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FOREWORD

This dissertation is mainly based on the research outcomes, which are accomplished under

the supervision of Dr. Georges Kaddoum from February 2015 to May 2019. This work is

financially supported by the research chair of physical layer security in wireless networks.

This dissertation is subjective to address the secure concern of physical layer security over

several general but useful fading channel models. Resultantly, my Ph.D. study successfully

ended with 7 journal papers published, 4 IEEE international conference papers published and

1 conference paper under review as the first author.

Apart from the first two chapters, where the background of physical layer security are intensely

introduced, the remaining chapters are based on my journal papers. For those chapters, I did

a comprehensive literature review, reasonably formulated problems, feasibly proposed possi-

ble solutions, mathematically analyzed and simulated the performance, and technically draft

manuscripts. After the presentation of those chapters, chapter 9 concludes the whole work and

lists several future research directions.
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Sécurité de la couche physique des réseaux sans fil: modélisation et caractérisation des
performances

Long KONG

RÉSUMÉ

Poussée par la croissance et l’expansion exponentielles des périphériques sans fil, la sécurité

des données joue, de nos jours, un rôle de plus en plus important dans tous nos transactions

et interactions quotidiennes avec différentes entités. Des exemples possibles, y compris les

informations de santé et les achats en ligne, deviennent très vulnérables en raison de la nature

intrinsèque du support de transmission sans fil et de l’ouverture d’accès aux liens sans fil. Tra-

ditionnellement, la sécurité des communications est principalement considérée comme étant

les tâches traitées au niveau des couches supérieures de la pile de protocoles en couches, les

techniques de sécurité, y compris le contrôle d’accès personnel, la protection par mot de passe

et le chiffrement de bout en bout. Ces techniques ont été largement étudiés dans la littéra-

ture. Plus récemment, le potentiel que présente la couche physique pour améliorer la sécurité

des communications sans fil apporte de plus en plus d’intérêt. Etant un paradigme nouveau

et attrayant au niveau de la couche physique, la sécurité de la couche physique repose sur

deux travaux fondamentaux: (i) la théorie de l’information de Shannon. (ii) le canal d’écoute

électronique de Wyner.

Compte tenu des fondements de la sécurité de la couche physique et de la nature différente

des divers réseaux sans fil, cette thèse est censée combler davantage le manque qu’on trouve

dans les résultats des travaux de recherche existants. En guise de précision, les contributions de

cette thèse peuvent être résumées comme suit: (i) exploration des métriques de confidentialité

sur des canaux à évanouissement plus généraux; (ii) la caractérisation d’un nouveau modèle de

canal à évanouissements et l’analyse de sa fiabilité et de sa sécurité lors de son application aux

systèmes de communication numériques; (iii) étude de la sécurité de la couche physique sur

les canaux aléatoires MIMO à évanouissement α −μ .

En prenant en compte le modèle d’écoute électronique classique d’Alice-Bob-Eve, la première

contribution peut être divisée en quatre parties: (i) nous avons étudié les performances de

confidentialité sur des canaux SISO à évanouissement α − μ . La probabilité de capacité de

confidentialité non nulle (PNZ) et la limite inférieure de probabilité d’interruption de secret

(SOP) sont calculées pour le cas particulier où le canal principal et le canal d’écoute subissent

le même paramètre de non-linéarité d’évanouissement, à savoir, α . Par la suite, afin de combler

le manque d’expression de forme fermée de la SOP dans la littérature et d’étendre les résultats

obtenus au chapitre 2 pour le cas des canaux d’écoute SIMO à évanouissement α − μ . En

utilisant le fait que les rapports signal sur bruit (SNR) reçus au niveau du récepteur légitime

et au niveau de l’écoute clandestine peuvent être approchés en tant que nouvelles variables

aléatoires (RV) de distribution α − μ , la métrique SOP est donc dérivée et donnée en termes

de la fonction H bivariée de Fox ; (ii) la performance de confidentialité sur les canaux d’écoute

électronique Fisher-Snedecor F à évanouissement est initialement prise en compte. Les SOP,



X

PNZ et ASC sont finalisées en termes de fonction G de Meijer (iii) afin de généraliser les

résultats obtenus sur F canaux d’écoute électronique de Fisher-Snedecor à évanouissement

α −μ , un canal à évanouissement plus flexible et plus général, comme le modèle d’atténuation

de la fonction H de Fox, est pris en compte. Les analyses exactes et asymptotiques de SOP,

PNZ et al capacité de confidentialité moyenne (ASC) sont développées avec des expressions

de forme fermée; (iv) Enfin, motivés par le fait que la distribution MG (mélange gamma) est

un outil attrayant, qui peut être utilisé pour modéliser les SNRs reçus instantanément sur des

canaux sans fil à évanouissements, les métriques de confidentialité sur divers canaux d’écoute

électronique à évanouissements sont dérivées en utilisant l’approche MG.

En raison de la puissance de transmission et de la portée de communication limitées, les re-

lais coopératifs ou les réseaux sans fil à sauts multiples sont généralement considérés comme

deux moyens prometteurs pour résoudre ces problèmes. Inspiré par les résultats obtenus

aux chapitres 2 et 3, le second apport consiste à proposer un modèle de canal à évanouisse-

ments novateur mais simple, à savoir le cascadé α − μ . Cette nouvelle distribution est avan-

tageuse puisqu’elle englobe facilement les canaux cascadés existantes Rayleigh, Nakagami-m

et Weibull. Sur cette base, les performances de fiabilité et de confidentialité d’un système

numérique sur des canaux de fading α − μ en cascade sont ensuite évaluées. Les expressions

en forme fermée des mesures de fiabilité (y compris la quantité d’atténuation (AF), la proba-

bilité de coupure, la capacité moyenne du canal et la probabilité d’erreur de symbole moyenne

(ABEP)) ainsi que les mesures de confidentialité (y compris SOP, PNZ et ASC) sont fournies.

En outre, leurs comportements asymptotiques sont également effectués et comparés aux résul-

tats exacts.

Considérant les effets de la densité des utilisateurs, de la distribution spatiale et du facteur

d’affaiblissement de propagation sur la confidentialité de la communication, le troisième as-

pect de cette thèse est détaillé dans le chapitre 8 en tant qu’investigation sur la confidentialité

du système MIMO stochastique sur des canaux d’écoutes électroniques avec évanouissement

α − μ . La géométrie stochastique et le schéma de transmission spatio-temporelle classique

(STT) sont utilisés dans la configuration du système. La question de la confidentialité est

évaluée mathématiquement par le biais de trois métriques, à savoir la coupure de connexion,

la probabilité de la capacité de confidentialité non nulle et la capacité de confidentialité er-

godique. Ces trois métriques sont ensuite dérivées en termes de deux schémas de classement

et comparées ensuite aux simulations de Monte-Carlo.

Mots-clés: sécurité de la couche physique, α − μ , Fisher-Snecedor F , fonction H de Fox,

distribution gamma mixte (MG), α −μ cascadé, réseau MIMO stochastique
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ABSTRACT

Intrigued by the rapid growth and expand of wireless devices, data security is increasingly play-

ing a significant role in our daily transactions and interactions with different entities. Possible

examples, including e-healthcare information and online shopping, are becoming vulnerable

due to the intrinsic nature of wireless transmission medium and the widespread open access of

wireless links. Traditionally, the communication security is mainly regarded as the tasks at the

upper layers of layered protocol stack, security techniques, including personal access control,

password protection, and end-to-end encryption, have been widely studied in the open litera-

ture. More recently, plenty of research interests have been drawn to the physical layer forms

of secrecy. As a new but appealing paradigm at physical layer, physical layer security is based

on two pioneering works: (i) Shannon’s information-theoretic formulation and (ii) Wyner’s

wiretap formulation.

On account of the fundamental of physical layer security and the different nature of various

wireless network, this dissertation is supposed to further fill the lacking of the existing research

outcomes. To be specific, the contributions of this dissertation can be summarized as three-fold:

(i) exploration of secrecy metrics to more general fading channels; (ii) characterization a new

fading channel model and its reliability and security analysis in digital communication systems;

and (iii) investigation of physical layer security over the random multiple-input multiple-output

(MIMO) α −μ fading channels.

Taking into account the classic Alice-Bob-Eve wiretap model, the first contribution can be di-

vided into four aspects: (i) we have investigated the secrecy performance over single-input

single-output (SISO) α − μ fading channels. The probability of non-zero (PNZ) secrecy ca-

pacity and the lower bound of secrecy outage probability (SOP) are derived for the special case

when the main channel and wiretap channel undergo the same non-linearity fading parameter,

i.e., α . Later on, for the purpose of filling the gap of lacking closed-form expression of SOP in

the open literature and extending the obtained results in chapter 2 to the single-input multiple-

output (SIMO) α − μ wiretap fading channels, utilizing the fact that the received signal-to-

noise ratios (SNRs) at the legitimate receiver and eavesdropper can be approximated as new

α − μ distributed random variables (RVs), the SOP metric is therefore derived, and given in

terms of the bivariate Fox’s H-function; (ii) the secrecy performance over the Fisher-Snedecor

F wiretap fading channels is initially considered. The SOP, PNZ, and ASC are finalized in

terms of Meijer’s G-function; (iii) in order to generalize the obtained results over α − μ and

Fisher-Snedecor F wiretap fading channels, a more flexible and general fading channel, i.e.,

Fox’s H-function fading model, are taken into consideration. Both the exact and asymptotic

analysis of SOP, PNZ, and average secrecy capacity (ASC), are developed with closed-form

expressions; and (iv) finally, motivated by the fact that the mixture gamma (MG) distribution is
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an appealing tool, which can be used to model the received instantaneous SNRs over wireless

fading channels, the secrecy metrics over wiretap fading channels are derived based on the MG

approach.

Due to the limited transmission power and communication range, cooperative relays or multi-

hop wireless networks are usually regarded as two promising means to address these concerns.

Inspired by the obtained results in Chapters 2 and 3, the second main contribution is to propose

a novel but simple fading channel model, namely, the cascaded α − μ . This new distribution

is advantageous since it encompasses the existing cascaded Rayleigh, cascaded Nakagami-m,

and cascaded Weibull with ease. Based on this, both the reliability and secrecy performance

of a digital system over cascaded α − μ fading channels are further evaluated. Closed-form

expressions of reliability metrics (including amount of fading (AF), outage probability, average

channel capacity, and average symbol error probability (ABEP).) and secrecy metrics (includ-

ing SOP, PNZ, and ASC) are respectively provided. Besides, their asymptotic behaviors are

also performed and compared with the exact results.

Considering the impacts of users’ densities, spatial distribution, and the path-loss exponent on

secrecy issue, the third aspect of this thesis is detailed in Chapter 8 as the secrecy investigation

of stochastic MIMO system over α −μ wiretap fading channels. Both the stochastic geometry

and conventional space-time transmission (STT) scheme are used in the system configuration.

The secrecy issue is mathematically evaluated by three metrics, i.e., connection outage, the

probability of non-zero secrecy capacity and the ergodic secrecy capacity. Those three metrics

are later on derived regarding two ordering scheme, and further compared with Monte-Carlo

simulations.

Keywords: Physical layer security, α − μ , Fisher-Snecedor F , Fox’s H-function, mixture

gamma (MG) distribution, cascaded α −μ , stochastic MIMO network
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INTRODUCTION

As stated in the report of Ericsson entitled "10 hot consumer trends 2019" Ericsson (2018),

technology does make our daily life cheaper, easier, and more convenient. Specifically, super-

markets without checkouts; schools with increasing robotization of teachers and hospitals with

non-human doctors; restaurants with mechanized menus; and cars with non-human drivers are

just few already being realized possibilities. These examples are obvious the applications of

ICT. The services provided are implemented by using the wireless transmission medium. How-

ever, the openly accessible physical nature of radio links makes the legitimate links vulnerable.

Thus, the ever-increasing services provided by ICT come with an unavoidable security con-

cern. It is also highlighted in the aforementioned report that 52% of consumers think most

popular apps collect more smartphone data than needed in order to make profits. Resultantly,

safeguarding our confidential messages from being intercepted or misused is a challenging

problem Jameel, F., Wyne, S., Kaddoum, G. & Duong, T. Q. (2018); Neshenko, N., Bou-Harb,

E., Crichigno, J., Kaddoum, G. & Ghani, N. (2019).

Communication security concerns exist as long as there are wireless communication links.

Dating back to the ancient times, either flags or flames were used to deliver battlefield infor-

mation. As a consequence, enemies were easily able to access the information. The security

concern of how to provide high data confidentiality from head to toe arose. In the recent war

era, encrypted telegraph was widely used to convey important messages. In this context, the

only way to decrypt the cipher text is to know the encryption scheme. Therefore, the decryp-

tion process is time-consuming even if the cipher texts are at hand. The encryption philosophy

is also employed to enhance the security of wireless networks.

Taking a glance at the layered protocol stack, technical solutions, such as personal access

controls (fingerprints, face recognition, watermark), password protection, authorization, and

end-to-end encryption, are widely employed for keeping eavesdroppers and attackers away.
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Although seemingly effective, these techniques still present many limitations. For example,

the most popular encryption methods, such as AES and RSA, are key-based solutions, this kind

of solutions are based on the assumptions that the one way functions are difficult to break, in

other words, this means that unauthorized devices have insufficient computational capabilities

for decryption; obviously, this assumption is increasingly losing its validity due to the expo-

nential growth of the users’ computational ability. Also, devices are connected to the network

with different power, and they join in or leave the network randomly, due to the decentral-

ized nature of future wireless networks Yang, N., Wang, L., Geraci, G., Elkashlan, M., Yuan,

J. & Di Renzo, M. (2015). As a consequence, key management and distribution are becoming

challenging. For those reasons, the downsides of key-based solutions become apparent:

- low spectrum efficiency due to the transmission of additional headers and data;

- high computation and battery consumption, especially for public key based solutions;

In addition, the rapid growth of computational devices makes it adequately possible for eaves-

droppers to have sufficient computational capabilities against the mathematical assumption

(e.g., factorizing large integers). Besides, the current and future wireless network topologies

are becoming decentralized. Moreover, random distributed users with different power and

computational abilities can access the wireless network. Resultantly, key generation and man-

agement become increasingly challenging.

To this end, the attempts of merely relying on the upper layers security enhancement solutions

are no longer a wise and perfect policy. In addition, recent research attention shifted from the

upper layers to the physical layer due to Shannon’s original information-theoretic establish-

ment and Wyner’s degraded wiretap channel formulation. As a new framework, physical layer

security is appealing and promising, since it is not based on cryptography algorithms or secret

keys (though they might support such solutions.). The essence of physical layer security is to
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smartly exploit the intrinsic randomness of wireless medium to reversely secure the legitimate

transmission links Bloch, M. & Barros, J. (2011); Zhou, X., Song, L. & Zhang, Y. (2016).

Problem Statement and Motivations

Over the years, the emergence of various wireless networks, such as cognitive radio networks,

wireless sensor networks, mobile-to-mobile (M2M) networks, device-to-device (D2D) com-

munications, wireless body area networks (WBAN) Chong, P. K., Yoo, S. E., Kim, S. H. & Kim,

D. (2011); Moosavi, H. & Bui, F. M. (2016), and many others, has attracted plenty of research

interests from the wireless communication and signal processing communities. Due to the

uniqueness characteristics of each communication scenario, many novel fading channel mod-

els appear to meet their requirements.

For examplem, as stated in the literature, the α − μ fading channel was proposed in 2008

to model the small-scale fading of wireless links. Later on, it was proved to be valid for

the WBAN, and Vehicle-to-Vehicle (V2V) communication scenarios Jeong, Y., Chong, J. W.,

Shin, H. & Win, M. Z. (2013); Wu, Q., Matolak, D. W. & Sen, I. (2010). Similarly, the Fisher-

Snedecor F fading channel was proposed to model the composite fading, and it was verified to

accurately characterize the D2D communication links at 5.8 GHz in both indoor and outdoor

environments. Since both α − μ and Fisher-Snedecor F have their own characteristics when

applying to different communication scenarios. For this reason, a fairly general and flexible

fading model is needed to compensate the most or all the existing fading models. To address

this issue, one possible promising candidate is the Fox’s H-function distribution. In this thesis,

we have demonstrated that the Fox’s H-function distribution can be easily tailored to emulate

the α − μ , the Fisher-Snedecor F , cascaded α − μ fading models, and many other fading

distributions as special cases.
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Following the aforementioned discussion, in this thesis, we explored the secrecy concern over

this generalized wireless fading channels from the information-theoretic perspective.

Research Objectives

In this thesis, we will focus on the investigation of physical layer security over the α − μ ,

Fisher-Snedecor F , and Fox’s H-function fading channels. Three key secrecy metrics, in-

cluding the secrecy outage probability (SOP), the probability of non-zero secrecy capacity

(PNZ), and the average secrecy capacity (ASC), are developed for the purpose of (i) provid-

ing mathematical computational tools for wireless communication engineers to quickly access

and subsequently evaluate the security risk; and (ii) enabling network designers to degrade the

quality of received signals at the malicious users or devices.

Bearing this objective in mind, we have introduced the Parseval’s relation for Mellin transform

to formulate the aforementioned secrecy metrics with consideration of the classic Alice-Bob-

Eve wiretap channel. This useful relation is fairly beneficial since it enables us to have closed-

form tractable expressions for all the secrecy metrics.

Besides, the MG distribution is also introduced as a powerful tool to model the received SNRs

over wireless channels, and subsequently applied herein to characterize the secrecy perfor-

mance.

In order to consider more complex scenarios, studies are also conducted to characterize the

physical layer security over the cascaded α − μ wiretap channel. In addition, physical layer

security of random wireless MIMO α − μ fading channels are subsequently explored, where

the impacts of path-loss exponent, fading conditions, and ordering policies, are well discussed.

Contributions and Outline

The dissertation is structured as shown in Fig. 0.1, and detailed as follows.
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Figure 0.1 The paradigm of thesis contribution

Chapter 1 briefly introduces the state-of-arts of physical layer security and the tools used in

this thesis. Chapters 2 and 3 investigate the SOP over single-input single-output (SISO) and

single-input multiple-output (SIMO) α − μ wiretap fading channels, respectively. Precisely,

the SOP and the PNZ are derived with closed-form expressions.

Chapter 4 investigates the physical layer security over Fisher-Snedecor F fading channels,

where the SOP, PNZ and ASC, are derived in closed-form. The asymptotic behavior of the
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ASC are also analyzed to provide a relatively simpler form for specific cases. Simulation

results are presented to validate the accuracy of our analytical results.

In continuation with the previous three chapters, we have further considered a more general

and flexible fading channel model in Chapter 5, namely, the Fox’s H-function fading model.

The main contribution of this chapter is three-fold. First, we have derived the closed-form

expressions for the three key secrecy metrics; Second, the asymptotic behaviors of those three

metrics are also provided in a simple and accurate mathematical form, especially for several

extreme cases; Third, we also investigate the secrecy performance in the presence of colluding

eavesdroppers. The so-called super eavesdropper is taken into consideration, and the MRC

and SC schemes are applied and further compared when evaluating secrecy performance for

the colluding eavesdropping scenario. For the sake of verifying the obtained novel results,

three general fading models, including the α − μ , the Fisher-Snedecor F , and the extended

generalized-K distributions, are taken into consideration.

In addition to the aforementioned contributions, the Mixture Gamma (MG) distribution, which

is used to flexibly model the legitimate and illegitimate received signal-to-noise ratios (SNRs)

over various wireless channels, is considered in Chapter 6, where the secrecy metrics are de-

veloped with closed-form expressions, and further validated by Monte Carlo simulations over

three fading channels.

In Chapter 7, we propose a novel fading channel model, i.e., the cascaded α −μ fading chan-

nel, which is a promising candidate to the MIMO pinhole or multiple-hop amplify-and-forward

(AF) systems’ channel modeling. Moreover, both the reliability and secrecy analysis are con-

ducted over the cascaded α −μ fading channels.

Considering the spatial distribution of users, Chapter 8 deploys the stochastic geometry tool,

and analyzes the connection outage probability, the probability of non-zero secrecy capacity,
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and the ergodic secrecy capacity of multiple-input multiple-output (MIMO) Wireless Networks

over α −μ Fading Channels. Closed-form mathematical expressions are obtained in terms of

Fox’s H-function. Useful insights to demonstrating the interactions between different parame-

ters are also provided.

Finally, Chapter 9 concludes this dissertation and presents several possible future research

directions.

Author’s publication

The outcomes of the author’s Ph.D. research are either published or submitted to IEEE jour-

nal and conferences, which are listed below with the acronyms “J” for journals and “C” for

conferences.

- J1: Kong L., Kaddoum G., and Chergui H., "On Physical Layer Security over Fox’s H-

Function Wiretap Fading Channels", accepted by IEEE Trans. Veh. Technol., May 2019.

- J2: Kong L. and Kaddoum G., "Secrecy Characteristics with Assistance of Mixture Gamma

Distribution", accepted by IEEE Wireless Commun. Lett., Mar. 2019.

- J3: Kong L., Kaddoum G., and Rezki Z., "Highly Accurate and Asymptotic Analysis on

the SOP over SIMO α − μ Fading Channels", IEEE Commun. Lett., vol. 22, no. 10, pp.

2088-2091, Oct. 2018.

- J4: Kong L. and Kaddoum G., "On Physical Layer Security over Fisher-Snedecor F wire-

tap fading channels", IEEE ACCESS, vol. 6, pp. 39466-39472, Dec. 2018.

- J5: Kong L., Kaddoum G., and Benevides da Costa D., "Cascaded α −μ Fading Channels:

Reliability and Security Analysis", IEEE ACCESS, vol. 6, pp. 41978-41992, Dec. 2018.



8

- J6: Kong L. Vuppala S., and Kaddoum G., "Secrecy Analysis of Random MIMO Wireless

Networks over α − μ Fading Channels", IEEE Trans. Veh. Technol., vol. 67, no. 12, pp.

11654-11666, Sep. 2018.

- J7: Kong L., Tran H., and Kaddoum G., "Performance Analysis of Physical Layer Security

over α −μ Fading Channel", IET Elec. Lett., Vol. 52, no. 1, pp. 45-47, Jan. 2016.

Apart from the afore-listed journal papers that contribute to the main body of this dissertation,

the other scientific publications that the author either has been involved in or drafted as the first

author are not included in this dissertation, are listed as follows.

- J8: Kaddoum G., Tran H., Kong L. and Atallah M., "Design of Simultaneous Wireless

Information and Power Transfer Scheme for Short Reference DCSK Communication Sys-

tems", IEEE Trans. Comm., Vol. 65, no.1, pp. 431 - 443, Jan. 2017.

- J9: Ai Y., Kong L., and Cheffena M., "Secrecy outage analysis of double shadowed Rician

channels", IET Electron. Lett., early access, Apr., 2019.

- C1: Kong L., Ai. Y., He J., Rajatheva. N., and Kaddoum G., "Intercept Probability Anal-

ysis over the Cascaded Fisher-Snedecor F Fading Wiretap Channels", submitted to IEEE

ISWCS, Aug. 27-30, 2019, Oulu, Finland.

- C2: Kong L., Kaddoum G., and Vuppala S., "On Secrecy Analysis for D2D Networks over

α −μ Fading Channels with Randomly Distributed Eavesdroppers", 2018 IEEE Intl. Conf.

Commun. Workshops (ICC Workshops), pp. 1-6, May 20-24, 2018, Kansas City, USA.

- C3: Kong L., Kaddoum G., Daniel Benevides da Costa, and Elias Bou-Harb, "On Secrecy

Bounds of MIMO Wiretap Channels with ZF detectors", 2018 14th Intl. Wireless Commun.

& Mobile Computing Conf. (IWCMC), Limassol, Jun. 25-29, 2018, pp. 724-729.



9

- C4: Kong L., He J., Kaddoum G., Vuppala S., and Wang L., "Secrecy Analysis of A MIMO

Full-Duplex Active Eavesdropper with Channel Estimation Errors", 2016 IEEE 84th Veh.

Technol. Conf. (VTC-Fall), Sept. 18-21, 2016, Montreal Canada.

- C5: Cai G., Wang L., Kong L. and Kaddoum G., "SNR Estimation for FM-DCSK System

over Multipath Rayleigh Fading Channels", 2016 IEEE 83rd Veh. Technol. Conf. (VTC

Spring), Nanjing, 2016, pp. 1-5.

- C6: Kong L., Kaddoum G., and Mostafa T., "Performance Analysis of Physical Layer

Security of Chaos-based Modulation Schemes", the Eighth IEEE intl. Workshop on Selected

Topics in Wireless and Mobile computing (STWiMob), Abu Dhabi, UAE, Oct. 19-21, 2015.

- C7: Atallah M., Kaddoum G., and Kong L., "A Survey of Cooperative Jamming Applied

to Physical Layer Security", IEEE intl. Conf. Ubiquitous Wireless Broadband (ICUWB),

Montreal, Canada, Oct. 4-7, 2015.





LITERATURE REVIEW

The attempts of simply adding encryption schemes to the existing protocols at various commu-

nication layers, though provide security, come at the cost of additional computational com-

plexity. Due to the limited storage capability and power constraints of light devices, the

high computing-cost security techniques undoubtedly pose a heavy burden to communica-

tion devices (such as radio-frequency identification (RFID) tags, certain sensors, etc.) Poor,

H. V. & Schaefer, R. F. (2017). Therefore, shifting the security to the physical layer can provide

a promising solution. Physical layer security has emerged as an appealing and revolutionizing

concept, which is not based on cryptography algorithms or secret keys (though they might sup-

port such solutions) Di Renzo, M. & Debbah, M. (2009); Duruturk, M. (2010); Shiu, Y. S.,

Chang, S. Y., Wu, H. C., Huang, S. C. H. & Chen, H. H. (2011). The foundation of physical

layer security is information-theoretic, and it is supposed to be robust against attackers with

any computing capabilities Jorswieck, E., Tomasin, S. & Sezgin, A. (2015).

1.1 State-of-the-arts of Physical Layer Security

1.1.1 Principle of Physical Layer Security

To illustrate the general concept of physical layer security, an example of a three-node wireless

communication model is considered, as shown in Figure 1.1. In this network configuration,

the sender node wishes to transmit its secret messages to the intended receiver node in the

presence of a passive eavesdropper node. The communication link between the transmitter and

the legitimate receiver is called the main channel, whereas the one between the transmitter and

the eavesdropper is referred to as the wiretap channel. Usually the messages received in the

legitimate and illegitimate terminals are different.

