagation. Hence, we presume that the SU destination harvests energy from the SU transmitter. The harvested energy is used to produce jamming signals to be transmitted to mislead the eavesdropper. In this scenario, a comparison is made between an energy-harvesting eavesdropper and a non-energy harvesting one. Additionally, we present another scenario in which cooperative jamming is utilized as one of the means to boost security. In this system model, the users are assumed to communicate over cascaded Rayleigh channels. Moreover, two scenarios for the tapping capabilities of the eavesdroppers are presented; colluding and non-colluding eavesdroppers. This study is then extended for the case of non-colluding eavesdroppers, operating over cascaded κ-μ channels. Finally, we investigate the reliability of the SUs and PUs while accessing the licensed bands using the overlay mode, while enhancing the energy efficiency via EH techniques. Hence, we assume that multiple SUs are randomly distributed, in which one of the SUs is selected to harvest energy from the PUs’ messages. Then, utilizing the gathered energy, this SU combines its own messages with the amplified PUs messages and forwards them to the destinations. Furthermore, we develop two optimization problems with the potential of maximizing the secondary users’ rate and the sum rate of both networks

    Wireless Communication Networks Powered by Energy Harvesting

    No full text
    This thesis focuses on the design, analysis and optimization of various energy-constrained wireless communication systems powered by energy harvesting (EH). In particular, we consider ambient EH wireless sensor networks, wireless power transfer (WPT) assisted secure communication network, simultaneous wireless information and power transfer (SWIPT) systems, and WPT-based backscatter communication (BackCom) systems. First, we study the delay issue in ambient EH wireless sensor network for status monitoring application scenarios. Unlike most existing studies on the delay performance of EH sensor networks that only consider the energy consumption of transmission, we consider the energy costs of both sensing and transmission. To comprehensively study the delay performance, we consider two complementary metrics and analyze their statistics: (i) update age - measuring how timely the updated information at the sink is, and (ii) update cycle - measuring how frequently the information at the sink is updated. We show that the consideration of sensing energy cost leads to an important tradeoff between the two metrics: more frequent updates result in less timely information available at the sink. Second, we study WPT-assisted secure communication network. Specifically, we propose to use a wireless-powered friendly jammer to enable low-complexity secure communication between a source node and a destination node, in the presence of an eavesdropper. We propose a WPT-assisted secure communication protocol, and analytically characterize its long-term behavior. We further optimize the encoding-rate parameters for maximizing the throughput subject to a secrecy outage probability constraint. We show that the throughput performance differs fundamentally between the single-antenna jammer case and the multi-antenna jammer case. Third, exploiting the fact that the radio-frequency (RF) signal can carry both information and energy, we study a point-to-point simultaneous wireless information and power transfer (SWIPT) system adopting practical M-ary modulation for both the power-splitting (PS) and the time-switching (TS) receiver architectures. Unlike most existing studies, we take into account the receiver’s sensitivity level of the RF-EH circuit. We show several interesting results, such as for the PS scheme, modulations with high peak-to-average power ratio achieve better EH performance. Then, inspired by the PS-based SWIPT receiver, we propose a novel information receiver, which involves joint processing of coherently and non-coherently received signals, and hence, creates a three-dimensional received signal space. We show that the achievable rate of a splitting receiver provides a 50% rate gain compared to either the conventional coherent or non-coherent receiver in the high SNR regime. Last, we propose the design of WPT-based full-duplex backscatter communication (BackCom) networks for energy-constrained Internet-of-Things applications, where a novel multiple-access scheme based on time-hopping spread-spectrum (TH-SS) is designed to enable both one-way power transfer and two-way information transmission in coexisting backscatter reader-tag links. Comprehensive performance analysis of BackCom networks is presented. We show some interesting design insights, such as: a longer TH-SS sequence reduces the bit error rates (BERs) of the two-way information transmission but results in lower energy-harvesting rate at the tag; a larger number of BackCom links improves the energy-harvesting rate at the tags but also increase the BERs for the information transmission

    Wireless networks physical layer security : modeling and performance characterization