Wireless signals undergo many phenomena, including multipath fading, pathloss, etc. Fading is

a self-interference physical phenomenon due to the multi-path propagation of the signals, while

path-loss is indeed the attenuation of the wireless signal amplitude. It is mainly affected by the
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Transmitter Legitimate receiver

Eavesdropper

e er Le

Private messages

Interference

Figure 1.1 Illustration of wiretap channel

model with one transmitter, one legitimate

receiver and one eavesdropper

distance. In other words, if the legitimate users have information transmission over smaller dis-

tances, whereas the illegitimate users eavesdrop private information over wiretap channel with

larger distance. Then, the received signal detected at legitimate users are certainly much strong

than that at the eavesdroppers. In this vein, in wireless communication networks, the main

objective of adopting physical-layer security is to maximize the rate of reliable information

from the source to the legitimate destination, while all malicious nodes are kept as ignorant as

possible of that information. The breakthrough philosophy behind physical-layer security is to

exploit the characteristics of the wireless channel (i.e., fading, noise, interference) for achiev-

ing high reliability of wireless transmissions. While all these characteristics have traditionally

been regarded as impairment factors for reliable communication, the paradigm of physical layer

security takes advantage of these characteristics for achieving secure information transmission.

1.1.2 The Advantages of Physical Layer Security

The conceptual beauty of physical layer security is not only due to its essence of enhancing

security at the bottom layer, but also to take advantage of the randomness of wireless links (i.e.,
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noise, multipath fading, interference) as a feasible and effective means to address the security

risks Wu, Y., Khisti, A., Xiao, C., Caire, G., Wong, K. & Gao, X. (2018b).

As shown in Table 1.1, physical layer security is compared with the classical cryptography to

list the pros and cons of these techniques.

Table 1.1 Comparisons between two techniques (Tech.) i.e., classical cryptography

(CC) and physical layer security

Tech. Advantages Disadvantages

CC

1. Secret key based

2. Widely used in the upper layers and

nearly every application of information

and communication technology

1. Without information-theoretic security

2. High computing power

3. Low spectrum efficiency

4. One-way functions

5. Incapability of eavesdropping and

interference in PHY layer

PLS

1. Information-theoretic based

2. No computational restrictions

3. Works at the bottom layer

1. Almost secure

1.1.3 The Evolution of Physical Layer Security over Fading Channels

On the way of prompting the research work on physical layer security, the following corner-

stones are undoubtedly the fundamental masterpieces.

1) Shannon: the notion of information-theoretic secrecy was first introduced Shannon, C.

(1949)

2) Wyner: the concept of wiretap channel model was established Wyner, A. D. (1975)

3) Csiszar and Korner: the existence of channel codes guaranteeing robustness to transmission

errors was found Csiszar, I. & Korner, J. (1978)

4) Leung-Yan-Cheong and M. E. Hellman: Secrecy capacity over AWGN channel was math-

ematically expressed, which is the difference between the main channel capacity and the
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wiretap channel capacity Leung-Yan-Cheong, S. & Hellman, M. (1978)

Cs = log2

(
1+

P
δm

)
− log2

(
1+

P
δw

)
, (1.1)

where P is the transmit power, δm, and δw are the noise variance at the legitimate user and

eavesdroppers, respectively.

This work suggests that positive secrecy can be achieved, when the channel capacity for

the AWGN wiretap channel is lower than that of the AWGN main channel. Consequently,

confidential communication is impossible unless the Gaussian main channel has a better

quality of received SNR than the Gaussian wiretap channel does.

5) Bolch et al.: Secrecy capacity over quasi-static fading channels was established Bloch, M.,

Barros, J., Rodrigues, M. R. D. & McLaughlin, S. W. (2008)

Cs =

⎡
⎢⎢⎣log2

⎛
⎜⎜⎝1+ |hm|2 P

δm︸ ︷︷ ︸
γB

⎞
⎟⎟⎠− log2

⎛
⎜⎜⎝1+ |hw|2 P

δw︸ ︷︷ ︸
γE

⎞
⎟⎟⎠
⎤
⎥⎥⎦
+

, (1.2)

where hm and hw are the channel fading coefficients of the legitimate channel and wiretap

channel, respectively. γB and γE are used to represent the received instantaneous SNRs at

the legitimate and illegitimate receivers, respectively.

The foundation laid by Bloch et al. demonstrates that in the presence of fading, information-

theoretic security is achievable even when the eavesdropper has a better average SNR than

the legitimate receiver (without the need for public communication over a feedback chan-

nel).

More recently, many researchers turned their attentions to the opportunistic exploitation of the

space/time/user dimensions for secure communications. In Gopala, P. K., Lai, L. & Gamal,

H. E. (2008), the secrecy capacity of ergodic slow fading channels was derived. The secrecy

capacity of parallel fading channels was given in Liang, Y., Poor, H. & Shamai, S. (2008); Liu,

T., Prabhakaran, V. & Vishwanath, S. (2008b), where Liang et al. (2008) considered the broad-
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cast channel with a common message. Moreover, the secrecy capacity of the wiretap channel

with multiple antennas was studied in Negi, R. & Goel, S. (2005),Parada, P. & Blahut, R.

(2005),Khisti, A., Tchamkerten, A. & Wornell, G. W. (2008),Liu, T. & Shamai, S. (2009),Og-

gier, F. & Hassibi, B. (2011),Shafiee, S. & Ulukus, S. (2007). In particular, the secrecy capac-

ity of the multiple-input multiple-output (MIMO) wiretap channel has been fully characterized

in Khisti, A., Wornell, G., Wiesel, A. & Eldar, Y. (2007), Khisti, A. & Wornell, G. (2007),

Liu & Shamai (2009), Oggier & Hassibi (2011) and more recently its closed-form expressions

under a matrix covariance constraint have been derived in Bashar, S., Ding, Z. & Xiao, C.

(2012). Furthermore, a large number of recent works have considered the secrecy capacity of

more general broadcast channels. In Liu, R., Maric, I., Spasojevic’, P. & Yates, R. (2008a),

the authors study the two-user MIMO Gaussian broadcast channel. The two-user broadcast

channel with two confidential messages, each of which must be kept secret to the unintended

receiver, has been studied in Khisti, A. & Wornell, G. W. (2010a). A recent contribution has

extended the result to the MIMO Gaussian broadcast channel Liu, R. & Poor, H. (2008). Multi-

receiver wiretap channels have also been studied in Bagherikaram, G., Motahari, A. & Khan-

dani, A. (2013); Choo, L.-C. & Wong, K.-K. (2009); Khisti et al. (2008) where the confidential

messages to each receiver must be kept secret from an external eavesdropper.

The relay channel with confidential messages was studied in the works of Aggarwal, V., Sankar,

L., Calderbank, A. & Poor, H. (2009); Lai, L. & Gamal, H. E. (2008); Oohama, Y. (2001,0).

In this setup, one party communicates with another party directly, as well as through a relay

node. In this work, the feedback channel was also studied because of its advantages over the

wiretap channel. The general principle consists of two aspects: (1) when the main channel is

noisier than the wiretap channel, feedback may permit unconditional secrecy; whereas without

feedback this is not possible Leung-Yan-Cheong, S. K. (1976); (2) when the main channel

and feedback channel are both noisy, perhaps it is possible to increase the secrecy capacity to

the usual capacity without secrecy constraint Lai, L., El Gamal, H. & Poor, H. (2008); Tekin,

E. & Yener, A. (2007). Finally, the role of feedback in multiple user channels was found to aid

secrecy in Tang, X., Liu, R., Spasojevic, P. & Poor, H. (2007).
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Since then, numerous researchers, from the fields of signal processing and wireless commu-

nications began to explore such an appealing paradigm for enhancing secrecy. The secrecy

performance of point-to-point communication over AWGN, Rayleigh, Rician Kong, L. & Kad-

doum, G. (2019), Nakagami-m, Weibull, α − μ Kong, L., Tran, H. & Kaddoum, G. (2016b);

Kong, L., Kaddoum, G. & da Costa, D. B. (2018a); Kong, L., Kaddoum, G. & Rezki, Z.

(2018c), Fisher-Snedecor F Kong, L. & Kaddoum, G. (2018), and κ −μ/η −μ fading chan-

nels Bloch et al. (2008); Kong et al. (2016b); Kumar, S., Chandrasekaran, G. & Kalyani,

S. (2015); Liu, X. (2013a,1); Sarkar, M. Z. I., Ratnarajah, T. & Sellathurai, M. (2009) were

investigated. Moreover, the secrecy performance of multiple-input single-output (MISO) sys-

tems, single-input multiple-output (SIMO) system, MIMO systems Kong, L., He, J., Kaddoum,

G., Vuppala, S. & Wang, L. (2016a); Kong, L., Kaddoum, G., da Costa, D. B. & Bou-Harb,

E. (2018b); Kong, L., Vuppala, S. & Kaddoum, G. (2018e), and MIMO multiple eavesdrop-

pers (MIMOME) were fully characterized Khisti & Wornell (2010a); Khisti et al. (2007); Og-

gier & Hassibi (2011).

With the recent emergence of various communication networks and technologies, there has

been a growing research interest in the applications of physical layer secrecy techniques for

various wireless systems, such as mmWave communications Vuppala, S., Tolossa, Y. J., Kad-

doum, G. & Abreu, G. (2018); Wang, C. & Wang, H. M. (2016), cooperative networks Wang,

C., Wang, H., Ng, D. W. K., Xia, X. & Liu, C. (2015a); Yao, J., Zhou, X., Liu, Y. & Feng,

S. (2018); Zhang, N., Cheng, N., Lu, N., Zhang, X., Mark, J. & Shen, X. (2015b), cognitive

radios networks Kwon, T., Wong, V. & Schober, R. (2012); Wang, C. & Wang, H.-M. (2014),

orthogonal frequency-division multiplexing (OFDM) systems Zhang, H., Xing, H., Cheng, J.,

Nallanathan, A. & Leung, V. C. M. (2016a); Zhang, M. & Liu, Y. (2016), wireless ad hoc and

multi-hop networks and cellular networks (LTE, 5th Generation (5G) Yang et al. (2015), Mas-

sive MIMO Kapetanovic, D., Zheng, G. & Rusek, F. (2015)), satellite communications Lin,

M., Lin, Z., Zhu, W. & Wang, J. (2018); Zheng, G., Arapoglou, P. & Ottersten, B. (2012), in-

ternet of things Mukherjee, A. (2015) , wireless body area networks (WBAN) Moosavi & Bui

(2016), Smart Grid Lee, E.-K., Gerla, M. & Oh, S. (2012), wireless sensor networks (WSNs)
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Jameel, F., Wyne, S. & Krikidis, I. (2017); Zou, Y. & Wang, G. (2016), devices-to-devices

(D2D) communications Tolossa, Y. J., Vuppala, S., Kaddoum, G. & Abreu, G. (2018); Wang,

L., Liu, J., Chen, M., Gui, G. & Sari, H. (2018), ultra-dense networks Kamel, M., Hamouda,

W. & Youssef, A. (2017), visible light communication Pan, G., Ye, J. & Ding, Z. (2017),

NOMA Tran, D., Tran, H., Ha, D. & Kaddoum, G. (2019), etc.

1.1.4 Secrecy Metrics

According to Bloch et al. (2008), the instantaneous secrecy capacity over fading channels is

defined as the difference between the main channel capacity CM = log2(1+γB) and the wiretap

channel capacity CW = log2(1+ γE),

Cs =

⎧⎪⎨
⎪⎩

CM −CW , γB > γE

0, otherwise,

(1.3)

where γB and γE are the received SNRs at the legitimate and illegitimate receivers, respectively.

1.1.4.1 Secrecy Outage Probability

The outage probability of the secrecy capacity is defined as the probability that the secrecy

capacity Cs falls below the target secrecy rate Rs, i.e.,

Pout(Rs) = Pr(Cs < Rs). (1.4)

The secrecy outage probability can be conceptually explained by two cases: (i) the instanta-

neous secrecy capacity Cs is lower than the given target secrecy transmission rate, even though

positive secrecy capacity is guaranteed; (ii) secrecy outage event definitely happens when the
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secrecy capacity is non-positive. Thus, (1.4) can be mathematically rewritten as

Pout(Rs) = Pr(Cs < Rs|γB > γE)Pr(γB > γE)+Pr(γB < γE)

=
∫ ∞

0

∫ γ0

γE

fB(γB) fE(γE)dγBdγE +
∫ ∞

0

∫ γE

0
fγB(γB) fγE (γE)dγBdγE

=
∫ ∞

0
fγE (γE)

[∫ γ0

0
−
∫ γE

0

]
fγB(γB)dγBdγE +

∫ ∞

0

∫ γE

0
fγB(γB) fγE (γE)dγBdγE

=
∫ ∞

0
FγB(γ0) fγE (γE)dγE ,

(1.5)

where γ0 = M(1+ γE)− 1, M = 2Rs . FB and FE are used to denote the CDFs of the received

instantaneous SNRs at Bob and Eve, respectively. Similarly, fB and fE are utilized to express

the PDFs of the received instantaneous SNRs at Bob and Eve, respectively.

1.1.4.2 The probability of non-zero secrecy capacity

The probability of non-zero secrecy capacity refers to an event that the positive secrecy capacity

can be achieved, i.e. Pr(Cs > 0). With regards to this definition, the PNZ is further rewritten

as

Pr(Cs > 0) = Pr(γB > γE)

=
∫ ∞

0

∫ γB

0
fγB(γB) fγE (γE)dγEdγB

=
∫ ∞

0
fγB(γB)FγE (γB)dγB.

(1.6)

1.1.4.3 Average secrecy capacity

The secrecy capacity undoubtedly plays a vital role in physical layer security. It is a significant

benchmark to measure the fundamental limit of the secure transmission between different par-

ties over noisy and fading channels. It is theoretically associated with Wyner’s wiretap channel

model. For the sake of providing a simple form of calculating the average secrecy capacity C̄s,

the following expression is given Lei, H., Ansari, I. S., Pan, G., Alomair, B. & Alouini, M. S.
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(2017a).

C̄s =
∫ ∞

0
log2(1+ γB) fB(γB)FE(γB)dγB︸ ︷︷ ︸

I1

+
∫ ∞

0
log2(1+ γE) fE(γE)FB(γE)dγE︸ ︷︷ ︸

I2

−
∫ ∞

0
log2(1+ γE) fE(γE)dγE︸ ︷︷ ︸

I3

.
(1.7)

1.2 Wireless Fading Channels

One of the main contributions of this dissertation is to consider more general and flexible fading

channels. In this subsection, three key fading channels are listed.

1.2.1 α −μ Fading Channels

The α −μ distribution was first proposed by Yacoub in 2007 Yacoub, M. D. (2007a). Its PDF

is given w.r.t. X as follows

fX(x) =
αμμxαμ−1

Ω̂αμΓ(μ)
exp

(
−μ
(

x
Ω̂

)α)
, (1.8)

where Ω = α
√

E (xα) is the α−root mean value, α > 0 is an arbitrary fading parameter used

to denote the non-linearity of environments. μ > 0 is the inverse of the normalized variance of

xα , which is used to denote the number of multipath clusters. The parameter μ is calculated by

μ = E 2(xα )
V (xα ) .

The CDF of α −μ distribution is given by

FX(x) =
Γ
(

μ,μ
(

x
Ω̂

)α)
Γ(μ)

. (1.9)
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The general α − μ fading distribution can be reduced to several well-known fading models.

For example,

- when α = 2,μ = 1, the Rayleigh distribution is obtained;

- when α = 2,μ = m, it is then reduced to the Nakagami-m distribution;

- when α is the fading parameter, and μ = 1, it is the so-called Weibull distribution.

Later on, it has been reported in the literature that, in the filed experiments, the α − μ distri-

bution characterizes several different wireless communication scenarios Chong et al. (2011);

Dias, U. S. & Yacoub, M. D. (2009); Karadimas, P., Vagenas, E. D. & Kotsopoulos, S. A.

(2010); Michalopoulou, A., Zervos, T., Peppas, K., Lazarakis, F., Alexandridis, A. A., Dan-

gakis, K. & Kaklamani, D. I. (2011); Michalopoulou, A., Alexandridis, A. A., Peppas, K., Zer-

vos, T., Lazarakis, F., Dangakis, K. & Kaklamani, D. I. (2012); Reig, J. & Rubio, L. (2013);

Wu et al. (2010), including V2V communication networks and WBAN.

1.2.2 Fisher-Snedecor F Fading Channels

The Fisher-Snedecor F distribution was first proposed by Yoo et.al in 2017 to characterize

device-to-device (D2D) communication links. Compared to the other frequently used channel

model, i.e., the generalized-K distribution, the Fisher-Snedecor F is experimentally studied

and proved with a good, and in most cases, a better fit to the real channel data. This distribution

demonstrates a simple but effective fading model, especially at 5.8GHz for both indoor and

outdoor environments.

Technically speaking, the Fisher-Snedecor F distribution is modeled with two parameters,

i.e., m and ms. m and ms represent the amount of shadowing of the root-mean-square (rms)

signal power and the fading severity parameter, respectively. The PDF and CDF of the Fisher-

Snedecor F distribution are respectively given by

fX(x) =
2mm(msΩ)msx2m−1

B(m,ms)(mx2 +msΩ)m+ms
, (1.10)
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FX(x) =
mm−1x2m

2F1

(
m+ms,m;m+1;− mx2

msΩ

)
B(m,ms)(msΩ)m , (1.11)

where B(m,ms) is the beta function, Ω = E [x2] is the mean power.

In addition, it is worthy to mention that Fisher-Snedecor F distribution is also flexible since

it can be attributed to some other fading models by fixing m and ms with special values. For

example, when ms → ∞, and m = m, it is Nakagami-m distribution. Further for m = 1, it is the

Rayleigh distribution.

1.2.3 Fox’s H-function Fading Channels

The Fox’s H-function distribution was introduced as a pure mathematical finding by Cook in

1981 Cook Jr, I. D. (1981). It is much more flexible since it can be easily generalized to many

fading models, such as Gamma, exponential, Chi-square, Weibull, Rayleigh, Half-normal, as

well as the two aforementioned fading models.

The Fox’s H-function distribution is much more flexible and generic, due to its mathematical

definition, which is given by

fX(x) = κHm,n
p,q

⎡
⎣λx

∣∣∣∣∣∣
(ai,Ai)i=1:p

(bl,Bl)l=1:q

⎤
⎦ , γ > 0,

(a)
=

κ
2π j

∫
L

m
∏
i=1

Γ(bl +Bls)
n
∏

l=1
Γ(1−ai −Ais)

q
∏

i=m+1
Γ(1−bl −Bls)

p
∏

l=n+1
Γ(ai +Ais)︸ ︷︷ ︸

Θ(s)

(λx)−sds,
(1.12)

where λ > 0 and κ are constants such that
∫ ∞

0 fk(γk)dγk = 1. j =
√−1, (xi,yi)l is a shorthand

for (x1,y1), · · · ,(xl,yl). Step (a) is developed by expressing Fox’s H-function in terms of its

definition (Mathai, A. M., Saxena, R. K. & Haubold, H. J., 2009a, eq. (1.2)). Ai > 0 for all

i = 1, · · · , p, and Bl > 0 for all l = 1, · · · ,q. 0 ≤ m ≤ q, 0 ≤ n ≤ p, L is a suitable contour
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separating the poles of the gamma functions Γ(bl +Bls) from the poles of the gamma functions

Γ(1−ai −Ais).

As reported in the literature, the Fox’s H-function distribution provides a general but feasi-

ble model that compasses most distributions. This is due to its property to re-express those

functions in the form of Fox’s H-function Bodenschatz, C. D. (1992). For instance, Rayleigh

distribution includes exponential function and power functions. By using 1.13, Rayleigh dis-

tribution is then the so-called Fox’s H-function distribution.

For the purposes of showing the effectiveness and feasibility of Fox’s H-function distribution,

we have listed several special functions, which can be transformed in terms of the Fox’s H-

function Prudnikov, A. P., Brychkov, Y. A. & Marichev, O. I. (1990).

1

B
x

b
B exp

(
−x

1
B

)
= H1,0

0,1

⎡
⎣x

∣∣∣∣∣∣
−

(b,B)

⎤
⎦ , (1.13)

ln(1+ x) = H1,2
2,2

⎡
⎣x

∣∣∣∣∣∣
(1,1),(1,1)

(1,1),(0,1)

⎤
⎦ , (1.14)

Γ(a,x) = H2,0
1,2

⎡
⎣x

∣∣∣∣∣∣
(1,1)

(0,1),(a,1)

⎤
⎦ . (1.15)

1.3 Fox’s H-function

The Fox’s H-function is a general function involving Mellin-Barnes integrals Mathai et al.

(2009a). It is a generalization of Meijer’s G-function. In this dissertation, both the univariate

and bivariate Fox’s H-functions play an important role when deriving the secrecy metrics. As

such, this subsection offers a brief introduction of these two functions.
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1.3.1 The Univariate Fox’s H-function

Without the constraints of λ and κ , i.e., λ > 0, and κ is constant, the univariate Fox’s H-

function is defined as follows

Hm,n
p,q

⎡
⎣x

∣∣∣∣∣∣
(ai,Ai)i=1:p

(bl,Bl)l=1:q

⎤
⎦=

1

2π j

∫
L

Θ(s)x−sds. (1.16)

The Meijer’s G-function is a special case of Fox’s H-function obtained by simply setting all

Ai = 1, i = 1, · · · , p and Bl = 1, l = 1, · · · ,q. In other words,

Hm,n
p,q

⎡
⎣x

∣∣∣∣∣∣
(ai,Ai)i=1:p

(bl,Bl)l=1:q

⎤
⎦= Gm,n

p,q

⎡
⎣x

∣∣∣∣∣∣
(ai)i=1:p

(bl)l=1:q

⎤
⎦ . (1.17)

1.3.2 The Bivariate Fox’s H-function

Similarly, the bivariate Fox’s H-function is defined as follows Mathai, A. M. & Saxena, R. K.

(1978):

Hm,n;m1,n1;m2,n2
p,q;p1,q1;p2,q2

⎡
⎣x,y

∣∣∣∣∣∣
(ai;αi,Ai)i=1:q

(bl;βl,Bl)l=1:p

∣∣∣∣∣∣
(ci,Ci)i=1:q1

(dl,Dl)l=1:p1

∣∣∣∣∣∣
(ei,Ei)i=1:q2

( fl,Fl)l=1:p2

⎤
⎦

=− 1

4π2

∫
L1

∫
L2

Θ(s,ξ )Θ(ξ )ΘE(s)xξ ysdsdξ ,

(1.18)

where L1 and L2 are two suitable contours, m,n,m1,n1,m2,n2, p,q, p1,q1, p2,q2 are positive

integers with constraints: 0 ≤ m ≤ q, 0 ≤ n ≤ p, 0 ≤ m1 ≤ q1, 0 ≤ n1 ≤ p1, 0 ≤ m2 ≤ q2,

0 ≤ n2 ≤ p2. The sequence of parameters αq, βp, Aq, Bp, Cq1
, Dp1

, Eq2
, and Fp2

are real and

positive numbers.

Θ(s,ξ ) =

n1

∏
i=1

Γ(1−ai +αis+Aiξ )
m1

∏
l=1

Γ(bl −βls−Blξ )

p1

∏
i=n1+1

Γ(ai −Ais−Aiξ )
q1

∏
l=m1+1

Γ(1−bl +Bls+Blξ )
, (1.19a)
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Θ(ξ ) =

m1

∏
i=1

Γ(dl −Dlξ )
n1

∏
l=1

Γ(1− ci +Aiξ )

q1

∏
i=m1+1

Γ(1−dl +Dlξ )
p1

∏
l=n1+1

Γ(di −Diξ )
, (1.19b)

Θ(s) =

m1

∏
i=1

Γ( fl −Fls)
n1

∏
l=1

Γ(1− ei +Eis)

q1

∏
i=m1+1

Γ(1− fl +Fls)
p1

∏
l=n1+1

Γ(ei −Eis)
. (1.19c)

In addition, on condition that Ci = 1, Dl = 1, Ei = 1, and Fl = 1, the bivariate Fox’s H-

function is reduced to the bivariate Meijer’s G-function. The univariate and bivariate Meijer’s

G-functions are thereafter used in Chapters 4, 5, 6, and 7.
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2.1 Abstract

Recently, many works have focused on analyzing the metrics of physical layer security over

different wireless channels, such as additive white Gaussian noise (AWGN), Rayleigh, Rician

and Nakagami-m fading distributions. In order to extend the analysis to the general case, α −μ

fading channel is considered, which can span the aforementioned cases. For this purpose, the

physical layer security over α − μ fading channel is presented in this letter. The closed-form

expressions for the probability of positive secrecy capacity and upper bound of the secrecy

outage probability are derived. Their accuracies are assessed through comparison of theoretical

analysis and simulations results.

2.2 Introduction

Physical layer security is a promising solution that addresses the security issue while directly

operating at the physical layer from the information-theoretic viewpoint. Numerous contribu-

tions exist that analyze the secrecy performance over AWGN, Rayleigh, Rician, Nakagam-m

and Weibull fading channels. Performance analysis in terms of secrecy capacity and outage

probability has been investigated Bloch et al. (2008); Liu (2013a,1); Sarkar et al. (2009). How-

ever, to the best knowledge of the authors, there is no previous work focusing on the general

case of fading channels. With regard to different values of α and μ , the α −μ fading channel

can be reduced to the specific fading channel, such as Rayleigh, Nakagami-m and Weibull fad-
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ing distributions by adjusting certain parameters. In this letter, the secrecy performance over

α−μ fading channel is evaluated by the closed-form expressions for the probability of positive

secrecy capacity and upper bound of secrecy outage probability. Consequently, our theoretical

analysis is confirmed by simulation results.

2.3 System model and secrecy performance analysis

A three-node classic model such as the one shown in Fig. 2.1 is used here to illustrate a

wireless network with potential eavesdropping. In the wiretap channel model, a legitimate

transmitter (Alice) equipped with a directional antenna wishes to send secret messages to an

intended receiver (Bob) in the presence of an eavesdropper (Eve), the link between Alice and

Bob with fading coefficient hm is called the main channel, while the one between Alice and

Eve with fading coefficient hw is named as the wiretap channel. Both channels undergo the

α −μ distribution.

Alice Bob

hm

hw

Eve

Figure 2.1 Illustration of system model

with two legitimate transceivers (Alice and

Bob) and one eavesdropper (Eve)
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Recalling that the probability density function (PDF) of the α −μ fading channel coefficients

hi,(i ∈ {m,w}) is given by Yacoub (2007a)

fhi (h) =
αiμ

μi
i hαiμi−1

ĥαiμi
i Γ(μi)

exp

(
−μi

hαi

ĥαi
i

)
, (2.1)

where ĥi =
α
√

E
(
hαi

i
)

is the α−root mean value, αi > 0 is an arbitrary fading parameter, μi >

0 is the inverse of the normalized variance of hαi
i . The parameter μi is calculated by μi =

E2
(
hαi

i
)/

V
(
hαi

i
)
, where E (·) and V (·) are the expectation and variance operators, respectively.

Γ(x) =
∫ ∞

0 tx−1e−tdt is the Euler’s Gamma function. In particular, when changing the values

of α and μ to the following cases: (i) α = 2, μ = 1; (ii) α = 2, μ = m; and (iii) μ = 1, the

α-μ fading model can be simplified such that it follows Rayleigh, Nakagami-m and Weibull

distributions, respectively.

Let gi = |hi|2 denote the instantaneous channel power gain with unit mean. The PDF of gi is

expressed as Song, Y., Shin, H. & Kim, W. (2008)

fgi (x) =
αix

αiμi
2 −1

2Ω
αiμi

2
i Γ(μi)

exp

[
−
(

x
Ωi

)αi
2

]
, (2.2)

where Ωi =
Γ(μi)

Γ(μi+
2
αi
)
. Therefore, the received signal-to-noise ratio (SNR) at Bob and Eve

receiver sides can be expressed as

γi =
Pigi

Ni
(2.3)

where Pi and Ni are the transmission power and noise power, respectively. Without loss of

generality, we assume Nm is equal to Nw in this paper. In addition, since we consider that Alice

is equipped with a directional antenna, then the transmitted powers Pm and Pw may be different

because Bob and Eve are present in different locations in the network.
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According to Bloch et al. (2008); Liu (2013a,1); Sarkar et al. (2009), the secrecy capacity for

the given network is given as follows

Cs =Cm −Cw =

⎧⎨
⎩ log2

(
1+γm
1+γw

)
, if γm > γw

0, if γm � γw

(2.4)

where Cm and Cw are the capacities of the main channel and the wiretap channel, respectively.

Therefore, the probability of positive secrecy capacity can be derived as follows

Pr (Cs > 0) = Pr
[

log2

(
1+ γm

1+ γw

)
> 0

]
= Pr (γm > γw)

= 1−Pr
(

γm

γw
< 1

)

= 1−Pr
(

gm

gw
<

Pw

Pm

)
.

(2.5)

According to equation (16) in Tran, H., Duong, T. Q. & Zepernick, H. (2011), equation (2.5)

is derived as

Pr (Cs > 0) = 1−Fγ(1) (2.6)

where Fγ(x) is the cumulative distribution function (CDF) of x, which is given as

Fγ(x) = Pr
(

gm

gw
<

Pw

Pm
· x
)

=

(
PwΩw

PmΩm

)αμm
2 x

αμm
2

μmβ (μm,μw)
2F1

(
μm +μw,μm;1+μm;−

(
PwΩw

PmΩm

)α
2

x
α
2

)
,

(2.7)

herein 2F1 (., ; .; .) denotes the Gaussian hypergeometric function and β (., .) is the Beta func-

tion.
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The outage probability of the secrecy capacity is defined as the probability that the secrecy

capacity Cs falls below the target secrecy rate Rs, i.e.

Pout (Cs � Rs) = Pr
[

log2

(
1+ γm

1+ γw

)
� Rs

]
= Pr

[
γm � 2Rs (1+ γw)−1

]
= Pr (γm � γth + γthγw −1) ,

(2.8)

where γth = 2Rs . Due to the complex form of the PDF of α-μ fading distribution, it is difficult

to obtain a closed-form expression for (2.8). However, when the target data rate Rs approaches

zero, we can obtain the upper bound of the outage probability by substituting equation (2.7)

into equation (2.8), to get the following relationship

Pout (Cs � Rs) = Pr (γm � γth + γthγw −1)

� Pr (γm � γthγw)

� Pr
(

γm

γw
� γth

)

� Pr
(

gm

gw
� Pw

Pm
· γth

)
� Fγ (γth) .

(2.9)

2.4 Numerical Analysis

Fig. 2.2 shows the simulation and analysis results of the probability of positive secrecy capacity

versus the transmission power Pm over α − μ fading channel for selected power values of

eavesdropper Pw provided that α = 2 and μm = μw = 1 (Rayleigh fading). One can observe

that the analytical and simulation results are in perfect match for any given set of parameters.

In addition, for the case of fixed values of Pw, the larger Pm the higher the probability of positive

secrecy capacity. In Fig. 2.3, the probability of positive secrecy capacity in terms of different

values of α and μ for fixed Pw = 10 dB is illustrated. Here, a similar conclusion is obtained to

that of Fig. 2.2.
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Figure 2.2 The probability of positive secrecy

capacity versus Pm for selected values of Pw
values with fixed values of α = 2 and

μm = μw = 1
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Figure 2.3 The probability of positive secrecy

capacity versus Pm for different values of α and

μi and a fixed value of Pw = 10 dB. The solid

and circle (o) lines correspond to the

simulation and analysis results, respectively
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Figure 2.4 The upper bound of secrecy

outage probability versus Pm for selected values

of Pw with fixed values of α = 2 and

μm = μw = 1
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Figure 2.5 The upper bound of secrecy

outage probability versus Pm for different

values of α and μi and a fixed value of Pw = 10

dB. The solid and circle (o) lines correspond to

simulation and analysis results, respectively
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Similarly, Fig. 2.4 and Fig. 2.5 show the simulation and analysis results of the upper bound

of the outage probability of physical layer security over α − μ fading channel with regard to

two cases: (i) fixed α = 2, μm = μw = 1 while varying Pw; (ii) fixed Pw while changing the

values of α and μ . Here, we fix the target data rate as Rs = 0.01 bps. We can easily draw the

same conclusion about the accuracy of our derived expression for the upper bound of outage

probability, i.e. analytical derivations are verified by the simulation results.

2.5 Conclusion

In this letter, we derive closed-form expressions for the probability of positive secrecy capacity

and upper bound of outage probability for physical layer security over α −μ fading channels.

For verification and correctness measures, the derived closed-form expressions are validated

by simulation results.
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3.1 Abstract

In order to fill the gap of the mathematical analysis’s lack for the secrecy outage probability

(SOP) over single-input multiple-output (SIMO) α −μ wiretap fading channels, this letter ini-

tially provides highly accurate and asymptotic closed-form expressions for the SOP. The novel

highly accurate formulations are derived in a simple and general form in terms of the bivari-

ate Fox’s H-function, which is extensively used in the literature. Additionally, the asymptotic

analysis of the SOP is derived at high signal-to-noise ratio (SNR) regime. The obtained expres-

sions are numerically validated and compared with the Monte-Carlo simulation results. The

derived SOP is in highly accurate match with simulation results for SIMO case, and perfect

match with simulated results for single-input single-output (SISO) case.

Keywords: SIMO α −μ wiretap fading channels, secrecy outage probability, asymptotic anal-

ysis, Fox’s H-function.

3.2 Introduction

Physical layer security (PLS) readily sharpens our vision and subsequently enjoys great ap-

petite of the academia and industrial spheres, responding to the inherent open nature of wire-

less transmission medium. The initial theoretical works for the PLS have laid solid foundations

to address security issues from the information theoretical perspective. Later on, many aspects
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of PLS began with the secrecy analysis over additive white Gaussian noise (AWGN)Leung-

Yan-Cheong & Hellman (1978) channel, and afterwards shifted to that over various fading

channels, such as Rayleigh Bloch et al. (2008), Nakagami-m Sarkar et al. (2009), Weibull Liu

(2013b), and α −μ (equivalently, generalized Gamma) Kong et al. (2016b); Lei, H., Gao, C.,

Guo, Y. & Pan, G. (2015); Lei et al. (2017a), etc., wiretap fading channels.

On the other hand, the α −μ fading model encompasses Rayleigh, Nakagami-m, Exponential

and Weibull fading Yacoub (2007a), and resultantly, the characterization of secrecy analysis

over α − μ wiretap fading channels is decisively significant. Revisiting all existing results

concerning the secrecy performance over α − μ wiretap channels Kong et al. (2016b); Lei

et al. (2015,1), the works either focused on deriving the average secrecy capacity (ASC) Lei

et al. (2017a), the probability of non-zero secrecy capacity (PNZ) Kong et al. (2016b), or a

lower bound of the secrecy outage probability (SOP) Lei et al. (2015). It is worthy to note that

the analytical expressions of the ASC and lower bound of the SOP were respectively provided

with respect to the bivariate Fox’s H-function and Meijer’s G-function in Lei et al. (2015,1).

In fact, the difficulty to obtain closed-form expressions, for the corresponding intractable inte-

grals, explicitly leads to the derivation of a lower bound on the SOP. Apart from the analysis

on the lower bound, none of them presents an exact closed-form expressions for the SOP, let

alone its extension to the single-input multiple-output (SIMO) scenario.

To fill this gap, the objective thereafter is to complete the secrecy investigation over the SIMO

α−μ wiretap fading channels. More specifically, the contributions of this paper are as follows:

- Providing an exact SOP expression for single-input multiple-output (SISO) α − μ wiretap

fading channels.

- Considering the sum of multiple α−μ random variables (RVs) as another α−μ distributed

RV da Costa, D. B., Yacoub, M. D. & Filho, J. C. S. S. (2008); Zhang, J., Dai, L., Wang,

Z., Ng, D. W. K. & Gerstacker, W. H. (2015a), and deriving highly accurate SOP and lower

bound of SOP over SIMO α −μ wiretap fading channels.
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- Benefiting from the derived analytical SOP expression, we provide asymptotic analysis of

the SOP and secrecy diversity order, especially at high signal-to-noise ratio (SNR) regime,

due to the non-elementary form of the derived SOP.

Notations: [x]+ =max(x,0). Γ(.) is the complete Gamma function (Gradshteyn, I. S. & Ryzhik,

I. M., 2014, Eq. (8.310.1)), Γ(a,x) is the upper incomplete Gamma function (Gradshteyn & Ryzhik,

2014, Eq. (8.350.2)). Hm,n
p,q [.] is the univariate Fox’s H-function (Mathai et al., 2009a, Eq.

(1.2)), H0,n:m1.n1:m2,n2
p,q:p1,q1:p2,q2

is the bivariate Fox’s H-function (Mathai et al., 2009a, Eq. (2.56)).

B(x,y) is the Beta function (Gradshteyn & Ryzhik, 2014, Eq. (8.380.1)). M [ f (x),s] denotes

the Mellin transform of f (x) (Debnath, L. & Bhatta, D., 2014, Eq. (8.2.5)). Res[ f (x), p] repre-

sents the residue of function f (x) at pole x = p.

3.3 System Model and problem formulation

Consider a wiretap system model, where a legitimate transmitter (Alice) wishes to send secret

messages to an intended receiver (Bob) in the presence of a potential eavesdropper (Eve). The

link between Alice and Bob is called the main channel, while the one between Alice and each

Eve is named the wiretap channel. It is assumed that (i) Alice, Bob and Eve are equipped with

single, MB, and ME antennas, respectively; (ii) the main and the wiretap channels undergo the

α − μ fading Yacoub (2007a), with fading parameters αk,μk,k ∈ {B,E}; (iii) the maximum

ratio combining (MRC) scheme is utilized at Bob and Eve.

For the given system configuration, the received instantaneous SNRs at Bob and Eve are re-

ceptively given as γk =
Pgk
σ2

k
= γ̄kgk, and gk = ∑Mk

m=1 |hk,m|2 represents the instantaneous channel

power gain with unit mean. P, σ2
B and σ2

E denote the transmission power, noise power at Bob

and Eve, respectively.

Since the probability density function (PDF) of gk is the convolution of Mk PDFs of hk,m,

however, the high complexity of the Mk-dimensional integrals of fγk(γ) hinders the adoption

of a closed-form expression for the SOP. Fortunately, as proved in (da Costa et al., 2008, Eq.

(28)), the PDF of γk can be accurately approximated to a α-μ random variable with parameters
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(α̂k, μ̂k,Ω̂k)
1, and is given as follows

fγk(γ)≈
α̂kγ

α̂k μ̂k
2 −1

2Ω̂
α̂k μ̂k

2
k Γ(μ̂k)

exp

⎡
⎣−( γ

Ω̂k

) α̂k
2

⎤
⎦ (a)
= κkH1,0

0,1

⎡
⎣λkγ

∣∣∣∣∣∣
−

(μ̂k − 2
α̂k
, 2

α̂k
)

⎤
⎦ , (3.1)

where Ω̂k =
γ̄kΓ(μ̂k)

Γ
(

μ̂k+
2

α̂k

) , κk =
1

Ω̂kΓ(μ̂k)
, λk =

1
Ω̂k

. Step (a) is derived by using (Mathai et al.,

2009a, Eq. (1.125)). The cumulative distribution function (CDF) of γk, i.e., Fγk(γ) is therefore

obtained from (Bodenschatz, 1992, Eq. (3.7)) and is given by

Fγk(γ) = 1− κk

λk
H2,0

1,2

⎡
⎣λkγ

∣∣∣∣∣∣
(1,1)

(0,1),(μ̂i,
2
α̂i
)

⎤
⎦= 1− F̄γk(γ), (3.2)

where F̄γk(γ) is the complementary CDF (CCDF).

Assuming the availability of perfect channel state information (CSI) at all terminals and the

unit distance between Alice and Bob, Alice and Eve, the instantaneous secrecy capacity is

given by Lei et al. (2017a)

Cs = [log2 (1+ γB)− log2 (1+ γE)]
+ . (3.3)

3.4 Secrecy outage probability analysis

A secrecy outage event happens when either the secrecy capacity Cs is equal to 0, or when the

target secrecy rate Rt is greater than the instantaneous secrecy capacity, i.e., Cs < Rt . Revisiting

(3.3), the SOP, Pout , is conceptually and mathematically defined by2,

Pout = Pr(Cs < Rt) =
∫ ∞

0
FγB(γ0) fγE (γE)dγE = 1−

∫ ∞

0
F̄γB(γ0) fγE (γE)dγE , (3.4)

1 (α̂k, μ̂k,Ω̂k) can be estimated using the moment-based approximation method proposed in (da Costa

et al., 2008, Eq. (22-24)).

2 Due to the space limitation, the detailed derivation is suggested as a reference Kong et al. (2016a).
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where γ0 = RsγE +W , Rs = 2Rt , W = Rs −1.

3.4.1 Analytical SOP

Proposition 1. The generalized SOP expression over the SIMO α −μ wiretap fading channels

is given by

Pout = 1− κBκEW

RsλB
H0,1:0,1:1,1

1,0:1,1:1,1

⎡
⎣ 1

λBW
,

Rs

λEW

∣∣∣∣∣∣
(2,1,1)

−

∣∣∣∣∣∣
(1− μ̂B,

2
α̂B
)

(0,1)

∣∣∣∣∣∣
(1− μ̂E + 2

α̂E
, 2

α̂E
)

(1,1)

⎤
⎦ ,

(3.5)

where H0,n:m1.n1:m2,n2
p,q:p1,q1:p2,q2

is the bivariate Fox’s H-function.

Proof. Revisiting (3.4) and using the Parseval’s relation for Mellin transform (Debnath & Bhatta,

2014, Eq. (8.3.23)), we have

I =
∫ ∞

0
F̄γB(γ0) fγE (γE)dγE =

1

2π j

∫
L1

M [F̄γB(γ0),1− s]M [ fγE (γE),s]ds, (3.6)

where j =
√−1, L1 is the integration path from υ − j∞ to υ + j∞, and υ is a constant Deb-

nath & Bhatta (2014).

Then by introducing the mathematical definition of univariate Fox’s H-function, and then in-

terchanging the order of two integrals, M [F̄B(γ0),1− s] can be rewritten as

M [F̄γB(γ0),1− s] =
∫ ∞

0
γ−s

c F̄B(γ0)dγE

=
κB

2λBπ j

∫
L2

Γ(ξ )Γ(μ̂B +
2

α̂B
ξ )

Γ(1+ξ )
λ−ξ

B

∫ ∞

0

γE
−s

γξ
0

dγEdξ ,
(3.7)

where L2 is a certain contour separating the poles of Γ(ξ ) from the poles of Γ(μ̂B + 2
α̂B

ξ ).

Next, by representing γ0 = RsγE +W , using (Gradshteyn & Ryzhik, 2014, Eq. (3.194.3)) and

the property B(x,y) = Γ(x)Γ(y)
Γ(x+y) (Gradshteyn & Ryzhik, 2014, Eq. (8.384.1)), we obtain the
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following result

M [F̄γB(γ0),1− s] =
κB

2λBπ j

(
Rs

W

)s−1

Γ(1− s)
∫
L2

Γ(ξ + s−1)Γ(μ̂B +
2

α̂B
ξ )

Γ(1+ξ )
(λBW )−ξ dξ .

(3.8)

Subsequently, substituting (3.8) and the Mellin transform for fγC(γc) (Alhennawi, H. R., Ayadi,

M. M. H. E., Ismail, M. H. & Mourad, H. A. M., 2016, eq. (5)), i.e., M [ fγE (γc),s] =

κEλ−s
E Γ(μ̂E − 2

α̂E
+ s

α̂E
) into (3.6), arrives at the following result,

I =− κBκEW

4λBRsπ2

∫
L1

∫
L2

Γ(ξ + s−1)Γ(μ̂B +
2

α̂B
ξ )

Γ(1+ξ )(λBW )ξ

×Γ(1− s)Γ
(

μ̂E − 2

α̂E
+

2

α̂E
s
)(

Rs

λEW

)s

dξ ds,

(3.9)

and subsequently applying the definition of the bivariate Fox’s H-function, the proof is achieved.

3.4.2 Asymptotic SOP

In order to demonstrate the usefulness of the result in Proposition 1 and for the sake of high-

lighting the effect of channel fading parameters on the SOP, the asymptotic behavior of Pout

is conducted in this subsection for different scenarios by using the residue approach given in

(Chergui, H., Benjillali, M. & Saoudi, S., 2016, sec. IV). Our asymptotic results are conse-

quently summarized in Table. 3.1.

Table 3.1 Asymptotic analysis of the Pout

Scenario Asymptotic Pout

γ̄E → ∞ 1− Γ
(

μ̂B+
α̂E μ̂E

α̂B

)
μ̂E Γ(μ̂B)Γ(μ̂E)

(
λE

RsλB

) α̂E μ̂E
2

(3.10)

γ̄B → ∞
Γ
(

α̂B μ̂B
α̂E

+μ̂E

)
μ̂BΓ(μ̂B)Γ(μ̂E)

(
RsλB
λE

) α̂B μ̂B
2

(3.11)
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According to Chergui et al. (2016), expansions of the univariate and bivariate Fox’s H-functions

can be derived by evaluating the residue of the corresponding integrands at the closest poles to

the contour, namely, the minimum pole on the right for large Fox’s H-function arguments and

the maximum pole on the left for small ones. In the case of γ̄E → ∞, we have Rs
λEW → ∞. The

bivariate Fox’s H-function is evaluated at the highest poles on the left of L1, i.e., s = 1− ξ ,

therefore, it leads to the following result,

1

2π j

∫
L1

Γ(ξ + s−1)Γ(1− s)Γ
(

μ̂E − 2

α̂E
+

2

α̂E
s
)(

Rs

λEW

)s

︸ ︷︷ ︸
ψ(s)

ds

≈ Res[ψ(s),1−ξ ] = lim
s→1−ξ

(s+ξ −1)ψ(s)

= Γ(ξ )Γ
(

μ̂E − 2

α̂E
ξ
)(

Rs

λEW

)1−ξ
.

(3.12)

Therefore, we have

Pout ≈ 1− κBκE

2λBλEπ j

∫
L2

Γ(ξ )Γ
(

μ̂E − 2
α̂E

ξ
)

Γ
(

μ̂B +
2

α̂B
ξ
)

Γ(1+ξ )
(

λBRs
λE

)ξ

︸ ︷︷ ︸
τ(ξ )

dξ

= 1− 1

Γ(μ̂B)Γ(μ̂E)
H2,1

2,2

⎡
⎣λBRs

λE

∣∣∣∣∣∣
(1− μ̂E ,

2
α̂E

),(1,1)

(0,1),(μ̂B,
2

α̂B
)

⎤
⎦ .

(3.13)

In continuation, (3.13) can be successively and asymptotically simplified as (10) by computing

the highest pole on the right of the contour L2, namely ξ = α̂E μ̂E
2 ,

Pout ≈ 1− κBκE

λBλE
Res

[
τ(ξ ),

α̂E μ̂E

2

]
, (3.14)

and then applying κk
λk

= 1
Γ(μ̂k)

, the proof for (10) is achieved.
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Following the same methodology, the proof for the case, γ̄B → ∞, can be similarly achieved by

first computing (3.9) at the highest pole of L2 at ξ = 1− s, and subsequently evaluating the

obtained result at the poles of L1, i.e., s = 0 and s = α̂Bμ̂B
2 , respectively.

Remark 1. From the definition of SOP,

Pout = Pr(γB ≤ RsγE +W )≥ Pr(γB ≤ RsγE)︸ ︷︷ ︸
PL

out

=
∫ ∞

0
FγB(RsγE) fγE (γE)dγE , (3.15)

then plugging (3.1) and (3.2) into (3.15), using the Mellin transform of the products of two

Fox’s H-functions (Prudnikov et al., 1990, eq. (2.25.1.1)), PL
out is finally given by (3.13).

Remark 2. Conclusively speaking, the results shown by (10), (11) and (3.13) do not vary with

θ = γ̄B
γ̄E

.

Remark 3. The secrecy diversity order at Bob is defined as Dsec �− limγ̄B→∞
log(P∞

out)
log(γ̄B)

Liu, Y.,

Qin, Z., Elkashlan, M., Gao, Y. & Hanzo, L. (2017), and P∞
out is given by (11). After some

algebraic manipulations, the diversity order is finally given by, Dsec =
α̂Bμ̂B

2 .

3.5 Numerical results and discussions

In this section, we confirm the accuracy of our analytical derivations demonstrated in Section

3.4, in comparison with the Monte-Carlo (MC) simulation results3. It is noted that the bivari-

ate Fox’s H-function can be easily and efficiently implemented at MATLAB (Peppas, K. P.,

Lazarakis, F., Alexandridis, A. & Dangakis, K., 2012, Table. II), Python Alhennawi et al.

(2016) and Mathematica Lei et al. (2015)4.

Fig. 3.1(a) verifies the derived SOP and PL
out against γ̄B over SISO5 α − μ wiretap channels.

As seen from the figure, our derivation perfectly matches with the simulation outcomes, even

3 The α −μ fading channel is implemented by using the WAFO toolboxBrodtkorb et al. (2000).

4 It is worthy to mention that the numerical evaluation of the bivariate and univariate Fox’s H-function

for MATLAB implementations is based on the method proposed in (Peppas, K. P., 2012, Appendix.

A) and (Peppas et al., 2012, Table. II), respectively.

5 It is noted when MB = ME = 1, the SIMO α −μ fading channel is reduced to the SISO α −μ fading

channels, henceforth, we have αB = α̂B, and αE = α̂E .
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for several specific combinations of different values for α and μ , which correspond to Rayleigh

(α = 2, μ = 1), Nakagami-m (α = 2, μ = m) and Weibull (α is the fading parameter, and

μ = 1) fading channels, respectively. In addition, our derived PL
out keeps consistent with the

result given in (Lei et al., 2015, eq.(11))6. Figs. 3.1 (b) and 3.2 plot the asymptotic SOP against

γ̄B and γ̄E , respectively, it can be seen that the results given in (10) and (11) are becoming tight

at high SNR regime.

0 5 10 15 20 25 30
10-3

10-2

10-1

100

0 5 10 15 20 25

10-4

10-3

10-2

10-1

100

Figure 3.1 Pout versus γ̄B when Rt = 0.5 and MB = ME = 1

In Fig. 3.3, the comparison of the analytical expressions for the Pout , with simulation re-

sults regarding different (MB,ME), are performed. As suggested in the figure, the Pout is, as

expected, increased with the increase of ME , and decreased with the increase of MB.

6 The MC simulation in Lei et al. (2015) is used to confirm the lower bound of SOP, whereas the MC

simulation herein is supposed to confirm the exact SOP.
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Figure 3.2 Pout versus γ̄E when Rt = 0.5,

αB = 3,αE = 2,μB = μE = 4, and MB = ME = 1
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Figure 3.3 Pout versus γ̄B for selected values of

MB,ME when Rt = 0.5, γ̄E = 10 dB, αB = αE = 2,

μB = 1, μE = 2
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As observed in Figs. 3.1 and 3.3, one can grasp the following outcome about the asymptotic

behavior of Pout : (i) the lower bound of SOP given by (3.13) is becoming tight and closely

approximates the analytical Pout , as γ̄E increases; (ii) our derived asymptotic SOP given by

(11) is gradually approaching the analytical results, especially at high SNR γ̄E regime. As

discussed in Remark. 2 and plotted in Fig. 3.4, the PL
out and the asymptotic SOP at high SNR

regime are only varying with the change of θ .

-5 0 5 10 15 20
10-6

10-5

10-4

10-3

10-2

10-1

100

Figure 3.4 Pout versus θ when Rt = 0.5,

MB = ME = 2, αB = αE = 2, μB = μE = 2, and γ̄B = θ γ̄E

3.6 Conclusions

In this letter, we presented the novel, highly accurate and asymptotic closed-form expressions

for the SOP over the SIMO α − μ wiretap channels. The Monte-Carlo simulation was per-

formed and compared with our mathematical representations. Useful insights can be summa-

rized as (i) the highly accurate expression seems cumbersome, but it is in perfect agreement

with numerical results; (ii) the lower bound of SOP closely approximates the analytical SOP

especially at high γ̄E regime; (iii) the obtained result is extremely general and advantageous
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when the main channel and wiretap channel undergo different small-scale fading effects; (iv)

on the other hand, the MIMO α − μ wiretap fading channel presents a particular challenge

as beamforming is generally required whereas for SISO and SIMO scenarios, only codebook

generation and power allocation are involved. The authors believe that MIMO systems require

a special treatment, hence this scenario is left for future work.
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4.1 Abstract

In this paper, we initially investigate the physical layer security over device-to-device (D2D)

communications, where the channel is modeled from the Fisher-Snedecor F distribution. To

be specific, secrecy metrics, including the secrecy outage probability (SOP), the probability

of non-zero secrecy capacity (PNZ), and the average secrecy capacity (ASC), are well derived

with exact closed-form expressions, which are given in terms of the Meijer’s G-function. The

accuracies of our mathematical expressions are further validated by Monte-Carlo simulation

results.

Keywords: Physical layer security, Fisher-Snedecor F wiretap fading channels, Meijer’s G-

function.