    Get PDF
    Intrigued by the rapid growth and expand of wireless devices, data security is increasingly playing a significant role in our daily transactions and interactions with different entities. Possible examples, including e-healthcare information and online shopping, are becoming vulnerable due to the intrinsic nature of wireless transmission medium and the widespread open access of wireless links. Traditionally, the communication security is mainly regarded as the tasks at the upper layers of layered protocol stack, security techniques, including personal access control, password protection, and end-to-end encryption, have been widely studied in the open literature. More recently, plenty of research interests have been drawn to the physical layer forms of secrecy. As a new but appealing paradigm at physical layer, physical layer security is based on two pioneering works: (i) Shannon’s information-theoretic formulation and (ii) Wyner’s wiretap formulation. On account of the fundamental of physical layer security and the different nature of various wireless network, this dissertation is supposed to further fill the lacking of the existing research outcomes. To be specific, the contributions of this dissertation can be summarized as three-fold:(i) exploration of secrecy metrics to more general fading channels; (ii) characterization a new fading channel model and its reliability and security analysis in digital communication systems; and (iii) investigation of physical layer security over the random multiple-input multiple-output (MIMO) α −μ fading channels. Taking into account the classic Alice-Bob-Eve wiretap model, the first contribution can be divided into four aspects: (i) we have investigated the secrecy performance over single-input single-output (SISO) α −μ fading channels. The probability of non-zero (PNZ) secrecy capacity and the lower bound of secrecy outage probability (SOP) are derived for the special case when the main channel and wiretap channel undergo the same non-linearity fading parameter, i.e., α. Later on, for the purpose of filling the gap of lacking closed-form expression of SOP in the open literature and extending the obtained results in chapter 2 to the single-input multiple-output (SIMO) α − μ wiretap fading channels, utilizing the fact that the received signal-tonoise ratios (SNRs) at the legitimate receiver and eavesdropper can be approximated as new α −μ distributed random variables (RVs), the SOP metric is therefore derived, and given in terms of the bivariate Fox’s H-function; (ii) the secrecy performance over the Fisher-Snedecor F wiretap fading channels is initially considered. The SOP, PNZ, and ASC are finalized in terms of Meijer’s G-function; (iii) in order to generalize the obtained results over α −μ and Fisher-Snedecor F wiretap fading channels, a more flexible and general fading channel, i.e., Fox’s H-function fading model, are taken into consideration. Both the exact and asymptotic analysis of SOP, PNZ, and average secrecy capacity (ASC), are developed with closed-form expressions; and (iv) finally, motivated by the fact that the mixture gamma (MG) distribution is an appealing tool, which can be used to model the received instantaneous SNRs over wireless fading channels, the secrecy metrics over wiretap fading channels are derived based on the MG approach. Due to the limited transmission power and communication range, cooperative relays or multi-hop wireless networks are usually regarded as two promising means to address these concerns. Inspired by the obtained results in Chapters 2 and 3, the second main contribution is to propose a novel but simple fading channel model, namely, the cascaded α −μ. This new distribution is advantageous since it encompasses the existing cascaded Rayleigh, cascaded Nakagami-m, and cascaded Weibull with ease. Based on this, both the reliability and secrecy performance of a digital system over cascaded α −μ fading channels are further evaluated. Closed-form expressions of reliability metrics (including amount of fading (AF), outage probability, average channel capacity, and average symbol error probability (ABEP).) and secrecy metrics (including SOP, PNZ, and ASC) are respectively provided. Besides, their asymptotic behaviors are also performed and compared with the exact results. Considering the impacts of users’ densities, spatial distribution, and the path-loss exponent on secrecy issue, the third aspect of this thesis is detailed in Chapter 8 as the secrecy investigation of stochastic MIMO system over α −μ wiretap fading channels. Both the stochastic geometry and conventional space-time transmission (STT) scheme are used in the system configuration. The secrecy issue is mathematically evaluated by three metrics, i.e., connection outage, the probability of non-zero secrecy capacity and the ergodic secrecy capacity. Those three metrics are later on derived regarding two ordering scheme, and further compared with Monte-Carlo simulations
    corecore