4.2 Introduction

Currently, D2D communication is widely regarded as a promising candidate for the fifth-

generation (5G) communication. Due to the highly standardization of the communication

scheme, including the modulation and coding mechanism Zou, Y., Zhu, J., Wang, X. & Le-

ung, V. C. M. (2015), it is increasingly vulnerable for legitimate D2D pairs to highly ensure

secrecy from malicious third entities, especially when they are being wiretapped due to the

open access of transmission medium Shiu et al. (2011).
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More recently, the Fisher-Snedecor F fading model was proposed in Yoo, S. K., Cotton, S. L.,

Sofotasios, P. C., Matthaiou, M., Valkama, M. & Karagiannidis, G. K. (2017) to characterize

the D2D links. It is reported therein that the Fisher-Snedecor F distribution can provide a

good, and in most cases, a better fit to the experimental channel data, especially in comparison

with another composite fading model, i.e., the generalized-K distribution. The seminal finding

in Yoo et al. (2017) demonstrates that the Fisher-Snedecor F fading model is a promising

alternative model to capitalize the device-to-device (D2D) communication links, especially at

5.8 GHz, for both indoor and outdoor environments Rahama, Y. A., Ismail, M. H. & Hassan,

M. (2018).

In addition, the probability density function (PDF) of Fisher-Snedecor F distribution is less

simpler than the generalized-K distribution due to the PDF of generalized-K distribution hav-

ing the non-elementary function, i.e., the modified Bessel function. In addition, the Fisher-

Snedecor F distribution is flexible since it can be reduced to some special cases when the

fading parameters are fixed for some values Badarneh, O. S., da Costa, D. B., Sofotasios,

P. C., Muhaidat, S. & Cotton, S. L. (2018), i.e., Nakagami-m distribution (ms,l → ∞,ml = m),

Rayleigh distribution (ms,l → ∞,ml = 1), and one-sided Gaussian distribution (ms,l → ∞,ml =

0.5).

As it can be seen from the existing works Lei, H., Ansari, I. S., Gao, C., Guo, Y., Pan,

G. & Qaraqe, K. A. (2016a); Lei, H., Gao, C., Ansari, I. S., Guo, Y., Pan, G. & Qaraqe, K. A.

(2016b); Lei, H., Zhang, H., Ansari, I. S., Gao, C., Guo, Y., Pan, G. & Qaraqe, K. A. (2016c);

Wu, L., Yang, L., Chen, J. & Alouini, M. S. (2018a), the secrecy concern over the generalized-

K wiretap fading models has been widely investigated. In Lei et al. (2016b), the lower bound

of secrecy outage probability and average secrecy capacity over the single-input and multiple-

output (SIMO) generalized-K wiretap fading model were derived, which were given in terms

of the Meijer’s G-function. This function is with a general form and is defined in terms of the

Mellin-Barnes integral. In addition, it has been found widely applied in literature Kong et al.

(2018a); Kong, L., Kaddoum, G. & Vuppala, S. (2018d); Lei et al. (2015,1,1,1,1); Moualeu,

J. M. & Hamouda, W. (2017); Wu et al. (2018a) when analyzing secrecy performance over
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various fading channels, for example, α − μ Kong et al. (2016b,1,1); Lei et al. (2015,1) and

κ −μ Moualeu & Hamouda (2017), etc.

Motivated by the experimental and theoretical advantages of Fisher-Snedecor F distribution,

as such, the objectives of this paper are multi-fold,

- Considering the presence of an active eavesdropper, two essential secrecy metrics, includ-

ing the secrecy outage probability (SOP) and the probability of non-zero secrecy capacity

(PNZ), are derived with exact closed-form expressions, moreover, the lower bound of SOP

is also provided. The aforesaid metrics are exactly given either in terms of the univariate

Meijer’s G-function or the bivariate Meijer’s G-function.

- On the other hand, considering a passive eavesdropper, this paper is subjective to analyze

the average secrecy capacity (ASC) of a D2D network over the Fisher-Snedecor F wiretap

fading channels. Hence, the ASC is mathematically derived in terms of the univariate and

bivariate Merjer’s G-functions. Even though the Meijer’s G-function is a non-elementary

function, the implementation of univariate Meijer’s G-function is already available in math-

ematical software packages, like Matlab2017b, Mathematica Mei and Maple. In order to

gain more insights at high signal-to-noise ratio (SNR) regime, the bivariate Merjer’s G-

function is further simplified in terms of the univariate Merjer’s G-function. In addition, the

correctness of our analytical results are verified by Monte-Carlo simulation results.

Finally, the practical benefit of having such analytical secrecy expressions allows wireless sys-

tem designers to have a quick system evaluation when facing security risks.

The rest of this paper is outlined as follows: Section 4.3 presents the system model. Sections

4.4, 4.5, and 4.6 provide the secrecy analysis. Numerical results and discussion are subse-

quently presented in Section 4.7, followed with concluding remarks in Section 4.8.

Mathematical Functions and Notations: Γ(.) is the complete Gamma function (Gradshteyn & Ryzhik,

2014, eq. (8.310.1)). B(x,y) is the Beta function. 2F1(a,b;c;x) is the Gauss hypergeomet-

ric function. Gm,n
p,q [.] is the univariate Meijer’s G-function (Gradshteyn & Ryzhik, 2014, eq.
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(9.301)), Gm,n:m1.n1:m2,n2
p,q:p1,q1:p2,q2

[.] is the bivariate Meijer’s G-function. B(x,y) is the Beta function

(Gradshteyn & Ryzhik, 2014, eq. (8.380.1)). 2F1(a,b;c;x) is the Gauss hypergeometric func-

tion (Gradshteyn & Ryzhik, 2014, eq.(9.14.2)). M [ f (x),s] denotes the Mellin transform of

f (x) (Debnath & Bhatta, 2014, eq. (8.2.5)). Res[ f (x), p] represents the residue of function

f (x) at pole x = p.

4.3 System Model

Consider the Wyner’s wiretap channel model Wyner (1975), to be specific, as shown in Fig.

4.1, a wireless D2D link in the presence of an eavesdroppers, where the source (Alice) intends

to send private messages to legitimate receiver (Bob) over the main channel hB, and being

intercepted by a third entity (Eve) over the wiretap channel hE .

It is assumed that (i) all users are single antenna based; (ii) the D2D links are modeled by

the independent Fisher-Snedecor F distribution Yoo et al. (2017), hk,k ∈ {B,E} with fading

parameters (mk,s,mk), herein mk,s,mk represent the amount of shadowing of the root-mean-

square (rms) signal power and the fading severity parameter, respectively.

Alice Bob

hB

hE

Eve

Figure 4.1 Illustration of system model

with two legitimate transceivers (Alice and

Bob) and one eavesdropper (Eve)
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For the given system configuration, the received instantaneous signal-to-noise ratios (SNRs) at

Bob and Eve are expressed as

γk =
Pgk

σ2
k

= γ̄kgk (4.1)

where P, σ2
B, and σ2

E denote the transmission power, noise power at Bob and Eve, respectively.

gk = |hk|2 represents the instantaneous channel power gain with unit mean. It is assumed that

both the main channel (Alice → Bob) and the wiretap channel (Alice → Eve) are quasi-static

fading channels Bloch et al. (2008).

The PDF of the instantaneous received SNR, γk, is defined in (Yoo et al., 2017, eq. (5)), we

further rewrite it in terms of the Meijer’s G-function from (Prudnikov et al., 1990, eq. (8.4.2.5))

and (Gradshteyn & Ryzhik, 2014, eq.(9.31.5)),

fk(γ) =
mmk

k (mk,sγ̄k)
mk,sγmk−1

B(mk,mk,s)(mkγ +mk,sγ̄k)
mk+mk,s

(4.2)

= CkG1,1
1,1

⎡
⎣λkγ

∣∣∣∣∣∣
−mk,s

mk −1

⎤
⎦ , (4.3)

where λk =
mk

mk,sγ̄k
and Ck =

λk
Γ(mk)Γ(mk,s)

.

The cumulative distribution function (CDF) of γk, i.e., Fk(γ) is defined in (Yoo et al., 2017, eq.

(11)) and given by

Fk(γ) =
γmk

2F1

(
mk +mk,s,mk;mk +1;− mkγ

mk,sγ̄k

)
m1−mk

k B(mk,mk,s)(mk,sγ̄k)mk
(4.4)

(a)
= ΦkG1,2

2,2

⎡
⎣λkγ

∣∣∣∣∣∣
(1−mk,s,1)

(mk,0)

⎤
⎦ , (4.5)

where Φk =
Γ(mk+1)

mkΓ(mk)Γ(mk+mk,s)B(mk,mk,s)
, and step (a) is similarly developed from (Prudnikov

et al., 1990, eq. (8.4.49.13)).
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Assuming the availability of perfect channel state information (CSI) at all terminals, the in-

stantaneous secrecy capacity is defined as the difference between the main channel capacity

CM and the wiretap channel capacity CW Lei et al. (2016c), and is expressed as follows

Cs(γB,γE) =

⎧⎪⎨
⎪⎩

CM −CW , γB > γE

0, otherwise

=

⎧⎪⎨
⎪⎩

log2

(
1+γB
1+γE

)
, γB > γE

0, otherwise.

(4.6)

4.4 SOP Characterization

When considering an active eavesdropper, secrecy outage probability (SOP) is frequently mea-

sured as a benchmark to indicate how secure the Alice-Bob transceiver pair is.

The SOP is an information-theoretical concept having a definition that a secrecy outage event

happens when the instantaneous secrecy capacity Cs is equal to 0, or when Cs is lower than the

target secrecy rate, i.e., Cs < Rt .

To this end, making a revisit to (4.6), the secrecy outage probability, Pout(Rt), is conceptually

and mathematically explained in the following form Kong et al. (2016a,1).

Pout(Rt) = Pr(Cs < Rt) = Pr(γB ≤ RsγE +Rs −1) =
∫ ∞

0
FB(γ0) fE(γE)dγE , (4.7)

where γ0 = RsγE +Rs −1 = Rsγ +W , Rs = 2Rt , W = Rs −1.

Proposition 2. The secrecy outage probability over Fisher-Snedecor F Wiretap Fading Chan-

nels is given either in terms of the extended generalized bivariate Merjer’s G-function, shown

in (4.8a),

Pout,1 =
ΦBCEW

Rs
G0,1:2,1:1,1

1,0:2,3:1,1

⎡
⎣ Rs

λEW
,

1

λBW

∣∣∣∣∣∣
(2,1,1)

−

∣∣∣∣∣∣
(1−mB,1)

(0,mB,s,1)

∣∣∣∣∣∣
(2−mE)

(1,1+mE,s)

⎤
⎦ ,
(4.8a)
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or the univariate Merjer’s G-function shown in (4.8b),

Pout,2 =
ΦBCE

λBRs

∞

∑
n=1

(−λBW )n

n!
G3,3

4,4

⎡
⎣ λE

λBRs

∣∣∣∣∣∣
(0,−mE,s,n−mB,n)

(mE −1,n−1+mB,s,n−1,n)

⎤
⎦ , (4.8b)

where Gm,n:m1.n1:m2,n2
p,q:p1,q1:p2,q2

[.] is the bivariate Meijer’s G-function, Gm,n
p,q [.] is the univariate Meijer’s

G-function.

Proof. See Appendix. I.1 and Appendix. I.2 for the proofs of (4.8a) and (4.8b), respectively.

Remark 4. The Pout is lower bounded by

PL
out =

ΦBCE

λE
G2,3

3,3

⎡
⎣λBRs

λE

∣∣∣∣∣∣
(1−mB,s,1,1−mE)

(0,mE,s,mB)

⎤
⎦ . (4.9)

Proof. Revisiting (4.7), we have

Pout = Pr(γB ≤ RsγE +W )≥ Pr(γB ≤ RsγE)︸ ︷︷ ︸
PL

out

=
∫ ∞

0
FB(RsγE) fE(γE)dγE . (4.10)

Substituting (4.3) and (4.5) into (4.10), and then applying Mellin transform of the product of

two Meijer’s G-functions from (Prudnikov et al., 1990, eqs.(2.25.1.1) and (8.3.2.21)), the proof

is achieved.

4.5 PNZ Characterization

The existence of non-zero secrecy capacity is a fundamental metric, and it is assured with the

probability given by

Pnz = Pr(γB > γE) =
∫ ∞

0
FE(γB) fB(γB)dγB. (4.11)
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Proposition 3. The probability of non-zero secrecy capacity over Fisher-Snedecor F Wiretap

Fading Channels is given by

Pnz =
CBΦE

λB
G2,3

3,3

⎡
⎣λE

λB

∣∣∣∣∣∣
(1−mE,s,1−mB,1)

(0,mB,s,mE)

⎤
⎦ . (4.12)

Proof. Following the proof of remark. 4, the proof of Pnz is similarly obtained.

4.6 ASC Characterization

4.6.1 Exact ASC

Theorem 1. The average secrecy capacity over Fihser-Snedecor F wiretap fading channels

is given by

C̄s =
CBΦE

λB ln(2)
G1,1:1,2:1,2

1,1:2,2:2,2

⎡
⎣λE

λB
,

1

λB

∣∣∣∣∣∣
(mB)

(mB,s)

∣∣∣∣∣∣
(1−mE,s,1)

(mE ,0)

∣∣∣∣∣∣
(1,1)

(1,0)

⎤
⎦

︸ ︷︷ ︸
I1

+
CEΦB

λE ln(2)
G1,1:1,2:1,2

1,1:2,2:2,2

⎡
⎣λB

λE
,

1

λE

∣∣∣∣∣∣
(mE)

(mE,s)

∣∣∣∣∣∣
(1−mB,s,1)

(mB,0)

∣∣∣∣∣∣
(1,1)

(1,0)

⎤
⎦

︸ ︷︷ ︸
I2

− CE

λE ln2
G2,3

3,3

⎡
⎣ 1

λE

∣∣∣∣∣∣
(1,1,1−mE)

(1,mE,s,0)

⎤
⎦

︸ ︷︷ ︸
I3

.

(4.13)

Proof. Recalling the result given in (Lei et al., 2016b, eq.(17)), the ASC given in (4.6) can be

further mathematically expressed as

C̄s =
∫ ∞

0

∫ ∞

0
Cs(γB,γE) fγB(γB) fγE (γE)dγBdγE = I1 +I2 −I3, (4.14)
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where

I1 =
∫ ∞

0
log2(1+ γB) fB(γB)FE(γB)dγB, (4.15a)

I2 =
∫ ∞

0
log2(1+ γE) fE(γE)FB(γE)dγE , (4.15b)

I3 =
∫ ∞

0
log2(1+ γE) fE(γE)dγE . (4.15c)

Next, re-expressing the logarithm function in terms of the Meijer’s G-function Prudnikov et al.

(1990), i.e.,

log2(1+ x) =
1

ln(2)
G1,2

2,2

⎡
⎣x

∣∣∣∣∣∣
(1,1)

(1,0)

⎤
⎦ , (4.16)

substituting (4.3), (4.5), and (4.16) into (4.15a), I1 can be developed in (4.17),

I1 =
CBΦE

ln(2)

∫ ∞

0
G1,2

2,2

⎡
⎣γ

∣∣∣∣∣∣
(1,1)

(1,0)

⎤
⎦G1,1

1,1

⎡
⎣λBγ

∣∣∣∣∣∣
−mB,s

mB −1

⎤
⎦G1,2

2,2

⎡
⎣λEγ

∣∣∣∣∣∣
(1−mE,s,1)

(mE ,0)

⎤
⎦dγ

=
CBΦE

ln(2)

∫
L1

Γ(mE + s)Γ(mE,s − s)Γ(−s)
Γ(1− s)λ s

E

∫ ∞

0
γ−sG1,2

2,2

⎡
⎣γ

∣∣∣∣∣∣
(1,1)

(1,0)

⎤
⎦G1,1

1,1

⎡
⎣λBγ

∣∣∣∣∣∣
−mB,s

mB −1

⎤
⎦dγ

︸ ︷︷ ︸
U

ds,

(4.17)

where L1 is a certain contour separating the poles of Γ(mE + s) from the poles of Γ(−s).

The inner integral U can be directly developed by using the Mellin transform for the product

of two Meijer’s G-functions (Prudnikov et al., 1990, eq. (2.25.1.1)) as follows

U = λ s−1
B G2,3

3,3

⎡
⎣ 1

λB

∣∣∣∣∣∣
(1,1,s−1−mB)

(1,mB,s + s,0)

⎤
⎦ , (4.18)

subsequently, rewriting (4.18) in terms of the definition of univariate Meijer’s G-function, then

substituting the obtained result into (4.17) and performing the change of variables s =−s and
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ξ =−ξ , leads to the following result

I1 =− CBΦE

4ln(2)λBπ2

∫
L1

∫
L2

Γ(mB,s − s−ξ )Γ(s)
Γ(1+ s)Γ(1+ξ )

Γ(mB + s+ξ )Γ(mE − s)Γ(mE,s + s)

×Γ2(ξ )Γ(1−ξ )
(

1

λB

)ξ (λE

λB

)s

dξ ds,

(4.19)

where L2 is another contour, next, recognizing the definition of bivariate Meijer’s G-function

Gupta, S. (1969), the proof of I1 is accomplished.

Similarly, following the same methodology, the proof for I2 is achieved. With the help of

(Prudnikov et al., 1990, eqs. (2.25.1.1) and (8.3.2.21)), the proof of I3 is obtained.

4.6.2 Asymptotic ASC

Observed from (4.13), the exact ASC is given in terms of the extended generalized bivariate

Meijer’s G-function. Its implementation is not available in mathematical packages, like Math-

ematica, Maple or MATLAB. Fortunately, it is computationally tractable and programmable,

which can be found available in Peppas (2012). As such, the asymptotic ASC is derived espe-

cially when β = γ̄B
γ̄E

is at high SNR regime.

Theorem 2. When β = γ̄B
γ̄E

is at high SNR region, the asymptotic ASC would be given by

C̄s ≈ Î1 + Î2 −I3, (4.20)

where Î1 and Î2 are respectively given by (4.21a) and (4.21b),

Î1 ≈CBΦEΓ(mB,s +mB)

ln(2)λB

(
λB

λE

)mB

G3,3
4,4

⎡
⎣λE

∣∣∣∣∣∣
(0,1+mB,1−mE,s +mB,1)

(0,0,mB +mE ,mB)

⎤
⎦

+
CBΦEΓ(mE)Γ(mE,s)

ln(2)λB
G3,2

3,3

⎡
⎣λB

∣∣∣∣∣∣
(0,1−mB,s,1)

(0,0,mB)

⎤
⎦ ,

(4.21a)
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Î2 ≈CEΦBΓ(mE +mE,s)

ln(2)λE

(
λB

λE

)mE,s

G3,3
4,4

⎡
⎣λB

∣∣∣∣∣∣
(1,1+mE,s,1−mE,s −mB,s,1)

(0,0,mB −mE ,−mE,s)

⎤
⎦

+
CEΦBΓ(mB)Γ(mB +mB,s)

ln(2)λEΓ(1+mB)

(
λB

λE

)mB

G3,2
3,3

⎡
⎣λE

∣∣∣∣∣∣
(1,1−mE,s +mB,1)

(0,0,mB +mE)

⎤
⎦ .

(4.21b)

Proof. Recalling the residue approach given in (Chergui et al., 2016, Sec. IV) and the expan-

sion principle for Meijer’s G-function (Karagiannidis, G. K., Sagias, N. C. & Mathiopoulos,

P. T., 2007, Appendix), when β → ∞, λE
λB

→ ∞, making the change of variable s =−s, we have

G1 =
1

2π j

∫
L1

Γ(mB,s + s−ξ )Γ(mB − s+ξ )
Γ(1− s)

Γ(mE + s)Γ(mE,s − s)Γ(−s)
(

λB

λE

)s

︸ ︷︷ ︸
J1(s)

ds,
(4.22)

where j =
√−1, G1 can be evaluated at the poles s=mB+ξ and s= 0 on the left of the contour

L1, respectively

G1 ≈ Res[J1(s),mB +ξ ]+Res[J1(s),0], (4.23)

where

Res[J1(s),mB +ξ ]

=− lim
s→mB+ξ

(s−mB −ξ )J1(s)

=
Γ(mB,s +mB)Γ(mE +mB +ξ )Γ(−mB −ξ )

Γ(1−mB −ξ )
Γ(mE,s −mB −ξ )

(
λE

λB

)−(mB+ξ )
,

(4.24a)

Res[J1(s),0] = Γ(mE)Γ(mE,s)Γ(mB,s −ξ )Γ(mB +ξ ), (4.24b)

subsequently, plugging the obtained results into (4.22) and then into (4.19), yields

Î1 ≈ τ1

2π j

∫
L2

Res[J1(s),mB +ξ ]
Γ(1−ξ )Γ2(ξ )

Γ(1+ξ )λ ξ
B

dξ +
τ1

2π j

∫
L2

Res[J1(s),0]
Γ(1−ξ )Γ2(ξ )

Γ(1+ξ )λ ξ
B

dξ ,

(4.25)
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where τ1 =
CBΦE

λB ln(2) . After making some simple mathematical manipulations and applying the

univariate Meijer’s G-function, the proof of (4.21a) is obtained.

Regarding the proof for Î2, it can be evaluated at the poles on the right of the contour L1, i.e.,

s = mE,s − ξ and s = mB, and subsequently following the similar steps with (4.22)-(4.25), we

obtain the asymptotic I2.

4.7 Numerical Results and Conclusions

In order to confirm the accuracy of our derived analytical results given in Sections. 4.4, 4.5 and

4.6, Monte-Carlo simulations are therefore presented to compare with our analytical results

given in (4.8a), (4.8b), (4.9), (4.12), and (4.13), respectively.

5 10 15 20 25
10-4

10-3

10-2

10-1

100

Figure 4.2 Pout versus γ̄B over Fisher-Snedecor F fading

channels when Rt = 0.5, mB = 2,mE = 3, ms,B = 2, ms,E = 3,

and ΩB = ΩE = 1, respectively
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Figure 4.3 Pout versus γ̄E over Fisher-Snedecor F
fading channels when Rt = 0.5, mB = 2,mE = 3,

ms,B = 2, ms,E = 3, and ΩB = ΩE = 1, respectively
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Figure 4.4 Pnz versus β = γ̄B
γ̄E

over Fisher-Snedecor

F fading channels when mE = 3, ms,B = 2, ms,E = 2,

and ΩB = ΩE = 1, respectively
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Figure 4.5 C̄s versus γ̄B over Fisher-Snedecor F
fading channels when mB = ms,B = 3, mE = ms,E = 2,

and ΩB = ΩE = 1, respectively
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Figure 4.6 C̄s versus β over Fisher-Snedecor F
fading channels when mB = ms,B = 3, mE = ms,E = 2,

and ΩB = ΩE = 1, respectively
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Considering the active eavesdropping scenario, Figs. 4.2-4.4 verify the SOP and PNZ over the

Fisher-Snedecor F fading channels. As observed from the three graphs, it is observed that our

derivations are in good agreements with simulation outcomes. In addition, it is noteworthy to

mention that the obtained two SOP expressions, given in (4.8a) and (4.8b), match well.

Moreover, the lower bound of SOP given in (4.9) both plotted in Figs. 4.2 and 4.3 demonstrates

that the PL
out , as expected, is gradually approximating the exact SOP, especially as γ̄E increases.

Such a phenomenon is particularly vivid in Fig. 4.3. The lower bound of SOP is apparently

beneficial because (i) when γ̄E is at high signal-to-noise ratio (SNR) regime, it is highly tight to

the exact SOP; (ii) it could offer a simple and general computational benchmark for wireless

system designers when requiring quick evaluation of security risks.

In Fig. 4.4, we plot the PNZ against the ratio of γ̄B and γ̄E for selected values of mB. One can

obtain that larger value of mB assures secure transmission with a higher probability. In other

words, higher amount of shadowing of rms signal power is helpful to improve system secrecy.

This is just the nature that how physical layer security deploys the randomness of wireless

channels, i.e., fading, to enhance secrecy.

Figs. 4.5 and 4.6 illustrate the ASC against γ̄B and β over the Fisher-Snedecor F wiretap

fading channels, respectively. Apparently, our analytical result given by (4.13) is successfully

confirmed by Monte-Carlo simulation outcomes. In addition, one can perceive the following

conclusion: (i) higher γ̄E leads to a lower ASC; (ii) the ASC can be improved by assuring

high γ̄B; (iii) the ASC will reach a certain floor as β increases, as shown in Fig. 4.6; (iv) our

asymptotic C̄s given by (4.20) starts to gradually approach the exact one only when β is larger

than 10 dB for our given simulation configuration.

4.8 Conclusions

In this paper, we have investigated the physical layer security over the Fisher-Snedecor F

wiretap fading channels. The SOP, PNZ and ASC were derived with closed-form expressions,

which are given in terms of Meijer’s G-function. In addition, the asymptotic analysis of ASC
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was further provided when the ratio between γ̄B and γ̄E is at high SNR regime. The accuracy

of our analytical results were efficiently validated by Monte-Carlo simulation results.
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5.1 Abstract

Most of the well-known fading distributions, if not all of them, could be encompassed by

the Fox’s H-function fading. Consequently, we investigate the physical layer security (PLS)

over Fox’s H-function fading wiretap channels, in the presence of non-colluding and collud-

ing eavesdroppers. In particular, for the non-colluding scenario, closed-form expressions are

derived for the secrecy outage probability (SOP), the probability of non-zero secrecy capacity

(PNZ), and the average secrecy capacity (ASC). These expressions are given in terms of either

univariate or bivariate Fox’s H-function. In order to show the effectiveness of our deriva-

tions, three metrics are respectively listed over the following frequently used fading channels,

including Rayleigh, Weibull, Nakagami-m, α − μ , Fisher-Snedecor (F-S) F , and extended

generalized-K (EGK). Our tractable results are not only straightforward and general, but also

feasible and applicable, especially the SOP, which is usually limited to the lower bound in the

literature due to the difficulty of deriving closed-from analytical expressions. For the colluding

scenario, a super eavesdropper equipped with maximal ratio combining (MRC) or selection-

combining (SC) schemes is characterized. The lower bound of SOP and exact PNZ are there-

after derived with closed-form expressions in terms of the multivariate Fox’s H-function. In

order to validate the accuracy of our analytical results, Monte-Carlo simulations are subse-

quently conducted for the aforementioned fading channels. One can observe that for the former

non-colluding scenario, we have perfect agreement between the exact analytical and simula-
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tion results, and highly accurate approximations between the exact and asymptotic analytical

results. On the contrary, the SOP and PNZ of colluding eavesdropper is greatly degraded with

the increase of the number of eavesdroppers. Also, the so-called super eavesdropper with MRC

is much powerful to wiretap the main channel than the one with SC.

Keywords: Physical layer security, Fox’s H-function wiretap fading channels, Mellin trans-

form, secrecy outage probability, probability of non-zero secrecy capacity, average secrecy

capacity.

5.2 Introduction

Different wireless systems are usually characterized with various statistical models. For ex-

ample, the gamma-gamma distribution was introduced to model the free space optical (FSO)

communication link Lei, H., Dai, Z., Ansari, I. S., Park, K. H., Pan, G. & Alouini, M. S.

(2017b); Lei, H., Luo, H., Park, K. H., Ren, Z., Pan, G. & Alouini, M. S. (2018a), and Fisher-

Snedecor (F-S) F to model the device-to-device communication Badarneh et al. (2018); Yoo

et al. (2017). As such, many endeavors have been drawn to investigate the mathematical char-

acteristics of secure transmission for different communication scenarios.

Dating back to the fundamental works of physical layer security (PLS) from the information

theoretical perspective, Shannon and Wyner are undoubtedly the pioneers in this field Shannon

(1949); Wyner (1975). They established the mathematical background of perfect secrecy and

wiretap channel models. Later on, Wyner’s classic wiretap model was investigated over addi-

tive white Gaussian noise channel (AWGN) and Rayleigh fading channels Bloch et al. (2008);

Leung-Yan-Cheong & Hellman (1978). Over the past decades, plenty of research efforts have

been pursued on the investigation of PLS over various fading channels, such as Rayleigh Bloch

et al. (2008), Rician Ai , Y., Kong, L. & Cheffena, M. (2019); Liu (2013a), Nakagami-m,

Weibull Liu (2013b), Lognormal Pan, G., Tang, C., Zhang, X., Li, T., Weng, Y. & Chen, Y.

(2016), generalized-K Kong & Kaddoum (2019); Lei et al. (2016a,1,1); Wu et al. (2018a),

and α −μ (or, equivalently, generalized gamma) Kong et al. (2016b,1,1,1); Lei et al. (2015,1),
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α −η −κ − μ Mathur, A., Ai, Y., Bhatnagar, M. R., Cheffena, M. & Ohtsuki, T. (2018), etc.

Secrecy outage probability (SOP), the probability of non-zero secrecy capacity (PNZ), and the

average secrecy capacity (ASC) are the three typical and frequently studied secrecy metrics.

As more new communication topologies appear, e.g., device-to-device (D2D) communications,

FSO communications, intervehicle communication, millimeterwave (mmWave) communica-

tions, wireless body area networks (WBAN), and cognitive radios, the existing models become

obsolete. As such, more advanced and better suited fading models were subsequently pro-

posed and analyzed, such as α − μ Yacoub (2007a), κ − μ/η − μ Yacoub, M. D. (2007b),

F-S F Badarneh et al. (2018); Yoo et al. (2017), the extended generalized-K (EGK) Yilmaz,

F. & Alouini, M. S. (2012), cascaded α − μ fading Kong et al. (2018a), among many other

fading channels.

With the emergence of various fading models, a unified and generic fading model is required to

subsume most, if not all, of these fading distributions. Fox’s H-function distribution, reported

in Alhennawi et al. (2016); Ayadi, M. M. H. E., Ismail, M. H. & Alhennawi, H. R. (2016);

Rahama, Y. A., Ismail, M. H. & Hassan, M. S. (2016), is one possible model to accommodate

various fading models with high flexibility. It was first introduced in Bodenschatz (1992)

and Cook Jr (1981) as a pure mathematical finding, and can be generalized to the Gamma,

exponential, Chi-square, Weibull, Rayleigh, Half-Normal distribution, etc. Other examples,

including generalized-K , α − μ , F-S F , and EGK, were recently explored by Alhennawi et

al. Alhennawi et al. (2016) and Rahama et al. Rahama et al. (2018). These findings were

achieved by transforming these probability density distributions (PDFs) of received signal-to-

noise ratios (SNRs) in terms of Fox’s H-function.

The feasibility and applicability of Fox’s H-function distribution as a general fading model

for wireless communication is not new. In Yilmaz & Alouini (2012), a variation of Fox’s H-

function fading model was proposed as a general model for most well-known distributions.

Jeong et al. found that Fox’s H-function distribution offers a better fading model of vehicle-

to-vehicle (V2V) communication than other ordinary fading distributions Jeong et al. (2013).
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More recently, Alhennawi et al. in Alhennawi et al. (2016) derived the symbol error rate (SER)

and channel capacity of single- and multiple-branch diversity receivers when communicating

over Fox’s H-function fading channels. As a consequence, the advantages of Fox’s H-function

fading are threefold:

- The genericity of its form for most distribution, e.g., Rayleigh, Nakagami-m, Weibull, α −
μ , etc;

- The simplicity and the generality of it to derive the key performance metrics of wireless

communications systems, e.g., outage probability, SER, and channel capacity Alhennawi

et al. (2016).

- The possibility of using its distribution to study the PLS analysis over α −μ , F-S F fading

channels Kong & Kaddoum (2018); Kong et al. (2018a,1); Lei et al. (2017a).

To the best of the authors’ knowledge, apart from the investigation of PLS over the afore-

mentioned fading channels Ai et al. (2019); Bloch et al. (2008); Kong & Kaddoum (2019);

Kong et al. (2016b,1,1); Lei et al. (2015,1,1,1,1); Liu (2013a,1); Pan et al. (2016); Wu et al.

(2018a), including generalized-K , α −μ , κ −μ Bhargav, N., Cotton, S. L. & Simmons, D. E.

(2016); Iwata, S., Ohtsuki, T. & Kam, P. Y. (2017); Moualeu & Hamouda (2017), F-S F

Kong & Kaddoum (2018), no works has ever been found to analyze the PLS over the general

Fox’s H-function fading channels. To this end, this paper is subject to the investigation of PLS

over Fox’s H-function fading channels, with consideration of the non-colluding and colluding

eavesdropping scenarios.

5.2.1 Our Work and Contributions

The contributions of this paper are multifold, which are listed as follows:

1) Novel exact and closed-form expressions are initially derived for the secrecy metrics, in-

cluding the SOP, PNZ, and ASC. Our formulations, in terms of univariate or bivariate Fox’s

H-function, are given in simple and tractable mathematical expressions.
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2) The difficulty of deriving closed-form expressions for the SOP explicitly lies in tractable in-

tegrals. Consequently, many works can be found on the development of lower bound of the

SOP (Pout = Pr(Cs ≥ Rs)). Since the lower bound of SOP is actually the complementary

of the probability of non-zero secrecy capacity, i.e., Pnz = Pr(Cs > 0), it is much easier

to obtain the lower bound of the SOP and PNZ, which can be found in Yacoub (2007a).

Strictly speaking, our work fills this gap of lacking exact closed-form SOP expressions.

3) The obtained general and unified secrecy metrics’ expressions are found identical with the

existing works when being compared with Monte-Carlo simulation results. Moreover, the

obtained secrecy expressions can be straightforward applied to other transformable but not

listed herein wiretap fading channels.

4) The asymptotic behaviors of these secrecy metrics are also obtained for the sake of provid-

ing simple but highly accurate approximations of secrecy metrics at high average signal-to-

noise (SNR) regime.

5) Considering the colluding eavesdropping scenario with maximal ratio combining (MRC)

and selection combining (SC) schemes, the lower bound of the SOP and exact PNZ are

characterized in terms of multivariate Fox’s H-function.

Resultantly, the obtained analytical results are especially beneficial since the analytical expres-

sions themselves (i) provide a unified approach to analyze the PLS over a generalized fading

model; (ii) serve as an efficient and convenient tool to validate and compare the special cases

of Fox’s H-function fading channels; and (iii) enable researchers and wireless communication

engineers to quickly evaluate secrecy performance when encountering security risks.

5.2.2 Structure and Notations

The rest of this paper is structured as follows: Section 5.3 illustrates Fox’s H-function fad-

ing and its Mellin transform. In Section 5.4, the system model and problem formulation are

presented. In the presence of non-colluding and colluding scenarios, secrecy analysis are re-

spectively conducted in Sections 5.5, 5.6, and 5.7, together with several examples. Afterwards,
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in Section 5.8, numerical results and discussions are presented. Finally, Section 5.9 concludes

the paper.

Mathematical Functions and Notations: j �
√−1, Γ(.) is the complete Gamma function,

Hm,n
p,q [.] is the univariate Fox’s H-function (Mathai, A. M., Saxena, R. K. & Haubold, H. J.,

2009b, eq. (1.2)), Hm,n;m1,n1;m2,n2
p,q;p1,q1;p2,q2

is the extended generalized bivariate Fox’s H-function (Mathai

et al., 2009b, eq. (2.56)). Hm,n;m1,n1;··· ;mL,nL
p,q;p1,q1;··· ;pL,qL is the multivariate Fox’s H-function (Mathai et al.,

2009b, eq. (2.56)). f (x) and F(x) represent the probability density function (PDF) and cu-

mulative distribution function (CDF) of x, respectively. B(x,y) is the Beta function (Grad-

shteyn & Ryzhik, 2014, eq. (8.380.1)). M [ f (x),s] denotes the Mellin transform of f (x).

Res[ f (x),s] represents the residue of function f (x) at pole x = p. Ψ0(·) is the digamma func-

tion.

5.3 Preliminary

5.3.1 Fox’s H-Function Fading

Consider a wireless communication link over a fading channel, where the instantaneous SNR

at user k, γk, follows Fox’s H-function PDF, given by Bodenschatz (1992)

fk(γk) = κHm,n
p,q

⎡
⎣λγk

∣∣∣∣∣∣
(ai,Ai)i=1:p

(bl,Bl)l=1:q

⎤
⎦ (a)
=

κ
2π j

∫
L

Θk(s)(λγk)
−sds, γ > 0, (5.1)

where λ > 0 and κ are constants such that
∫ ∞

0 fk(γk)dγk = 1. (xi,yi)l is a shorthand for

(x1,y1), · · · ,(xl,yl). Step (a) is developed by expressing Fox’s H-function in terms of its defi-

nition (Mathai et al., 2009b, eq. (1.2)). Ai > 0 for all i= 1, · · · , p, and Bl > 0 for all l = 1, · · · ,q.

0 ≤ m ≤ q, 0 ≤ n ≤ p, L is a suitable contour separating the poles of the gamma functions
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Γ(bl +Bls) from the poles of the gamma functions Γ(1−ai −Ais),

Θk(s) =

m
∏

l=1
Γ(bl +Bls)

n
∏
i=1

Γ(1−ai −Ais)

q
∏

l=m+1
Γ(1−bl −Bls)

p
∏

i=n+1
Γ(ai +Ais)

. (5.2)

The cumulative distribution function (CDF) of the received SNR at user k, i.e., γk is given by

(Bodenschatz, 1992, eqs. (3.9) and (3.7))

Fk(γk) =
κ
λ

Hm,n+1
p+1,q+1

⎡
⎣λγk

∣∣∣∣∣∣
(1,1),(ai +Ai,Ai)p

(bl +Bl,Bl)q,(0,1)

⎤
⎦ , (5.3a)

or

Fk(γk) = 1− κ
λ

Hm+1,n
p+1,q+1

⎡
⎣λγk

∣∣∣∣∣∣
(ai +Ai,Ai)p,(1,1)

(0,1),(bl +Bl,Bl)q

⎤
⎦= 1− F̄k(γk), (5.3b)

where F̄k(γ) is the complementary CDF (CCDF). For the notational convenience, Θ f
k and ΘF

k

are used thereafter to denote the PDF and CDF of Fox’s H-function, respectively. The Mellin

transform of fk(γ) is defined and given as (Alhennawi et al., 2016, eq. (5)) (Mathai et al.,

2009b, eq. (2.8)),

M [ fk(γk),s] =
∫ ∞

0
fk(γk)γs−1dγk = κλ−sΘk(s). (5.4)

5.3.2 Special Cases

As mentioned before, Fox’s H-function distribution provides enough flexibility to accommo-

date most fading distributions. As a result, the objective herein is to list some well-known

examples, such as the α − μ1, F-S F , and EGK, as shown in Table. 5.1, where γ̄k is the

average received SNR at user k.

1 Since α −μ distributions can be attributed to exponential, one-sided Gaussian, Rayleigh, Nakagami-

m, Weibull and Gamma fading distributions by assigning specific values for α and μ , respectively

Yacoub (2007a), secrecy analysis on these fading distributions is thus omitted herein.
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Table 5.1 Exact expressions of fk(γk) for different special cases of Fox’s H-function

distribution

Instantaneous SNR fk(γk)

α −μ

(Yilmaz & Alouini, 2012, Tab. V)

fk(γk) = κH1,0
0,1

⎡
⎣λγk

∣∣∣∣∣∣
−

(μ − 1
α ,

1
α )

⎤
⎦ ,

where κ = β
Γ(μ)γ̄k

,λ = β
γ̄k
,β =

Γ(μ+ 1
α )

Γ(μ) .

F-S F

(Yoo et al., 2017, eq. (5))

fk(γk) = κH1,1
1,1

⎡
⎣λγk

∣∣∣∣∣∣
(−mk,s,1)

(mk −1,1)

⎤
⎦ ,

where κ = λ
Γ(mk)Γ(mk,s)

,λ = mk
mk,sγ̄k

.

EGK

(Rahama et al., 2018, eq. (18))

fk(γk) = κH2,0
0,2

⎡
⎣λγk

∣∣∣∣∣∣
−

(ml − 1
ξl
, 1

ξl
),(msl − 1

ξsl
, 1

ξsl
)

⎤
⎦ ,

where κ = βlβsl
Γ(ml)Γ(msl)γ̄k

,λ = βlβsl
γ̄k

,βl =
Γ
(

ml+
1
ξl

)
Γ(ml)

,

and βsl =
Γ
(

msl+
1

ξsl

)
Γ(msl)

.

5.4 System Model and Problem Formulation

5.4.1 System Model

The Alice-Bob-Eve classic wiretap model is used here to illustrate a legitimate transmission

link (Alice → Bob) in the presence of a malicious eavesdropper. In such a wiretap channel

model, the transmitter Alice (A) wishes to send secret messages to the intended receiver Bob

(B) in the presence of an eavesdropper Eve (E); the link between A and B is called the main

channel, whereas the one between A and E is named as the wiretap channel. It is assumed that

(i) all users are equipped with a single antenna; (ii) both links are independent and subjected to

Fox’s H-function fading; and (iii) a perfect channel state information (CSI) is available at all

users.
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As a result, the received SNRs at B and E are denoted as γk,k ∈ {B,E}, which follow Fox’s

H-function PDF, and are respectively given by

fB(γB) = κBHm0,n0
p0,q0

⎡
⎣λBγB

∣∣∣∣∣∣
(ai,Ai)i=1:p0

(bl,Bl)l=1:q0

⎤
⎦ , γB > 0, (5.5a)

fE(γE) = κEHm1,n1
p1,q1

⎡
⎣λEγE

∣∣∣∣∣∣
(ci,Ci)i=1:p1

(dl,Dl)l=1:q1

⎤
⎦ , γE > 0. (5.5b)

5.4.2 Problem Formulation

According to Bloch et al. (2008), the secrecy capacity over fading wiretap channels is defined

as the difference between the main channel capacity CM = log2(1+γB) and the wiretap channel

capacity CW = log2(1+ γE) as follows

Cs =

⎧⎪⎨
⎪⎩

CM −CW , γB > γE

0, otherwise.

(5.6)

In other words, a positive secrecy capacity can be assured if and only if the received SNR at

Bob has a superior quality than that at Eve’s.

5.4.2.1 Secrecy Outage Probability

The outage probability of the secrecy capacity is defined as the probability that the secrecy

capacity Cs falls below the target secrecy rate Rt , i.e.,

Pout(Rs) = Pr(Cs < Rt). (5.7)

Technically speaking, SOP can be conceptually explained as two cases: (i) Cs < Rt whilst

positive secrecy capacity is surely guaranteed; (ii) secrecy outage definitely happens when CS
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is non-positive. To this end, (A V-17) can be rewritten as follows Kong et al. (2016a); Lei et al.

(2016b),

Pout(Rs) = Pr(γB ≤ RsγE +Rs −1) =
∫ ∞

0
FB(γ0) fE(γE)dγE , (5.8)

where Rs = 2Rt , γ0 = RsγE +W , and W = Rs −1.

The SOP characterizes the probability of failure to achieve a reliable and secure transmission.

In addition, it shows that PLS can be achieved by fading alone, even when Eve has a better

average SNR than Bob.

5.4.2.2 Probability of Non-Zero Secrecy Capacity

The PNZ refers to the event that the positive secrecy capacity can be surely achieved, namely

Pr(Cs > 0), thus respecting its definition, (5.6) can be further rewritten as follows,

Pnz = Pr(γB > γE) =
∫ ∞

0
fB(γB)FE(γB)dγB. (5.9)

5.4.2.3 Average Secrecy Capacity

average secrecy capacity provides a mathematical indicator of the capacity limit for a given

constraint of perfect secrecy.

By using some simple mathematical manipulations, the ASC can be further re-expressed as the

sum of three terms, which are given by Lei et al. (2016c)

C̄s =
∫ ∞

0
log2(1+ γB) fB(γB)FE(γB)dγB︸ ︷︷ ︸

I1

+
∫ ∞

0
log2(1+ γE) fE(γE)FB(γE)dγE︸ ︷︷ ︸

I2

−
∫ ∞

0
log2(1+ γE) fE(γE)dγE︸ ︷︷ ︸

I3

.
(5.10)
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For the brevity of the following derivations, let gk(γk) = ln(1+ γk) fB(γk).

5.5 Secrecy Metrics Characterization

To begin the characterization of the secrecy performance over Fox’s H-function fading chan-

nels, one useful and unified theorem is first provided. This theorem is essentially beneficial

to the acquisition of the final closed-form expressions for the aforementioned three secrecy

metrics.

Theorem 3. Consider a general fading channel where the received SNR’s PDF is f (γ) and

another function u(γ). Suppose their Mellin transforms are M [ f (γ),s] and M [u(γ),s], re-

spectively. If the Mellin transform of u(γ) exists, then by using Parseval’s formula for Mellin

transform (Debnath & Bhatta, 2014, eq. (8.3.23)), we have

∫ ∞

0
f (γ)u(γ)dγ =

1

2π j

∫
L

M [ f (γ),s]M [u(γ),1− s]ds, (5.11)

where L is the integration path from υ − j∞ to υ + j∞, and υ is a constant.

The aforementioned Theorem is recalled to make a basis for the following derivations. To this

end, we have the following remark.

Remark 5. The SOP, PNZ, and ASC over Fox’s H-function fading wiretap channels are re-

spectively given by

Pout =
1

2π j

∫
L1

M [FB(γ0),1− s]M [ fE(γE),s]ds, (5.12a)

Pnz =
1

2π j

∫
L1

M [FE(γB),1− s]M [ fB(γB),s]ds, (5.12b)

C̄s =
1

2π j

∫
L1

M [gB(γE),1− s]M [FE(γB),s]ds

+
1

2π j

∫
L1

M [gE(γE),1− s]M [FB(γE),s]ds

− 1

2π j

∫
L1

M [ fE(γE),1− s]M [ln(1+ γE),s]ds

(5.12c)
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Proof. Recalling (A V-18), (5.9), and (5.10), and then using Theorem 3, the proofs for (5.12a),

(5.12b), and (5.12c) are directly accomplished.

5.5.1 SOP Characterization

5.5.1.1 Exact SOP Characterization

Theorem 4. The SOP over Fox’s H-function fading wiretap channels is given by (5.13),

Pout = 1− κBκEW

λBRs

H0,1:n1+1,m1:n0,m0
1,0:q1,p1+1:q0,p0+1

⎡
⎣ Rs

λEW
,

1

λBW

∣∣∣∣∣∣
(2,1,1)

−

∣∣∣∣∣∣
(1−dl,Dl)l=1:q1

(1,1),(1− ci,Ci)i=1:p1

∣∣∣∣∣∣
(1−bl −Bl,Bl)l=1:q0

(1−ai −Ai,Ai)i=1:p0
,(0,1)

⎤
⎦ ,

(5.13)

Proof. See Appendix II.1.

5.5.1.2 Lower Bound of SOP

As γ̄B and γ̄E tend to ∞, we have

Pout = Pr
(

log2

(
1+ γB

1+ γE

)
< Rt

)
≈ Pr

(
log2

(
γB

γE

)
< Rt

)
︸ ︷︷ ︸

PL
out

=
∫ ∞

0
FB(Rsy) fE(y)dy.

(5.14)

Proposition 4. As γ̄B and γ̄E tend to ∞, the lower bound of the SOP over Fox’s H-function

fading channels is given by

PL
out = 1− κBκE

λBλE

Hm1+n2+1,n1+m2
p1+q2+1,q1+p2+1

⎡
⎣λBRs

λE

∣∣∣∣∣∣
(ai +Ai,Ai)i=1:n1

,(1−dl −Dl,Dl)l=1:q2
,(ai +Ai,Ai)i=n1+:p1

,(1,1)

(0,1),(bl +Bl,Bl)l=1:m1
,(1− ci −Ci,Ci)i=1:p2

,(bl +Bl,Bl)l=m1+1:q1

⎤
⎦ .

(5.15)
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Proof. By applying the Mellin transform of the product of two Fox’s H-function (Prudnikov

et al., 1990, eq. (2.25.1.1)), the proof is accomplished.

5.5.2 PNZ Characterization

Theorem 5. The PNZ over Fox’s H-function wiretap fading channels is given by (5.16),

Pnz =
κBκE

λBλE

Hm1+n0,n1+m0+1
p0+q1+1,q0+p1+1

⎡
⎣λE

λB

∣∣∣∣∣∣
(1,1),(ci +Ci,Ci)i=1:p1

,(1−bl −Bl,Bl)l=1:q0
,(ci +Ci,Ci)i=n1+1:p1

(dl +Dl,Dl)l=1:m1
,(1−ai −Ai,Ai)i=1:p0

,(0,1),(dl +Dl,Dl)l=m1+1:q1

⎤
⎦ .

(5.16)

Proof. According to (5.12b), M [FE(γB),1− s] and M [ fB(γB),s] are separately given by

M [FE(γB),1− s] =
κE

λ 2−s
E

ΘF
E(1− s), (5.17a)

M [ fB(γB),s] =
κB

λ s
B

Θ f
B(s). (5.17b)

Next, substituting (5.17a) and (5.17b) into (5.12b), yields the following result

Pnz =
κBκE

2λ 2
Eπ j

∫
L1

Θ f
B(s)Θ

F
E(1− s)

(
λB

λE

)−s

ds, (5.18)

Subsequently, directly applying the definition of univariate Fox’s H-function, the proof is

achieved.
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Alternatively, we provide another method to prove (5.16). Revisiting (5.9) and directly replac-

ing fB(γB) and FE(γB) with their expressions, we have

Pnz =
κBκE

λE

∫ ∞

0
Hm0,n0

p0,q0

⎡
⎣λBγB

∣∣∣∣∣∣
(ai,Ai)i=1:p0

(bl,Bl)l=1:q0

⎤
⎦

×Hm1,n1+1
p1+1,q1+1

⎡
⎣λEγB

∣∣∣∣∣∣
(1,1),(ci +Ci,Ci)i=1:p1

(dl +Dl,Dl)l=1:q1
,(0,1)

⎤
⎦dγB,

(5.19)

where the last step is derived by using the Mellin transform of the product of two Fox’s H-

function (Prudnikov et al., 1990, eq. (2.25.1.1)).

5.5.3 ASC Characterization

Theorem 6. The ASC over Fox’s H-function wiretap fading channels is given by

C̄s =
1

ln(2)
(I1 + I2 − I3), (5.20)

where I1, I2 and I3 are respectively given by (5.21a), (5.21b) and (5.21c).

I1 =
κBκE

λBλE

×Hn0,m0:1,2:m1,n1+1
q0,p0:2,2:p1+1,q1+1

⎡
⎣ 1

λB
,
λE

λB

∣∣∣∣∣∣
(1−bl −Bl;Bl,Bl)l=1:q0

(1−ai −Ai;Ai,Ai)i=1:p0

∣∣∣∣∣∣
(1,1),(1,1)

(1,1),(0,1)

∣∣∣∣∣∣
(1,1),(ci +Ci,Ci)i=1:q1

(dl +Dl,Dl)l=1:p1
,(0,1)

⎤
⎦ ,

(5.21a)

I2 =
κBκE

λBλE

×Hn1,m1:1,2:m0,n0+1
q1,p1:2,2:p0+1,q0+1

⎡
⎣ 1

λE
,

λB

λE

∣∣∣∣∣∣
(1−dl −Dl;Dl,Dl)l=1:q1

(1− ci −Ci;Ci,Ci)i=1:p1

∣∣∣∣∣∣
(1,1),(1,1)

(1,1),(0,1)

∣∣∣∣∣∣
(1,1),(ai +Ai,Ai)i=1:p0

(bl +Bl,Bl)l=1:q0
,(0,1)

⎤
⎦ .

(5.21b)
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I3 =
κE

λE
Hn1+1,m1+2

q1+2,p1+2

⎡
⎣ 1

λE

∣∣∣∣∣∣
(1,1),(1,1),(1−dl −Dl,Dl)l=1:p1

(1,1),(1− ci −Ci,Ci)i=1:q1
,(0,1)

⎤
⎦ . (5.21c)

Proof. See Appendix II.2.

5.5.4 Special Cases

Accommodating the closed-form expressions for secrecy performance metrics in the corre-

sponding entries in Table 5.1, directly yields the results, as displayed in Tables 5.2 and 5.3.

After some simple algebraic manipulations, one can observe the obtained results herein are

consistent with the existing works Kong & Kaddoum (2018); Kong et al. (2018c); Lei et al.

(2015,1).

5.6 Asymptotic Secrecy Metrics Characterization

The obtained secrecy expressions are given in terms of either univariate or bivariate Fox’s H-

function. In order to provide more insights at high or low SNR regime, the asymptotic behavior

of the three aforementioned secrecy metrics are developed in this section.

According to Chergui et al. (2016), expansions of the univariate and bivariate Fox’s H-functions

can be derived by evaluating the residue of the corresponding integrands at the closest poles to

the contour, namely, the minimum pole on the right for large Fox’s H-function arguments and

the maximum pole on the left for small ones.

5.6.1 Asymptotic SOP

The lower bound of the SOP is still expressed in terms of Fox’s H-function, in order to study

the asymptotic behavior of the SOP, the lower bound is further simplified by expanding the

univariate Fox’s H-function.
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Table 5.2 Exact expressions of Pout , Pnz and C̄s for different special cases of Fox’s

H-function distribution

Pout = 1− κBκEW
λBRs

×H0,1:1,1:0,1
1,0:1,1:1,1

[
Rs

λEW , 1
λBW

∣∣∣∣ (2,1,1)−

∣∣∣∣∣ (1−μE + 1
αE

, 1
αE

)

(1,1)

∣∣∣∣∣ (1−μB,
1

αB
)

(0,1)

]

Pnz =
κBκE
λBλE

H2,1
2,2

[
λE
λB

∣∣∣∣∣ (1−μB,
1

αB
),(1,1)

(μE ,
1

αE
),(0,1)

]

α −μ C̄s =
κBκE
λBλE

H0,1:1,2:1,1
1,0:2,2:1,2

[
1

λB
, λE

λB

∣∣∣∣∣ (1−μB; 1
αB
, 1

αB
)

−
∣∣∣∣ (1,1),(1,1)(1,1),(0,1)

∣∣∣∣∣ (1,1)

(μE ,
1

αE
),(0,1)

]

+κBκE
λBλE

H0,1:1,2:1,1
1,0:2,2:1,2

[
1

λE
, λB

λE

∣∣∣∣∣ (1−μE ; 1
αE

, 1
αE

)

−
∣∣∣∣ (1,1),(1,1)(1,1),(0,1)

∣∣∣∣∣ (1,1)

(μB,
1

αB
),(0,1)

]

−κE
λE

H1,3
3,2

[
1

λE

∣∣∣∣∣ (1,1),(1,1),(1−μE ,
1

αE
)

(1,1),(0,1)

]
Pout = 1− κBκEW

λBRs

×H0,1:2,1:1,1
1,0:1,2:1,2

[
Rs

λEW , 1
λBW

∣∣∣∣ (2,1,1)−
∣∣∣∣ (2−mE ,1)

(1,1),(1+mE,s,1)

∣∣∣∣ (1−mB,1)

(mB,s,1),(0,1)

]
Pnz =

κBκE
λBλE

H2,3
3,3

[
λE
λB

∣∣∣∣ (1,1),(−mB,s,1),(1−mE ,1),(0,1)

(mE ,1),(−1,1),(mE,s,1),(0,1)

]
F-S
F

C̄s =
κBκE
λBλE

H1,1:1,2:1,2
1,1:2,2:2,2

[
1

λB
, λE

λB

∣∣∣∣ (mB;1,1)

(mB,s;1,1)

∣∣∣∣ (1,1),(1,1)(1,1),(0,1)

∣∣∣∣ (1,1),(1−mE,s,1)

(mE ,1),(0,1)

]

+κBκE
λBλE

H1,1:1,2:1,2
1,1:2,2:2,2

[
1

λE
, λB

λE

∣∣∣∣ (mE ;1,1)

(mE,s;1,1)

∣∣∣∣ (1,1),(1,1)(1,1),(0,1)

∣∣∣∣ (1,1),(1−mE,s,1)

(mE ,1),(0,1)

]
−κE

λE
H2,3

3,3

[
1

λE

∣∣∣∣ (1,1),(1,1),(1−mE ,1)

(1,1),(mE,s,1),(0,1)

]

Consequently, at high γ̄B regime, we have 1
λB

→∞. By using the expanding rule, the asymptotic

SOP is given by (5.22)

PL
out ≈1− κBκE

λBλE

Γ(τ)
m0

∏
l=1,l 	=g

Γ(bl +Bl +Blτ)
n1

∏
i=1

Γ(1− ci −Ci +Ciτ)

Γ(1+ τ)
q0

∏
l=m0+1

Γ(1−bl −Bl −Blτ)
p0

∏
i=n0+1

Γ(ai +Ai +Aiτ)

×

n0

∏
i=1

Γ(1−ai −Ai +Aiτ)
m1

∏
l=1

Γ(dl +Dl −Dlτ)

p2

∏
i=n1+1

Γ(ci +Ci −Ciτ)
q1

∏
l=m1+1

Γ(1−dl −Dl +Dlτ)

(
λE

λBRs

)τ
,

where τ = max
l=1:m0

(
−bl +Bl

Bl

)
,g = argmax

l=1:m0

(
−bl +Bl

Bl

)
.

(5.22)
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=
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×
H
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:2,1
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s
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1
W

λ
B ∣∣∣∣∣
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(1−
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E
+
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E
,
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E
),(1−

m
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+
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,
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)
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∣∣∣∣∣
(1−
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1ξ
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]
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nz
=

κ
B κ
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E H

2
,3

3
,3 [

λ
E
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),(m
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=
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E
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B ∣∣∣∣∣
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(1,1)
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E
,
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E
),(m
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,
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κ
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B λ

E H
0
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:1,2
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:2,2
:1,3 [

1λ
E
,
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,
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),(1−

m
sE

;
1ξ
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−

∣∣∣∣∣
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,1) ∣∣∣∣∣

(1,1)

(m
B ,

1ξ
B ),(m

sB ,
1ξ
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−
κ

E
λ

E H
4
,1

2
,4 [

1λ
E ∣∣∣∣∣

(1,1),(1,1)

(1,1),(m
E −

1ξ
E
,

1ξ
E
),(m

sE −
1ξ
sE
,

1ξ
sE
),(0,1) ]
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Taking the case of α −μ distribution as an example, the lower bound of the SOP is given by

PL
out = 1− κBκE

λBλE
H2,1

2,2

⎡
⎣λBRs

λE

∣∣∣∣∣∣
(

1−μE ,
1

αE

)
,(1,1)

(0,1),
(

μB,
1

αB

)
⎤
⎦ . (5.23)

For the sake of high accuracy, the asymptotic SOP at high γ̄B regime is evaluated at τ = 0 and

τ =−αBμB, and is given by Kong et al. (2018c)

Pout ≈
Γ
(

αBμB
αE

+μE

)
Γ(1+μB)Γ(μE)

(
RsλB

λE

)αBμB

. (5.24)

5.6.2 Asymptotic PNZ

The asymptotic PNZ at high or low γ̄B regime, is computed by evaluating the residues of

analytical PNZ, given in (5.16). According to Rahama et al. (2018), Fox’s H-function can be

further simplified by choosing the dominate term of the Mellin-Barnes type integral. As such,

we can evaluate the residue of the PNZ at low γ̄B regime, at the point

τ = min
l=1:m1,i=1:n0

(
−dl +Dl

Dl
,
ai +Ai −1

Ai

)
,g= argmin

l=1:m1,i=1:n0

(
−dl +Dl

Dl
,
ai +Ai −1

Ai

)
. (5.25a)

Assuming the case of a simple pole, the asymptotic PNZ is thereafter given in (5.26).

Pnz ≈
Γ(−τ)

m1

∏
l=1,l 	=g

Γ(dl +Dl +Dlτ)
n0

∏
i=1,i	=g

Γ(1−ai −Ai +Aiτ)

Γ(1− τ)
p0

∏
i=n0+1

Γ(ai +Ai −Aiτ)
q1

∏
l=m1+1

Γ(1−dl −Dl −Dlτ)

n1

∏
i=1

Γ(1− ci −Ci −Ciτ)
m0

∏
l=1

Γ(bl +Bl −Blτ)

p1

∏
i=n1+1

Γ(ci +Ci +Ciτ)
q0

∏
l=m0+1

Γ(1−bl −Bl +Blτ)

(
λB

λE

)s κBκE

λBλE
.

(5.26)



79

Considering the case of α −μ as an example, applying the obtained result, the asymptotic PNZ

at low γ̄B regime is evaluated at s =−αE μE and thereafter given by

Pnz ≈ κBκE

λBλE μE
Γ
(

αE μE

αB
+μB

)(
λE

λB

)αE μE

. (5.27)

5.6.3 Asymptotic ASC

By applying the expansion rule, in the case of high γ̄B, the asymptotic ASC is given by (5.28),

which is obtained by individually expanding I1 and I2, respectively.

I1 ≈κBκE

λBλE

[
ln

(
1

λB

)
+

m0

∑
l=1

BlΨ0(bl +Bl +Blu)−
q0

∑
l=ml+1

BlΨ0(bl +Bl +Blu)

−
p0

∑
i=1

AiΨ0(ai +Ai +Aiu)

] Γ(u)
m0

∏
l=1,l 	=g

Γ(bl +Bl +Blu)
n1

∏
i=1,i	=g

Γ(1− ci −Ci +Ciu)

Γ(1+u)
q0

∏
l=m1+1

Γ(1−bl −Bl −Blu)
p0

∏
i=n1+1

Γ(ai +Ai +Aiu)
,

×

m1

∏
l=1

Γ(dl +Dl −Dlu)

p1

∏
i=n2+1

Γ(ci +Ci −Ciu)
q1

∏
l=m2+1

Γ(1−dl −Dl −Dlu)

(
λE

λB

)s

where u = max
l=1:m0,i=1:n1

[
0,

(
−bl +Bl

Bl

)
l=1:m0

,

(
ci +Ci −1

ci

)
i=1:n1

]
,

g = argmax
l=1:m0,i=1:n1

[
0,

(
−bl +Bl

Bl

)
l=1:m0

,

(
ci +Ci −1

ci

)
i=1:n1

]
,

(5.28a)
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I2 ≈
m0

∏
l=1,l 	=g

Γ(bl +Bl −Blu)
(

λE

λB

)u κBκE

λBλE

Γ(u)
n0

∏
i=1

Γ(1−ai −Ai +Aiu)

Γ(1+u)
n0+1

∏
i=1

Γ(ai +Ai −Aiu)
m0+1

∏
l=1

Γ(1−bl −Bl +Blu)

×Hn1+1,m1+2
q1+2,p1+2

⎡
⎣λE

∣∣∣∣∣∣
(1,1),(1,1),(1−dl −Dl,Dl)l=1:p1

,(1,1)

(0,1),(0,1),(dl +Dl +Dls),(1− ci −Ci,Ci)i=1:q1

⎤
⎦ ,

where u = 1+min

(
bl

Bl

)
l=1:m0

,g = argmin
l=1:m0

(
bl

Bl

)
.

(5.28b)

The detailed proof for (5.28) is referenced to Appendix. II.3.

Similarly, taking the case of α−μ as an example, we get the asymptotic ASC at high γ̄B regime

as

I1 ≈ κBκE

λBλE
Γ(μB)Γ(μE)

[
Ψ0(μB)

αB
− ln(λB)

]
, (5.29a)

I2 ≈
κBκE

(
λB
λE

)αBμB

μBλBλE
H3,1

2,3

⎡
⎣λE

∣∣∣∣∣∣
(0,1),(1,1)

(μE + αBμB
αE

, 1
αE

),(0,1),(0,1)

⎤
⎦ . (5.29b)

5.7 Colluding Eavesdropping Scenario

In this section, we mainly focus on the secrecy issue when multiple eavesdroppers appear and

work in a cooperative manner.

5.7.1 System Model

Consider the scenario that L eavesdroppers are in the presence and work cooperatively to wire-

tap the main link. It is assumed that all L eavesdroppers are single-antenna equipped, and

undergoes independent fading conditions. As a result of collusion Cho, S., Chen, G. & Coon,

J. P. (2018), the so-called eavesdropper is assumed to either use the MRC or the SC scheme.

All the wiretap links and main link undergo independent Fox’s H-function fading channels.

Consequently, the instantaneous received SNR at the so-called L-colluding eavesdropper with
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MRC scheme is given by

γC =
L

∑
r=1

γe,r, (5.30)

or with SC scheme

γC = max{γe,1, · · · ,γe,l, · · · ,γe,L}, (5.31)

where γe,r is the instantaneous received SNR of each eavesdropper. Clearly, (5.30) corresponds

to a maximum ratio combining (MRC) decoding which is the best strategy that the super eaves-

dropper can use. As we can see from (5.30), γC is the sum of L independent Fox’s H-function

distributed RVs, the PDF and CDF of γC are thus respectively given by (Rahama et al., 2018,

eqs. (8) and (9))

fC(γ)=
ηC

γ
H

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎝0,0

0,1

⎞
⎠

⎛
⎝mr,nr +1

pr +1,qr

⎞
⎠

r=1:L

∣∣∣∣∣∣∣∣∣∣∣∣

−
(1;(1)r=1:L)⎡

⎣(1,1),(ci +Ci,Ci)i=1:qr

(dl +Dl,Dl)l=1:pr

⎤
⎦

r=1:L

∣∣∣∣∣∣∣∣∣∣∣∣
(λrγ)r=1:L

⎤
⎥⎥⎥⎥⎥⎥⎦ , γ > 0,

(5.32a)

FC(γ) = ηCH

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎝0,0

0,1

⎞
⎠

⎛
⎝mr,nr +1

pr +1,qr

⎞
⎠

r=1:L

∣∣∣∣∣∣∣∣∣∣∣∣

−
(0;(1)r=1:L)⎡

⎣(1,1),(ci +Ci,Ci)i=1:qr

(dl +Dl,Dl)l=1:pr

⎤
⎦

r=1:L

∣∣∣∣∣∣∣∣∣∣∣∣
(λrγ)r=1:L

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

(5.32b)

where ηC =
M
∏

e=1

κE,e
λE,e

.

Similarly, the PDF and CDF of instantaneous SNR deployed with SC scheme is given by Kong,

N. & Milstein, L. B. (1999)

fC(γ) =
L

∑
τ=1

fe,τ(γ)
L

∏
l=1,l 	=τ

Fe,l(γ), (5.33a)

FC(γ) =
L

∏
l=1

Fe,l(γ), (5.33b)
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where fe,τ(γ) and Fe,l(γ) are the corresponding PDF and CDF of the instantaneous received

SNR of each eavesdropper, which are given in terms of univariate Fox’s H-function.

It is worthy to mention that the multivariate Fox’s H-function PDF and CDF of the equivalent

super-eavesdropper makes it difficult to seek the exact SOP and ASC for the colluding scenario.

Resultantly, we intend to provide the lower bound of the SOP and exact PNZ for this case.

5.7.2 Secrecy Characterization of SOP

Theorem 7. The SOP over Fox’s H-function wiretap fading channels in the presence of L-

colluding eavesdroppers with MRC scheme is lower bounded by (5.34),

PL
out,MRC =

ηCκB

λB
H

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎝ n0 +1,m0

q0 +1, p0 +2

⎞
⎠

⎛
⎝mr,nr +1

pr +1,qr

⎞
⎠

r=1:L

∣∣∣∣∣∣∣∣∣∣∣∣

(1−bi −Bi,(Bi)r=1:L),(1,(1)r=1:L)

(0,(1)r=1:L),(1−ai −Ai,(Ai)r=1:L),(1,(1)r=1:L)⎡
⎣(1,1),(ci +Ci,Ci)i=1:q2

(dl +Dl,Dl)l=1:p2

⎤
⎦

r=1:L

∣∣∣∣∣∣∣∣∣∣∣∣
(

λe,r
λBRs

)
r=1:L

⎤
⎥⎥⎥⎥⎥⎥⎦ .

(5.34)

Proof. Plugging (5.5b) and (5.32a) into

Pout,MRC =
∫ ∞

0
FB(γ0) fC(γC)dγC,

then re-expressing the univariate Fox’s H-function and multivariate Fox’s H-function in terms

of their definition, and performing the interchange of the Mellin-Barnes integrals and the def-

inite integral, with the help of (Gradshteyn & Ryzhik, 2014, eqs.(3.194.3) and (8.384.1)), we

arrive at the final expression of Pout,MRC in (5.34).

Theorem 8. The SOP over Fox’s H-function wiretap fading channels in the presence of L-

colluding eavesdroppers with SC scheme is lower bounded by (5.35),
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PL
out,SC =

L

∑
l=1

ηCκB

λB
H

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎝nl,ml

ql, pl

⎞
⎠

⎛
⎝ m0,n0 +1

p0 +1,q0 +1

⎞
⎠

⎛
⎝mr,nr +1

pr +1,qr

⎞
⎠

r=1:l−1⎛
⎝ mr+1,nr+1 +1

pr+1 +1,qr+1 +1

⎞
⎠

r=l+1:L

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(1−di +Di,(Di)r=1:L)

(1− ci +Ci,(Ci)r=1:L)

(1,1),(ai +Ai,Ai)i=1:p0

(bl +Bl,Bl)l=1:q0⎡
⎣ (1,1),(ci +Ci,Ci)i=1:pr

(dl +Dl,Dl)l=1:qr ,(0,1)

⎤
⎦

r=1:l−1⎡
⎣ (1,1),(ci +Ci,Ci)i=1:pr

(dl +Dl,Dl)l=1:qr ,(0,1)

⎤
⎦

r=l+1,L

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λB
λe,l(

λe,r
λe,l

)
r=1:l−1(

λe,r
λe,l

)
r=l+1:L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5.35)

Proof. Accordingly, by doing some simple substitutions, PL
out,SC can be rewritten as

PL
out,SC =

L

∑
τ=1

∫ ∞

0
FB(Rsγ) fe,τ(γ)

L

∏
l=1,l 	=τ

Fe,l(γ)dγ, (5.36)

then using the Mellin transform of multiple univariate Fox’s H-function, the proof is achieved.

5.7.3 Secrecy Characterization of PNZ

Theorem 9. The PNZ over Fox’s H-function wiretap fading channels in the presence of L-

colluding eavesdroppers with MRC scheme is given by (5.37),

Pnz,MRC =
ηCκB

λB
H

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎝ n0,m0

q0, p0 +1

⎞
⎠

⎛
⎝mr,nr +1

pr +1,qr

⎞
⎠

r=1:L

∣∣∣∣∣∣∣∣∣∣∣∣

(1−bi −Bi;(Bi)r=1:L)i=1:q0

(1−ai −Ai;(Ai)r=1:L)i=1:p0
,(0;(1)r=1:L)⎡

⎣(1,1),(ci +Ci,Ci)i=1:qr

(dl +Dl,Dl)l=1:pr

⎤
⎦

r=1:L

∣∣∣∣∣∣∣∣∣∣∣∣
(

λe,r
λB

)
r=1:L

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

(5.37)
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Proof. Substituting (5.5a) and (5.32b) into (5.9), then re-expressing the multivariate Fox’s H-

function in terms of its definition and interchanging the order of two integrals, we obtain (5.37).

Theorem 10. The PNZ over Fox’s H-function wiretap fading channels in the presence of L-

colluding eavesdroppers with SC scheme is given by (5.38),

Pnz,SC =
ηCκB

λB
H

⎡
⎢⎢⎢⎢⎢⎢⎣

⎛
⎝n0,m0

q0, p0

⎞
⎠

⎛
⎝ mr,nr +1

pr +1,qr +1

⎞
⎠

r=1:L

∣∣∣∣∣∣∣∣∣∣∣∣

(1−bi −Bi;(Bi)r=1:L)i=1:q0

(1−ai −Ai;(Ai)r=1:L)i=1:p0⎡
⎣ (1,1),(ci +Ci,Ci)i=1:qr

(dl +Dl,Dl)l=1:pr ,(0,1)

⎤
⎦

r=1:L

∣∣∣∣∣∣∣∣∣∣∣∣
(

λe,r
λB

)
r=1:L

⎤
⎥⎥⎥⎥⎥⎥⎦ .

(5.38)

Proof. Substituting (5.5a) and (5.33b) into

PNZ,SC =
∫ ∞

0
fB(γB)FC,SC(γB)dγB =

∫ ∞

0
fB(γB)

L

∏
l=1

Fe,l(γB)dγB, (5.39)

then following the same methodology used in Theorem 8, the proof is obtained.

5.8 Numerical Results and Discussions

In this section, Monte-Carlo simulations are used to validate the analytical derivations obtained

in Sections 5.5 and 5.7, particularly, over one special case of Fox’s H-function wiretap fading

channel, i.e., α − μ wiretap fading channels2. It is noted that bullets represent the simulation

results whereas solid lines are used to show the analytical expressions.

2 It is worthy to mention that (i) the α-μ fading channel is implemented by using the WAFO tool-

boxBrodtkorb et al. (2000); (ii) the numerical evaluation of univariate and bivariate Fox’s H-function

for MATLAB implementations are based on the method proposed in (Peppas et al., 2012, Table. II)

and (Peppas, 2012, Appendix. A), respectively.
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5.8.1 Non-colluding Scenario

In order to validate the analytical accuracy of our derivations, Monte-Carlo simulation out-

comes together with analytical results are presented in Figs. 5.1-5.3, with regard to the afore-

mentioned three secrecy performance metrics over α − μ fading channels. Apparently, these

figures show that our mathematical representations are in perfect agreements with the simula-

tion results.

2 4 6 8 10 12 14

10-3

10-2

10-1

100

Figure 5.1 Pout versus the average γ̄B over Rayleigh,

Nakagami-m, Weibull and α −μ fading channels when

γ̄E = 0 dB and Rt = 0.5, respectively.

In Fig. 5.1, the SOP against γ̄B is plotted for several fading scenarios, such as Rayleigh,

Weibull, Nakagami-m, and α −μ . As observed from the figure, specifically, the Nakagami-m

(α = 2, μ = m) against Rayleigh (α = 2, μ = 1), and Rayleigh against Weibull (α is the fading

parameter, μ = 1), one can conclude that larger α and μ values result in lower SOP. This is

mainly because lower α and μ values represent serious non-linearity and sparse clustering,

i.e., worse channel conditions Lei et al. (2017a). This phenomenon also remains true for the

PNZ, as shown in Fig. 5.2. In addition, the lower bound of SOP and the asymptotic SOP are
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also plotted. It is observed that the lower bound of the SOP, i.e., PL
out offers a better SOP

performance trend prediction, on the other hand, the asymptotic SOP gradually approximates

the exact SOP with higher accuracy as γ̄B increases.
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100

Figure 5.2 Pnz versus the average γ̄B for selected

fading parameters when γ̄E = 4 dB.

As depicted in Fig. 5.2, both the exact and asymptotic behavior of Pnz are plotted against

γ̄B for Rayleigh, Weibull, Nakagami-m, and α − μ . Compared with the exact result, one can

conclude that our asymptotic PNZ behaves well at low γ̄B regime.

The ASC against the ratio of γ̄B and γ̄E is presented in Fig. 5.3, and as expected, there is a per-

fect match between our analytical and simulated results. Also, one can obtain two insights from

this graph: on one hand, lower α values lead to higher ASC, no matter whoever experiences

severe fading.

The insight obtained from this figure just vividly demonstrates how information-theoretic se-

curity exploits the fading property of wireless transmission medium to ensure secure transmis-

sion.
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Figure 5.3 C̄s versus
γ̄B
γ̄E

over α −μ wiretap fading channels.

On the other hand, a potential malicious eavesdropper can also benefit from poor channel

conditions, since worse fading channels reversely enable them to better access and wiretap the

main channel to a certain extent. Finally, to obtain a fair comparison, the asymptotic ASC is

also depicted in Fig. 5.3. Again, it can be seen that the asymptotic ASC presents a highly

accurate approximation to the exact ASC, especially at high γ̄B regime.

5.8.2 Colluding Scenario

In this subsection, both the lower bound of SOP and PNZ are presented over α − μ , F-S F ,

and EGK fading channels, respectively. For the simplicity of notations, it is assummed that all

eavesdroppers undergo similar fading condition, i.e., similar fading parameters. It is noted that

the implementation of multivariate Fox’s H-function is available in Python (Alhennawi et al.,

2016, Appendix A) and MATLAB Chergui, H., Benjillali, M. & Alouini, M.-S. (2018).

Figs. 5.4 demonstrates the analytical PL
MRC,out and PL

SC,out together with simulated SOP over

α − μ fading channels. One can perceive that our derived lower bound of SOP can closely
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Figure 5.4 The lower bound of SOP, i.e., PL
out over α −μ

fading channels when αB = 2,αE = 4,μB = μE = 3
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Figure 5.5 The lower bound of SOP, i.e., PL
out over EGK

fading channels when

mB = mE = 2,msB = msE = 4,ξB = ξsB = ξE = ξsE = 1.
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Figure 5.6 The lower bound of SOP, i.e., PL
out over F-S F

fading channels when F , mB = mE = 2,mB,s = mE,s = 3.

approximate the exact SOP. As the number of cooperative eavesdroppers increases, the gap

between the lower bound of SOP and exact SOP gradually becomes smaller.

On the other hand, the increase of the number of L contributes largely to the PL
out,MRC when

MRC scheme is employed, compared to the Pout,SC case.

Apart from Fig. 5.4, we also compared the simulated and analytical SOPs for the following

two scenarios: (i) changing γE while fixing Rt , as shown in Fig.5.5; and (ii) changing Rt while

keeping γE constant, as depicted in Fig. 5.6. Apparently, one can obtain the following two

observations. On one hand, Fig. 5.5 shows that the lower bound of the SOP is becoming

increasingly tight with the decrease of lower Rt . Different from 5.5, Fig.5.6 portrays that

higher γ̄E makes the lower bound of SOP sufficiently approximates the exact SOP. Those two

observations can be mathematically explained from the definition of the lower bound of SOP,

i.e., P(γB < (RsγC +W )) ≈ P(γB < (RsγC)). This condition can be met when Rt goes to 0

(W = 2Rt −1), or γC 
 W .
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Figure 5.7 Pnz,MRC, Pnz,SC versus γ̄B over α −μ wiretap

fading channels when αB = 2,αE = 4,μB = μE = 3.
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Figure 5.8 Pnz,MRC, Pnz,SC versus γ̄B over F-S F wiretap

fading channels when mB = mE = 2,ms,B = ms,E = 3.
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Figure 5.9 Pnz,MRC, Pnz,SC versus γ̄B over EGK wiretap

fading channels when mB = mE = 2,msB = msE = 4,

ξB = ξsB = ξE = ξsE = 1.

Likewise, in Figs. 5.7-5.9, the PNZ given in (5.37) and (5.38) are plotted and compared with

Monte-Carlo simulation. The validity of our presented PNZ expressions are examined over the

α −μ , F-S F , and EGK fading channels, respectively.

Each figure witnesses perfect agreements between the exact analysis and simulated results.

Besides, it is clear that the influences of L on Pnz,MRC is larger than that on Pnz,SC. This is

obviously due to the MRC and SC schemes.

5.9 Conclusion

Since Fox’s H-function fading channel can subsume most of the fading models, this paper

comprehensively investigated the PLS over Fox’s H-function wiretap fading channels, with

consideration of the non-colluding and colluding eavesdropping scenarios. For the former non-

colluding case, secrecy metrics, including the SOP, PNZ, and ASC, are derived with closed-

form expressions in a general and unified manner. Those expressions are given in terms of
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the univariate or bivariate Fox’s H-function. In addition, those closed-form expressions were

further simplified to acquire the asymptotic behavior of the secrecy metrics. The asymptotic

ones were much simpler and highly accurate for practical usage. In the presence of colluding

eavesdroppers, a super eavesdropper employing by MRC or SC schemes were formulated, and

subsequently the lower bound of SOP and the exact PNZ were provided in terms of multivariate

Fox’s H-function. Both scenarios are further demonstrated by Monte-Carlo simulations.

In addition, for the sake of providing more insights on some well-known fading models, several

special cases of Fox’s H-function distribution were particularly explored, including α −μ , F-

S F , and EGK. Those examples were further elaborated with the general form, and their

accuracy was also compared with Monte-Carlo simulation results. As observed and discussed,

the advantages of those general mathematical representations are listed as follows: (i) they are

consistent with the existing works; (ii) they provide a unified generic approach to other fading

models which can be expanded in terms of Fox’s H-function fading distribution; and (iii) they

provide a promising secrecy performance analysis framework when colluding eavesdroppers

are undergoing different independent fading conditions.
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6.1 Abstract

Considering the fact that the mixture gamma (MG) distribution is a general model that can

be used to elaborate most well-known distributions, including small-scale, large-scale, and

composite fadings, this letter studies the security issue when the received signal-to-noise ratios

(SNRs) follow MG distributions. Closed-form expressions for secrecy metrics including the

secrecy outage probability (SOP), the probability of non-zero secrecy capacity (PNZ), and

the average secrecy capacity (ASC), are derived. Monte-Carlo simulations are presented to

corroborate the accuracy of our derived results. Our derived secrecy metrics provide a general

and unified analysis framework for the quick evaluation of the secrecy issue over wireless

channels, even when the main channel and wiretap channel are subject to different wireless

channels.

Keywords: Physical layer security (PLS), Mixture Gamma (MG) distribution, Meijer’s G-

function

6.2 Introduction

Physical layer security (PLS) is viewed as a promising fundamental security mechnism since

it is theoretically supported by two fundamental works, i.e., Shannon’s information theoretic

formulation and Wyner’s wiretap model. Numerous works have demonstrated that the random-
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ness of the wireless medium is essentially beneficial and can be reversely used to boost secrecy

concerns Bloch et al. (2008).

Therefore, physical layer security has drawn significant research interests. In particularly, se-

crecy metrics have been essentially analyzed over four kinds of fading channels: (i) small-scale

fading, e.g., Nakagami Liu, W., Vuppala, S., Abreu, G. & Ratnarajah, T. (2014), Nakagami-n

(Rician) Liu (2013a), Nakagami-q (Hoyt) Romero-Jerez, J. M. & Lopez-Martinez, F. J. (2017),

α − μKong et al. (2016b,1); Lei et al. (2017a), κ − μ Iwata et al. (2017), α − η − κ − μ

Mathur et al. (2018) (ii) large-scale fading, e.g., lognormal Pan et al. (2016), (iii) cascaded

fading, e.g., cascaded α − μ Kong et al. (2018a); (iv) composite fading, e.g., generalized-K

(KG) Lei et al. (2016c), Fisher-Snedecor F Kong & Kaddoum (2018). More recently, the

mixture gamma (MG) distribution was proposed by Atapattu et al. in Atapattu, S., Tellambura,

C. & Jiang, H. (2011) to model the signal-to-noise ratio (SNR) of wireless channels. This dis-

tribution can highly accurately characterize the SNRs of composite fading channels Al-Hmood,

H. & Al-Raweshidy, H. S. (2017); Atapattu et al. (2011), e.g., κ − μ/gamma, η − μ/gamma,

α − μ/gamma, and KG, in addition to it being a versatile approximation for any fading SNR

Al-Hmood & Al-Raweshidy (2017), e.g., Rayleigh, Nakagami-q (Hoyt), Nakagami-n (Rician),

α − μ , η − μ , κ − μ . Comprehensively speaking, the MG distribution provides a general ap-

proach to model the received SNRs of most fading channels.

Besides the work laid by Lei et al. in Lei et al. (2016c), they analyzed the secrecy performance

over KG fading channels by modeling the instantaneous received SNRs at the legitimate and

illegitimate users as MG distributed random variables (RVs), where the cumulative distribution

functions (CDFs) are characterized with the lower incomplete gamma function ϒ(m,x). To the

best of the authors’ knowledge, no work investigating the physical layer security by modeling

the instantaneous received SNRs of wireless channels as MG distributed RVs has been reported.

Although the contribution in Lei et al. (2016c) is seemingly fascinating, its constraint by limit-

ing m as an integer indeed makes it lack generality. Therefore, in this letter we investigate three

secrecy metrics, including the secrecy outage probability (SOP), the probability of non-zero se-
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crecy capacity (PNZ), and average secrecy capacity (ASC), over generalized fading conditions

by modeling the received SNRs with the MG distribution.

6.3 System model

Consider the Alice-Bob-Eve classic wiretap model, it is assumed that the instantaneous re-

ceived SNRs γi, i ∈ {B,E} at Bob and Eve are MG distributed RVs, with probability density

functions (PDFs) and CDFs respectively given by Atapattu et al. (2011):

fi(γ) =
Li

∑
l=1

αi,lγβi,l−1 exp(−ζi,lγ)
(a)
=

Li

∑
l=1

αi,lγβi,l−1H1,0
0,1

⎡
⎣ζi,lγ

∣∣∣∣∣∣
−

(0,1)

⎤
⎦ , γ ≥ 0, (6.1a)

Fi(γ) =
Li

∑
l=1

αi,lζ
−βi,l
i,l ϒ(βi,l,ζi,lγ)

(b)
=

Li

∑
l=1

αi,lζ
−βi,l
i,l H1,1

1,2

⎡
⎣ζi,lγ

∣∣∣∣∣∣
(1,1)

(βi,l,1),(0,1)

⎤
⎦ , (6.1b)

here Li is the number of terms, and αi,l,βi,l,ζi,l are the parameters of the ith gamma component.

Hm,n
p,q [.] is the univariate Fox’s H-function. Steps (a) and (b) are developed by re-expressing

exp(·) and ϒ(·, ·) in terms of the unviariate Fox’s H-function (Prudnikov et al., 1990, eqs.

(8.4.3.1) and (8.4.16.1)), for the sake of assisting the following secrecy metrics derivations.

Assuming the availability of perfect channel state information (CSI) at all terminals and unit

distance between both Alice and Bob, and Alice and Eve. According to Bloch et al. (2008),

the instantaneous secrecy capacity for one realization of (γB,γE) pair over quasi-static wiretap

fading channels is given by

Cs(γB,γE) =

[
log2

(
1+ γB

1+ γE

)]+
, (6.2)

where [x]+
�
= max(x,0).
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6.4 Secrecy Characterization

6.4.1 SOP Characterization

The SOP is commonly seen as a crucial secrecy indicator, and widely used when analyzing

PLS over fading channels.

Theorem 11. The SOP is either given by (6.3a) in terms of the bivariate Meijer’s G-function

(Gradshteyn & Ryzhik, 2014, eq. (9.301)), i.e, Gm,n
p,q [.]

1,

Pout,1 =
LE

∑
k=1

LB

∑
l=1

αB,lαE,k
W ζ 1−βE,k

E,k

Rsζ
βB,l
B,l

×G0,1:1,1:1,1
1,0:2,2:1,1

⎡
⎣ 1

ζB,lW
,

Rs

ζE,kW

∣∣∣∣∣∣
(2,1,1)

−

∣∣∣∣∣∣
(1−βB,l,1)

(0,1)

∣∣∣∣∣∣
2−βE,k

1

⎤
⎦ ,

(6.3a)

or given by (6.3b) in terms of the univariate Meijer’s G-function Ansari et al. (2011), i.e.,

G0,n:m1.n1:m2,n2
p,q:p1,q1:p2,q2

[.],

Pout,2 =
LE

∑
k=1

LB

∑
l=1

αB,lαE,k

ζ βB,l
B,l ζ βE,k

E,k

∞

∑
n=1

(−ζB,lW )n

n!
G2,2

3,3

⎡
⎣ ζE,k

ζB,lRs

∣∣∣∣∣∣
(1,1+n−βB,l,1+n)

(βE,k,n,1+n)

⎤
⎦ . (6.3b)

Proof. For a given target secrecy rate Rt , the SOP is mathematically defined as Pout =Pr (Cs ≤ Rt)

(Bloch et al., 2008, eq. (9))Kong et al. (2018c), and further developed as follows

Pout =
∫ ∞

0
FB (γ0) fE(γ)dγ =

LE

∑
k=1

LB

∑
l=1

∫ ∞

0

exp(−ζE,kγ)ϒ(βB,l,ζB,lγ0)(
αB,lαE,kζ βB,l

B,l

)−1
γ1−βE,k

dγ, (6.4)

where γ0 = Rsγ +W ,Rs = 2Rt ,W = 2Rt − 1. Subsequently, plugging (6.1a) and (6.1b) into

(6.4), and using (Kong et al., 2018c, eqs. (6-9)), the proof of Pout,1 is easily obtained.

1 It is noted that the bivariate Meijer’s G-function is computable and programmable in the open litera-

ture Ansari, I. S., Al-Ahmadi, S., Yilmaz, F., Alouini, M. & Yanikomeroglu, H. (2011); Chergui et al.
(2016); Lei et al. (2017a); Peppas et al. (2012), whereas the univariate Meijer’s G-function is already

available in mathematical software packages, like Mathematica, Maple, MATLAB.
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The proof for Pout,2 is obtained by applying the Mellin transform of the product of two Mei-

jer’s G-functions2 (Prudnikov et al., 1990, eq. (2.24.1.3)).

In addition, the lower bound of the SOP PL
out is usually considered when two events happen,

i.e., (i) when Rt → 0, which means that Alice adopts no transmission rate, i.e., Rt ; (ii) when both

γB and γE operate at high SNR regimes, physically speaking, it is interpreted as the scenario

that both Bob and Eve are super close to Alice. As such, PL
out is developed as

PL
out =

∫ ∞

0
FB(Rsγ) fE(γ)dγ, (6.5)

Next, substituting (6.1a) and (6.1b) into (6.5), and using (Prudnikov et al., 1990, eq. (6.455.2)),

the lower bound of the SOP is eventually derived as

PL
out =

LE

∑
k=1

LB

∑
l=1

αB,lαE,kR
βB,l
s Γ(βB,l +βE,k)

βB,lζ
βB,l+βE,k
E,k

2F1

(
βB,l,βE,k +βB,l;βB,l +1;−ζB,lRs

ζE,k

)
. (6.6)

where 2F1(·, ·; ·; ·) Gauss Hypergeometric function (Gradshteyn & Ryzhik, 2014, eq. (9.14)).

6.4.2 PNZ Characterization

The PNZ is regarded as another important secrecy metric to measure the existence of the posi-

tive secrecy capacity with a probability Pnz.

Theorem 12. The PNZ is given by (6.7)

Pnz =
LE

∑
k=1

LB

∑
l=1

αB,lαE,kΓ(βE,k +βB,l)

βE,kζ βB,l+βE,k
B,l

2F1

(
βE,k,βE,k +βB,l;βE,k +1;−ζE,k

ζB,l

)
. (6.7)

Proof. Revisiting the definition of Pnz, i.e., Pnz =
∫ ∞

0 FE(γ) fB(γ)dγ , the proof is accom-

plished by using (Prudnikov et al., 1990, eq. (6.455.2)).

2 It is noted that Meijer’s G-function is a special case of Fox’s H-function (Prudnikov et al., 1990, eq.

(8.3.2.21)), i.e., Hm,n
p,q

[
x
∣∣∣∣ (ai,αi)i=1:p
(ck,δk)k=1:q

]
= Gm,n

p,q

[
x
∣∣∣∣ ai

ck

]
, when αi = δk = 1.
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6.4.3 ASC Characterization

The ASC is a secrecy metric that evaluates how much achievable secrecy rate can be guaranteed

for the whole system.

Theorem 13. The ASC is given by (6.8)

C̄s =
LE

∑
k=1

LB

∑
l=1

αB,lαE,k

ln(2)ζ βB,l
B,l ζ βE,k

E,k

G0,1:1,2:1,1
1,0:2,2:1,2

⎡
⎣ 1

ζB,l
,
ζE,k

ζB,l

∣∣∣∣∣∣
(1−βB,l)

−

∣∣∣∣∣∣
(1,1)

(1,0)

∣∣∣∣∣∣
(1)

(βE,k,0)

⎤
⎦

︸ ︷︷ ︸
I1

+
LE

∑
k=1

LB

∑
l=1

αB,lαE,k

ln(2)ζ βB,l
B,l ζ βE,k

E,k

G0,1:1,2:1,1
1,0:2,2:1,2

⎡
⎣ 1

ζE,k
,

ζB,l

ζE,k

∣∣∣∣∣∣
(1−βE,k)

−

∣∣∣∣∣∣
(1,1)

(1,0)

∣∣∣∣∣∣
(1)

(βB,l,0)

⎤
⎦

︸ ︷︷ ︸
I2

−
LE

∑
k=1

αE,k

ln(2)ζ βE,k
E,k

G1,3
3,2

⎡
⎣ 1

ζE,k

∣∣∣∣∣∣
(1,1,1−βE,k)

(1,0)

⎤
⎦

︸ ︷︷ ︸
I3

.

(6.8)

Proof. By averaging (6.2) over γB and γE , the ASC is mathematically expressed as (Lei et al.,

2016c, eq.(6)), C̄s =I1+I2−I3, where I1 =
∫ ∞

0 log2(1+γB) fB(γB)FE(γB)dγB, I2 =
∫ ∞

0 log2(1+

γE) fE(γE)FB(γE)dγE , I3 =
∫ ∞

0 log2(1+ γE) fE(γE)dγE .

Next, re-expressing log(1+x)= 1
ln(2)H

1,2
2,2

⎡
⎣x

∣∣∣∣∣∣
(1,1),(1,1)

(1,1),(0,1)

⎤
⎦ (Prudnikov et al., 1990, eq. (8.4.6.5)),

and then directly using the Mellin transform of the product of three Fox’s H-functions (Mittal,

P. & Gupta, K., 1972, eq. (2.3)), the proofs of I1 and I2 are obtained Kong & Kaddoum

(2018), whereas the proof for I3 is achieved by applying the Mellin transform of the product

of two Fox’s H-functions (Prudnikov et al., 1990, eq.(2.25.1.1)) and using (Prudnikov et al.,

1990, eq.(8.3.2.21)).

Remark 6. As γ̄B
γ̄E

tends to ∞, the asymptotic ASC is given by C̄s ≈ Î1 + Î2 −I3, where

Î1 =
LE

∑
k=1

LB

∑
l=1

αB,lαE,kΓ(βE,k)

ln(2)ζ βB,l
B,l ζ βE,k

E,k

G3,1
2,3

⎡
⎣ζB,l

∣∣∣∣∣∣
(0,1)

(0,0,βB,l)

⎤
⎦ , (6.9)
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Î2 =
LE

∑
k=1

LB

∑
l=1

αB,lαE,k

ln(2)βB,lζ
βE,k+βB,l
E,k

G3,1
2,3

⎡
⎣ζE,k

∣∣∣∣∣∣
(0,1)

(0,0,βB,l +βE,k)

⎤
⎦ . (6.10)

Proof. Motivated by (Lei et al., 2017a, Sec. IV), as
γ̄B
γ̄E

→ ∞, we have
ζE,k
ζB,l

→ ∞. Next, using the

residue theorem, I1 is further evaluated at the simple residue 0 of the Mellin-Barnes integrand

function regarding
ζE,k
ζB,l

. Then after some simple manipulations, we get Î1. Similarly,
ζB,l
ζE,k

→ 0,

I2 is evaluated at the simple residue βB,l , and results in Î2.

6.5 Numerical Result and Discussions

In this section, the accuracy of our derived analytical results is validated. Since the MG distri-

bution is regarded as a general model to characterize the received SNRs, three examples listed

in Table 6.1 are henceforth used to correspondingly plot the Monte-Carlo simulated SOP, PNZ,

and ASC.

Table 6.1 Simulations parameters

Distribution Parameters, αl =
θl

∑
Li
k=1 θkΓ(βk)ζ

−βk
k

, γ̄i is the average SNR.

KG (Atapattu et al., 2011, Sec.

III.B), mi and ki are distribu-

tion shaping parameters, LB =
LE = 5.

βl = mi, ζl =
λ
tl

, λ = kimi
γ̄i

, θl =
λ miwlt

ki−mi−1

l
Γ(mi)Γ(ki)

, tl,wl are the

abscissas and weight factors for the Gaussian-Laguerre

integration (Abromowitz, M. & Stegun, I. A., 1968, Ta-

ble 25.9).

Nakagami-n (Rician) (Atap-

attu et al., 2011, Sec. III.F),

0 ≤ n < ∞, LB = LE = 20

βl = l, ζl =
(1+n2

i )
γ̄i

, θl =
(1+n2

i )

exp(n2
i )[(l−1)!]2γ̄i

(
n2

i (1+n2
i )

γ̄i

)l−1

Nakagami-q (Hoyt) (Atapattu

et al., 2011, Sec. III.D), 0 <
q < 1, LB = LE = 5

βl = 2l −1, ζl =
(1+q2

i )
2

4q2
i γ̄i

, θl =
(1+q2

i )
2qiγ̄iΓ(l)(l−1)!

(
1−q4

i
8q2

i γ̄i

)2i−2

Fig. 6.1 plots the SOP against γ̄B over KG fading channels for selected values of mB,mB ∈
{1,1.5,2,2.5}. From this figure, one can observe that (i) our analytical results perfect the

contributions in Lei et al. (2016c); (ii) there is a perfect agreement between our two analytical
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SOP expressions respectively given by (6.3a) and (6.3b) and the corresponding simulation

results; (iii) the SOP is largely enhanced with the increase of the shaping factor mB in the high

γ̄B regime; and (iv) a larger shaping factor mB results in a higher secrecy outage.

0 5 10 15 20
10-3

10-2

10-1

100

Figure 6.1 Pout versus γ̄B over KG fading channels for

selected values of mB when Rt = 0.01, γ̄E = 6 dB, kB = 4,

mE = 4, and kE = 8.

The lower bound of the SOP for two aforementioned cases are correspondingly depicted in

Fig. 6.2. (a) and (b). It is observed that our obtained analytical lower bound for the SOP is

valid for both scenarios.

In Fig. 6.3, Pnz is plotted against γ̄B for two cases: (a) for selected values of γ̄E ; (b) when

the wiretap channel undergoes various fading models. Obviously, a positive secrecy capacity

is ensured with a higher probability (i) either when the wiretap channel has a worse channel

quality for fixed γ̄B; (ii) or when the main channel conditions gradually improve (namely,

higher γ̄B) for fixed γ̄E . In addition, Fig. 6.3.(b) presents the PNZ when the main channel

and wiretap channel undergo different fading models. In this vein, one can extract another

interesting insight that we provide a unified and general analysis framework to analyze the

PLS when the main channel and wiretap channel experience two different fading models.
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Figure 6.2 Pout versus γ̄B over KG fading channels for

selected values of kB = 1.5,mB = 4, kE = 2.5,mE = 8 when

(a) Rt = 0.5; (b) γ̄E = 3 dB.

γ̄B[dB]
-10 -5 0 5 10

P
n
z

10-2

10-1

100
(a)

γ̄E = 0 dB
γE = 3 dB
γ̄E = 6 dB
γ̄E = 9 dB
Theory

γ̄B[dB]
-10 -5 0 5 10

P
n
z

10-3

10-2

10-1

100
(b)
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Theory

Figure 6.3 Pnz against γ̄B for two cases: (a) main channel

and wiretap channel undergo Nakagami-n fading when

nB = 3 and nE = 5; (b) main channel undergoes KG fading

(mB = 2.5,kB = 4), while wiretap channel respectively

undergoes KG, Rician, and Hoyt for γ̄E = 5 dB.
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Figure 6.4 C̄s over Hoyt fading channels when

qB = qE =
√

0.5 for two cases (a) C̄s versus γ̄B; (b) C̄s
versus

γ̄B
γ̄E

.

In continuation of verifying and comparing the exact and asymptotic ASC given in Sec. 6.4.3,

Fig. 6.4 depicts how our derived ASC expression is confirmed by Monte-Carlo simulations

over Hoyt fading channels. In addition, in Fig. 6.4. (b), it is shown that our asymptotic ASC

accurately characterizes the exact ASC in the high
γ̄B
γ̄E

regime.

6.6 Conclusion

In this letter, we first investigated PLS of wireless channels, by modeling the received SNRs

as MG distributed RVs. Three secrecy metrics, i.e., SOP, PNZ, and ASC, were subsequently

derived with closed-form expressions. Our derivations were validated by Monte-Carlo simula-

tions. This paper provides a general and unified mathematical frameworks for the evaluation

of the secrecy risks, especially when the instantaneous received SNRs could be rewritten in

terms of the MG distribution. In addition, the obtained expressions are beneficial when the

main channel and the wiretap channel undergo two different wireless channels.
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7.1 Abstract

In this paper, the cascaded α − μ fading distribution is first introduced and mathematically

characterized, which arises as a generalization of the cascaded Rayleigh, Weibull, and Nakagami-

m fading distribution, by properly selecting fading parameters α and μ with specific values. In

particular, the statistical characterization of the cascaded α − μ fading channels, namely, the

probability density function (PDF) and cumulative distribution function (CDF), are first stud-

ied. This set of new statistical results is applied to the modeling and analysis of the reliability

and security performance of wireless communication systems over the cascaded α −μ fading

channel. Regarding system reliability, the amount of fading (AoF), outage probability, average

channel capacity, and the average symbol error probability (ASEP) with coherent and non-

coherent demodulation schemes are derived with respect to the univariate Fox’s H-function.

In terms of security analysis, the secrecy outage probability Pout , the probability of non-zero

secrecy capacity Pnz, and the average secrecy capacity are analyzed in the exact closed-form

expressions which are derived in the presence of a potential eavesdropper. In addition, an

asymptotic analysis of all aforementioned metrics is carried out, in order to gain more insights

of the effect of the key system parameters on the reliability and security. Tractable results

are computed in terms of the Fox’s H-function and later on are successfully validated through

Monte-Carlo simulations.
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7.2 Introduction

The ever-increasing demand for highly reliable wireless communication systems has led to the

prosperous of various accurate channel modeling in system design and evaluation. A com-

prehensive summary of all existing fading models includes (i) short-term fading: Rayleigh,

Rician, Nakagami-m, and Weibull; (ii) long-term fading: Lognormal; (iii) composite fading:

Rayleigh-lognormal; and (iv) cascaded fading Boulogeorgos, A. A. A., Sofotasios, P. C., Selim,

B., Muhaidat, S., Karagiannidis, G. K. & Valkama, M. (2016); Hajri, N., Youssef, N., Kawa-

bata, T., Patzold, M. & Dahech, W. (2018); Karagiannidis et al. (2007); Peppas, K., Lazarakis,

F., Alexandridis, A. & Dangakis, K. (2010); Sagias, N. C. & Tombras, G. S. (2007); Trigui, I.,

Laourine, A., Affes, S. & Stephenne, A. (2009); Yilmaz, F. & Alouini, M. S. (2009); Zheng, Z.

(2015). In particular, the cascaded fading channel is mathematically based on the multiplicative

modeling approach and happens over wireless communication links when 1) transmitter-and-

receiver pairs experience rich scattering, but the existence of some keyholes or pinholes makes

it still possible to keep the transmission; 2) the received signals are engendered by the product

of a bunch of rays reflected via N statistically independent scatters.

7.2.1 Background and Related Works

Along the years, the use of cascaded fading channels has shown applicability in the modeling of

several scenarios such as multi-hop cooperative communications Chergui et al. (2016); Ilhan,

H. (2012), mobile-to-mobile (M2M) transmission channel Boulogeorgos et al. (2016); Erceg,

V., Fortune, S. J., Ling, J., Rustako, A. J. & Valenzuela, R. A. (1997); Talha, B. & Patzold,

M. (2011), dual-hop fading channels, radio-frequency identification (RFID) pinhole channels

Bekkali, A., Zou, S., Kadri, A., Crisp, M. & Penty, R. V. (2015), and multiple-input-multiple-

output (MIMO) keyhole communication systems Chergui et al. (2016); Sofotasios, P. C., Mo-

hjazi, L., Muhaidat, S., Al-Qutayri, M. & Karagiannidis, G. K. (2016); Yilmaz & Alouini

(2009).
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Specifically, for M2M communication system, the double Rayleigh distribution was proposed

to model it Alghorani, Y., Kaddoum, G., Muhaidat, S., Pierre, S. & Al-Dhahir, N. (2016);

Boulogeorgos et al. (2016); Erceg et al. (1997). Later on, in Alghorani et al. (2016); Boulo-

georgos et al. (2016), a vehicle-to-vehicle (V2V) communication scenario was investigated

by characterizing the wireless links, via the N∗Nakagami-m distribution. As shown in Kara-

giannidis et al. (2007), the N∗Nakagami-m distribution is structured on the basis of the prod-

uct of N independent, but not necessarily identical distributed Nakagami-m random variables

(RVs). Its statistics, including the probability density function (PDF) and cumulative distribu-

tion function (CDF), were derived in Karagiannidis et al. (2007) as closed-form expressions, in

terms of Meijer’s G-function. The derived first-order statistics are particularly beneficial when

evaluating the performance of the aforementioned various wireless communication scenarios

over cascaded Nakagami-m fading channels. In addition, it is noted that the N∗Nakagami-m

distribution can be reduced to double Rayleigh by attributing m1 = m2 = 1, where m1 and

m2 represent the fading parameters of the respective channels. However, when accounting

for both short- and long-term fading effects, the N∗Nakagami-m and N∗Weibull distributions

Sagias & Tombras (2007) cannot be adopted to model both fading impairments. As a conse-

quence, the cascaded generalized K distribution Peppas et al. (2010); Trigui et al. (2009) was

put forth to model the composite fading/shadowing channels due to the lack of closed-form ex-

pressions for the statistics of other distributions, like Suzuki Boulogeorgos et al. (2016); Hajri,

N., Youssef, N. & Patzold, M. (2016); Laourine, A., Alouini, M. S., Affes, S. & Stephenne, A.

(2009).

More recently, Yacoub proposed in Yacoub (2007a) the α − μ (or, equivalently, generalized

gamma) distribution to model the small scale variation of fading signal under line-of-sight

conditions. It is physically described with two key fading parameters, i.e., non-linearity of

the propagation medium α and the clustering of the multipath waves μ . This fading distribu-

tion has been examined applicable in vehicle communication Wu et al. (2010) and on-body

communication networks Michalopoulou et al. (2012). In additon, the α − μ distribution en-

compasses as special cases of some well-known distributions, such as Rayleigh (α = 2,μ = 1),
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Weibull (α is the fading parameter, μ = 1), and Nakagami-m (α = 2, μ is the fading param-

eter) distribution, by setting appropriate fading parameters to specific values. Later on, the

statistical characterization of the product of α − μ variates, including its PDF and CDF, were

investigated in Badarneh, O. S. & Almehmadi, F. S. (2016); Badarneh, O. S. (2016); da Silva,

C. R. N., Leonardo, E. J. & Yacoub, M. D. (2018); Leonardo, E. J. & Yacoub, M. D. (2015a,1);

Leonardo, E. J., Yacoub, M. D. & de Souza, R. A. A. (2016); Mathai, A. M. (1972), and

the number of integers was extended from 2 to arbitrary N. The seminal results presented in

Mathai (1972) were given in terms of Fox’s H-function. Since the Fox’s H-function is an ex-

tremely general function, taking the shape of the Mellin-Barnes integral (Mathai et al., 2009a,

eq. (1.2)). It can also be reduced to Meijer’s G-function. However, the PDF and CDF of

the product of α − μ variates given in terms of hypergeometric functions is fairly complex

in Leonardo & Yacoub (2015b); it renders its adoption in the performance analysis of wire-

less communication systems. Inspired from Leonardo & Yacoub (2015b); Mathai (1972), the

objective of this paper is to regenerate the cascaded α − μ distribution in terms of Fox’s H-

function, due to its general form and feasible implementation in MATLAB, Mathematica and

Python1.

7.2.2 Contributions

Our analysis of cascaded α − μ fading channel in wireless networks will be performed in

terms of reliability and security. It is noteworthy that apart from analyzing the popular average

bit error ratio performance, plenty of research attention concerning the security issue is also

gained when designing a secure and reliable communication system. The security issue is

based on Wyner’s wiretap model Wyner (1975), where the legitimate links are endangered

by the malicious eavesdroppers. In the existing technical works Kong et al. (2016b,1); Lei

1 The implementation of the univariate, bivariate or multivariate Fox’s H-function are reported in

Ansari, I. S., Yilmaz, F. & Alouini, M. S. (2013); Peppas (2012); Peppas et al. (2012); Yil-

maz & Alouini (2009) at Mathematica, MATLAB or Python. More specifically, the univariate Fox’s

H-function is implemented at Mathematica in Ansari et al. (2013); Yilmaz & Alouini (2009), and at

MATLAB in Peppas et al. (2012), whereas the implementation of the bivariate Fox’s H-function is

given at MATLAB in Peppas (2012).
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et al. (2015,1), the authors studied the security problem over α − μ fading channels from

the perspective of information theory, in which the secrecy outage probability, the probability

of non-zero secrecy capacity, and average secrecy capacity were characterized, respectively.

However, no work in the open literature focused on cascaded α −μ fading channels.

To this end, this paper aims to provide a reliability and security analysis of communications

systems over cascaded α-μ fading channels. The main contributions can be summarized as

follows:

1) The cascaded α −μ distribution is first introduced. Its PDF and CDF are analyzed by first

expressing the α −μ distribution in terms of the Fox’s H-function, and subsequently being

derived by utilizing the property of the Fox’s H-function distribution. In addition, other

elementary statistics, including moments and moment-generating function (MGF), are also

derived.

2) The derived statistics are employed in the investigation of multi-hop relaying wireless sys-

tems with amplify-and-forward (AF) protocol over the cascaded α − μ fading channel. In

particular,

• In the absence of eavesdroppers, the reliability of point-to-point wireless systems is

characterized. Specifically, the amount of fading (AoF), the outage probability, the

average channel capacity and the average symbol error probability (ASEP) are evaluated

in terms of the univariate Fox’s H-function.

• In the presence of eavesdroppers, the physical layer security is investigated, where the

secrecy outage probability (SOP), the probability of non-zero secrecy capacity (PNZ),

and the average secrecy capacity, are characterized and closed-form expressions in

terms of the bivariate and univariate Fox’s H-functions, are obtained.

• Asymptotic behavior of all the aforementioned metrics are analyzed to gain further

insights on the effect of the key system parameters on the overall performance. In

addition, numerical results are conducted to confirm our analysis for both scenarios,
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perfect agreements are observed to show the accuracy and feasibility of our analysis in

the field of wireless communication systems.

3) The useful insight provided in our paper lies in the essence of the cascaded α − μ fading

channels, which can be reduced to several well-known cascaded fading channels, such as the

cascaded Rayleigh, Weibull, Nakagami-m fading channels by fixing α and μ with special

values, furthermore, the exact closed-form expression of the PDF and CDF of the cascaded

α−μ distribution makes it tractable to grasp the behavior of reliability and security analysis

for multi-hop wireless communication systems.

The rest of this paper is organized as follows. In Section 7.3, the statistical characterization

of cascaded α − μ fading channel is first performed. Section 7.4 demonstrates the applica-

tion of cascaded α − μ fading channels in modeling wireless communication systems, and

performance metrics including the outage probability, average channel capacity and the aver-

age symbol error probability (ASEP) are analyzed respectively. In Section 7.5, the physical

layer security of wireless communication systems over cascaded α-μ fading channels is in-

vestigated, and performance metrics including the secrecy outage probability, the probability

of non-zero secrecy capacity, and average secrecy capacity, are provided. Section 7.6 presents

some illustrative numerical results along with insightful discussions. Concluding remarks and

future works are outlined in Section 7.7.

Notations: Γ(x) denotes the Gamma function (Gradshteyn & Ryzhik, 2014, eq. (8.310.1)),

Γ(a,x) is the upper incomplete gamma function, Hm,n
p,q [.] is the univariate Fox’s H-function

(Mathai et al., 2009a, eq. (1.2)), H0,n:m1.n1:m2,n2
p,q:p1,q1:p2,q2

is the bivariate Fox’s H-function (Mathai et al.,

2009a, eq. (2.56)). erfc(.) is the complementary error function. B(x,y) is the Beta function

(Gradshteyn & Ryzhik, 2014, eq. (8.380.1)). ψ(·) is the digamma function. Gm,n
p,q [.] is the Mei-

jer’s G-function (Gradshteyn & Ryzhik, 2014, eq. (7.811.1)). M [ f (x),s] denotes the Mellin

transform of f (x) (Debnath & Bhatta, 2014, eq. (8.2.5)), E(·) and V(·) mean expectation and

variance, respectively. Res[ f (x), p] represents the residue of function f (x) at pole x = p.
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7.3 System Model and Statistical Characterization

Let Z be the product of M,M ≥ 1 independently α − μ distributed random variables (RVs)

having parameters (αi,μi), i.e., Z =
M
∏
i=1

Ri, the PDF of Ri is given by Yacoub (2007a)

fRi(ri) =
αiμ

μi
i rαiμi

i −1

Ωαiμi
i Γ(μi)

exp

(
−μi

(
ri

Ωi

)αi
)

= τiH
1,0
0,1

⎡
⎣υiri

∣∣∣∣∣∣
−

(μi − 1
αi
, 1

αi
)

⎤
⎦ , (7.1)

where τi =
μ

1
αi

i
ΩiΓ(μi)

, υi =
μ

1
αi

i
Ωi

, Ωi =
Γ(μi)

Γ(μi+
2
αi
)
, the last step holds by using (Mathai et al., 2009a,

eq. (1.125)).

Theorem 14. The PDF of Z is given by

fZ(z) = DMHM,0
0,M

⎡
⎣VMz

∣∣∣∣∣∣
−

ε1, · · · ,εM

⎤
⎦ , (7.2)

where DM =
M
∏
i=1

τi, VM =
M
∏
i=1

υi, εi = (μi − 1
αi
, 1

αi
).

Proof. By using (Bodenschatz, 1992, eq. (3.12)), the proof is easily obtained.

7.3.1 System Model

Suppose a wireless multi-hop amplify-and-forward relaying communication link, shown in

Fig. 7.1, over cascaded α −μ fading channel. It is assumed that each hop undergoes the α −μ

fading with fading coefficient hi, and hi is characterized with fading parameters αi and μi.

The instantaneous received signal-to-noise ratio (SNR) at the desired destination is expressed

as

γ =
N

∏
i=1

γ̄gi, (7.3)

where γ̄ is the average power at the receiver side, gi = |hi|2, and hi is the fading coefficient,

which follows independent and non-identically α −μ distribution with parameters (αi, μi). It
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Figure 7.1 Cascaded fading channels with N components

is assumed that all hi are statistically independent, but not necessarily identically distributed.

The PDF of gi is defined in (Kong et al., 2016b,1, eq. (2)) and given by

fg(gi) =
αig

αiμi
2 −1

i

2Ω
αiμi

2
i Γ(μi)

exp

[
−
(

gi

Ωi

)αi
2

]
(a)
= κiH

1,0
0,1

⎡
⎣λigi

∣∣∣∣∣∣
−
Φi

⎤
⎦ , (7.4)

where Ωi =
Γ(μi)

Γ(μi+
2
αi
)
, κi =

1
ΩiΓ(μi)

, λi =
1

Ωi
, and Φi = (μi − 2

αi
, 2

αi
). Step (a) is derived by using

(Mathai et al., 2009a, eq. (1.125)).

7.3.2 Statistical Characterization

Theorem 15. The PDF and CDF of the instantaneous SNR defined in (7.3) can be expressed

as

fγ(γ) = KNHN,0
0,N

⎡
⎣C γ

∣∣∣∣∣∣
−

Φ1, · · · ,ΦN

⎤
⎦ , (7.5a)

Fγ(γ) = 1− KN

C
HN+1,0

1,N+1

⎡
⎣C γ

∣∣∣∣∣∣
(1,1)

(0,1),θ1, · · · ,θN

⎤
⎦= 1− F̄γ(γ), (7.5b)

where KN = ∏N
i=1 κi
γ̄ , C = ∏N

i=1 λi
γ̄ , θi = (μi,

2
αi
), and F̄γ is the complementary CDF (CCDF) of

Fγ .
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Proof. Let Z be the product of N mutually independent and non-identically random variables

(RVs) g1,g2, · · · ,gN , that is

Z =
γ
γ̄
=

N

∏
i=1

gi. (7.6)

Since α-μ distribution is a special case of the Fox’s H-function distribution, by using the

transformation property of Fox’s H-function (Bodenschatz, 1992, eq. (3.12)) and fγ(γ) =
1
γ fZ

(
z
γ

)
, the proof for (7.5a) is easily obtained. Afterwards, by applying (Bodenschatz, 1992,

eq. (3.7)), the CDF is subsequently achieved.

Remark 7. The PDF of the ratio of two instantaneous SNRs, Y = γ1

γ2
, respectively defined in

(7.3), i.e., γ1 =
N1

∏
i=1

γ̄1g1,i, and γ2 =
N2

∏
i=1

γ̄2g2,i is given by

f γ1
γ2

(y) =
KN1

KN2

C 2
N2

HN1,N2
N2,N1

⎡
⎣CN1

CN2

y

∣∣∣∣∣∣
Θ1, · · · ,ΘN2

Φ1, · · · ,ΦN1

⎤
⎦ , (7.7)

where Θn =
(

1−μi − 2
αi
, 2

αi

)
,n = 1, · · · ,N2.

Proof. Using (Bodenschatz, 1992, Eq. (3.14)), and after some simple mathematical manipula-

tions, the proof is easily achieved.

As shown in Fig. 7.2, examples of PDFs for (7.5a) and (7.7) are plotted, one can observe that

there is a perfect match between the Monte-Carlo simulation results and our analysis.

For the conveniences of the following performance analysis, the definition of Mellin transform

for a continuous function f (x) is recalled, which is given by

M [ f (x),s] =
∫ ∞

0
f (x)xs−1dx. (7.8)
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Figure 7.2 PDFs of γ = ∏N
k=1 γ̄gk and the ratio of γ = γ1

γ2
,

where γ1 = ∏N1
k=1 γ̄1g1,i, γ2 = ∏N2

i=1 γ̄g2,i, gk,g1,i,g2,i are

implemented by using the WAFO toolbox Brodtkorb et al.
(2000) when γ̄ = γ̄1 = 5 dB and γ̄2 =−5 dB

Likewise, the Mellin transform for (7.5a) is straightforward given from (Mathai et al., 2009a,

eq. (2.8))

M [ fγ(γ),s] =
KN

N
∏
i=1

Γ
(

μi − 2
αi
+ 2

αi
s
)

C s
N

. (7.9)

7.3.3 Moments and MGF

The n-th moment of the instantaneous SNR can be derived from the following definition,

E[γn] =
∫ ∞

0
xn fγ(x)dx, (7.10)
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it can be achieved by using the Mellin transform of the Fox’s H-function(Prudnikov et al.,

1990, eq. (2.25.2.1)), and thus given by

E[γn] =

KN
N
∏
i=1

Γ
(

μi +
2
αi

n
)

C n+1
N

. (7.11)

Likewise, the MGF of the received SNR γ , is defined by

Mγ(−s) =
∫ ∞

0
exp(−xs) fγ(x)dx, (7.12)

it can be derived by re-expressing the exp(·) function through its Fox’s H-function form Prud-

nikov et al. (1990), namely,

exp(−x) = H1,0
0,1

⎡
⎣x

∣∣∣∣∣∣
−

(0,1)

⎤
⎦ ,

and then making use of the Mellin transform of the product of two Fox’s H-functions (Prud-

nikov et al., 1990, eq. (2.25.1.1)), yields

Mγ(−s) =
KN

s
HN,1

1,N

⎡
⎣C

s

∣∣∣∣∣∣
(0,1)

Φ1, · · · ,ΦN

⎤
⎦ . (7.13)

7.4 Reliability Analysis over Cascaded α −μ Fading Channels

In this section, the objective is to evaluate the link performance, as shown in Fig. 7.1, when no

eavesdropper is taken into account. The AoF, the outage probability, average channel capacity,

and average symbol error probability are analyzed and derived in terms of the univariate Fox’s

H-function, respectively. In addition, their asymptotic behavior is given by using the residue

approach given in (Chergui et al., 2016, Sec. IV).
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7.4.1 Amount of Fading

The AoF is defined as the ratio of the variance to the square average SNR, and then using

(7.11), we have

AF =
V(γ)
E2(γ)

=
E(γ2)

E(γ)2
−1 =

CN

KN

N
∏
i=1

Γ
(

μi +
4
αi

)
N
∏
i=1

Γ
(

μi +
2
αi

)2
−1. (7.14)

7.4.2 Outage Probability

The outage event happens when the output SNR falls below a given threshold γth, which can

be expressed mathematically as

Pop(γth) = Pr(γ < γth). (7.15)

7.4.2.1 Exact Analysis

By applying (7.5b), the outage probability is given by

Pop(γth) = 1− KN

C
HN+1,0

1,N+1

⎡
⎣C γth

∣∣∣∣∣∣
(1,1)

(0,1),θ1, · · · ,θN

⎤
⎦ . (7.16)

7.4.2.2 Asymptotic Analysis

When
γth
γ̄ → ∞, by using the residue approach, the asymptotic behavior of (7.16) is given by

Pop ∼ 1− KN

C

N

∏
i=1

Γ(μi). (7.17)
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Proof. See Appendix. III.1.

7.4.3 Average Channel Capacity

The average channel capacity over fading channels is computed by averaging the instantaneous

channel capacity

C̄ =
∫ ∞

0
log2(1+ γ) fγ(γ)dγ. (7.18)

7.4.3.1 Exact Analysis

Theorem 16. The average channel capacity over cascaded α −μ fading channels is given by

C̄ =
KN

C ln(2)
HN+2,1

2,N+2

⎡
⎣C

∣∣∣∣∣∣
(0,1),(1,1)

(0,1),(0,1),θ1, · · · ,θN

⎤
⎦ . (7.19)

Proof. By applying the Parseval’s relation for the Mellin transform on (7.18), we have

C̄ =
1

2π j

∫
L

M [log2(1+ γ),1− s]M [ f (γ),s]ds, (7.20)

where j =
√−1, L is the integration path from υ − j∞ to υ + j∞, υ is a constant, and

M [log2(1+ γ),1− s] =
Γ(2− s)Γ(s−1)Γ(s−1)

ln(2)Γ(s)
, (7.21a)

M [ f (γ),s] = K
N

∏
i=1

Γ
(

μi − 2

αi
+

2

αi
s
)

C−s. (7.21b)

After plugging (7.21a) and (7.21b) into (7.20), leading to the following result

C̄ =
KN

2ln(2)πi

∫
L

Γ(2− s)Γ(s−1)Γ(s−1)

Γ(s)

N

∏
i=1

Γ
(

μi − 2

αi
+

2

αi
s
)

C−sds

(b)
=

KN

ln(2)
HN+2,1

2,N+2

⎡
⎣C

∣∣∣∣∣∣
(−1,1),(0,1)

(−1,1),(−1,1),Φ1, · · · ,ΦN

⎤
⎦ , (7.22)
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where step (b) is developed by applying the definition of univariate Fox’s H-function, and

subsequently using (Mathai et al., 2009a, eq. (1.60)), the proof is completed.

7.4.3.2 Asymptotic Analysis

At high SNR regime, by using the residue approach (Kong et al., 2016b, Sec. IV), (7.19) can

be easily determined as

C̄ ∼
KN

N
∏
i=1

Γ(μi)

C ln(2)

[
N

∑
i=1

2

αi
ψ(μi)− ln(C )

]
. (7.23)

7.4.4 Average Symbol Error Probability (ASEP)

Apart from the aforementioned two metrics, the average symbol error probability is consid-

ered as another crucial criterion when designing reliable transmission system. It is defined as

follows

P̄k
se =

∫ ∞

0
Pk

se(γ) fγ(γ)dγ, (7.24)

where k ∈ {C,N}, Pse(γ) is the conditional error probability with different generic expressions

for coherent and non-coherent modulation schemes, which are listed in Tables. 7.1 and 7.2

Badarneh, O. S. & Aloqlah, M. S. (2016), respectively.

Table 7.1 Values of a,b for different modulation

schemes by using coherent demodulation where

PC
se = a erfc(

√
bγ)

Modulation Scheme a b

BPSK 1
2 1

BFSK 1
2

1
2

QPSK, 4-QAM 1 1
2

M-QAM (M ≥ 4)
2(
√

M−1)√
M

3
2(M−1)
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Table 7.2 Values of a,b for different modulation

schemes by using non-coherent demodulation where

PN
se = aexp(−bγ)

Modulation Scheme a b

BFSK 1
2

1
2

DBPSK 1
2 1

7.4.4.1 Exact Analysis

Theorem 17. The average ASEP over cascaded α-μ fading channels by using coherent and

non-coherent demodulation are respectively given by

- Coherent Demodulation

P̄C
se =

aK

C
√

π
HN,2

2,N+1

⎡
⎣C

b

∣∣∣∣∣∣
(1,1),(1

2 ,1)

θ1, · · · ,θN ,(0,1)

⎤
⎦ , (7.25)

- Non-coherent Demodulation

P̄N
se =

aK

b
HN,1

1,N

⎡
⎣C

b

∣∣∣∣∣∣
(0,1)

Φ1, · · · ,ΦN

⎤
⎦ . (7.26)

Proof. Re-expressing PC
se in terms of the Fox’s H-function (Prudnikov et al., 1990, eq. (8.4.14.2)),

we have

PC
se = a erfc(

√
bγ) =

a√
π

H2,0
1,2

⎡
⎣bγ

∣∣∣∣∣∣
(1,1)

(0,1),(1
2 ,1)

⎤
⎦ , (7.27)

Next, applying the Parseval’s relation for Mellin transform of (7.24), yields the following result

P̄C
se =

∫ ∞

0
PC

se(γ) fγ(γ)dγ =
a

2π
3
2 i

∫
L

M [erfc(
√

bγ),1− s]M [ fγ(γ),s]ds, (7.28)
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where M [erfc(
√

bγ),1− s] can be obtained from (Prudnikov et al., 1990, eq. (8.4.14.2)) and

is given by

M [erfc(
√

bγ),1− s] =
Γ(1− s)Γ

(
3
2 − s

)
Γ(2− s)

b−(1−s). (7.29)

Subsequently, substituting (7.29) and (7.21b) into (7.28), and then applying the definition of

Fox’s H-function, we have

P̄C
se =

aK

2bπ
3
2 i

∫
L

Γ(1− s)Γ
(

3
2 − s

)
Γ(2− s)

N

∏
i=1

Γ
(

μi − 2

αi
+

2

αi
s
)(

C

b

)−s

ds

=
aK

b
√

π
HN,2

2,N+1

⎡
⎣C

b

∣∣∣∣∣∣
(0,1),(−1

2 ,1)

Φ1, · · · ,ΦN ,(−1,1)

⎤
⎦ . (7.30)

Finally, using the property of Fox’s H-function (Mathai et al., 2009a, eq. (1.60)), the proof for

(7.25) is accomplished.

Regarding the proof for (7.26), by providing the Mellin transform for the exponential function

(Prudnikov et al., 1990, eq.(8.4.3.1)) as follows,

M [exp(−bγ),1− s] =
Γ(1− s)
b(1−s)

, (7.31)

and then following the same steps from (7.28) to (7.30), as such, the proof is achieved.

7.4.4.2 Asymptotic Analysis

At high γ̄ regime, the asymptotic behavior of (7.25) and (7.26) can be likely obtained as follows

by following the same method as shown in Appendix. 1 Kong et al. (2016b)

- Coherent Demodulation

P̄C
se ∼

aK
(

C
b

)α jμ j
2

μ j
√

πC
Γ
(

1+α jμ j

2

)N−1

∏
i=1,

Γ
(

μi − α j

αi
μ j

)
, (7.32)
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- Non-coherent Demodulation

P̄N
se ∼

aK
(

C
b

)α jμ j
2

√
πC

Γ
(α jμ j

2

)N−1

∏
i=1,

Γ
(

μi − α j

αi
μ j

)
, (7.33)

where α jμ j = min(αiμi), i = 1, · · · ,N.

7.5 Secrecy Analysis over Cascaded α −μ Fading Channels

In this section, the security issue over cascaded α − μ fading channels is analyzed from the

information theoretical perspective. The classic Wyner’s wiretap channel model is deployed,

where a transmitter, named Alice, intends to communicate with the legitimate destination, Bob,

whilst encountering a malicious wiretapper, Eve, over the cascaded α − μ fading channels, a

possible system configuration is shown in Fig. 7.3. It is assumed that (i) all users are equipped

with a single antenna; (ii) they have perfect knowledge of their channel state information (CSI);

(iii) the main channel is independent of the wiretap channel.

7.5.1 System Model

1,Bh BNB
h ,

1,Eh ENE
h ,

Main channel

Wiretap channel

Alice Bob

Eve

Bn

En

Figure 7.3 Cascaded α −μ fading channels in the

presence of a potential eavesdropper
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Suppose a wireless legitimate link, from Alice to Bob, undergoes the cascaded fading channels

while in the presence of a potential Eve, where the channel coefficients are modeled by inde-

pendent α − μ distributions. The link between Alice and Bob is named as the main channel,

whereas the one between Alice and Eve is called the wiretap channel. As a consequence, the

instantaneous SNRs at Bob and Eve can be respectively expressed as

γB =
NB

∏
i=1

γ̄BgB,i, (7.34a)

γE =
NE

∏
j=1

γ̄EgE, j, (7.34b)

where γ̄B = P
σB

and γ̄E = P
σE

, gB,i = |hB,i|2, gE, j = |hE, j|2, P,σB and σE are the transmission

power at Alice, the noise power at Bob and Eve, respectively.

By deploying Theorem 15 on γB and γE , fB(γB) and fE(γE) are respectively given by

fB(γB) = KNBHNB,0
0,NB

⎡
⎣CNBγB

∣∣∣∣∣∣
−

Φ1, · · · ,ΦNB

⎤
⎦ , (7.35a)

fE(γE) = KNE HNE ,0
0,NE

⎡
⎣CNE γE

∣∣∣∣∣∣
−

Θ1, · · · ,ΘNE

⎤
⎦ , (7.35b)

where

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

KNB =

NB
∏
i=1

κB,i

γ̄B

Φi =
(

μB,i − 2
αB,i

, 2
αB,i

)
CNB =

NB
∏
i=1

λB,i

γ̄B

, i = 1, · · · ,NB ,

and

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

KNE =

NE
∏
j=1

κB, j

γ̄E

Θ j =
(

μE, j − 2
αE, j

, 2
αE, j

)

CNE =

NE
∏
j=1

λE, j

γ̄E

, j = 1, · · · ,NE .
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According to Bloch et al. (2008), the instantaneous secrecy capacity is mathematically defined

as the difference of the instantaneous capacity of the main channel and wiretap channel, given

as follows

Cs =

⎧⎪⎨
⎪⎩

CM −CW , γB > γE

0, otherwise.

(7.36)

where CM = log2(1+ γB), CW = log2(1+ γE).

7.5.2 Secrecy Outage Probability

The secrecy outage probability Pout is defined as the probability with an instantaneous secrecy

capacity, Cs, falling down the target secrecy rate Rt .

Revisiting (7.36), the secrecy outage probability Pout for the Wyner’s wiretap fading model

is conceptually explained through two cases: (i) Cs < Rs whilst positive secrecy capacity is

guaranteed; (ii) Pout(Rs) definitely happens when the secrecy capacity is non-positive Kong

et al. (2016a). Pout(Rs) can thus be rewritten as follows:

Pout(Rt) = Pr(Cs < Rt) = Pr(γB ≤ RsγE +Rs −1)

= Pr(Cs < Rs|γB > γE)Pr(γB > γE)+Pr(γB < γE)

=
∫ ∞

0

∫ γ0

γE

fB(γB) fE(γE)dγBdγE +
∫ ∞

0

∫ γE

0
fB(γB) fE(γE)dγBdγE

=
∫ ∞

0
fE(γE)

[∫ γ0

0
−
∫ γE

0

]
fB(γB)dγBdγE +

∫ ∞

0

∫ γE

0
fB(γB) fE(γE)dγBdγE

=
∫ ∞

0
FB(γ0) fE(γE)dγE = 1−

∫ ∞

0
F̄B(γ0) fE(γE)dγE ,

(7.37)

where γ0 = 2Rt γE + 2Rt − 1 = RsγE +W , Rs = 2Rt ,W = 2Rt − 1, and with the help of (7.5b),

we have

F̄B(γ0) =
KNB

CNB

HNB+1,0
1,NB+1

⎡
⎣CNBγ0

∣∣∣∣∣∣
(1,1)

(0,1),θ1, · · · ,θNB

⎤
⎦ . (7.38)
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7.5.2.1 Exact Analysis

Theorem 18. The secrecy outage probability over cascaded α −μ wiretap fading channels, in

the presence of non-colluding eavesdroppers, is given by (7.39),

Pout(Rs) = 1− KNBKNE W

CNBRs

×H0,1;1,NE ;0,NB
1,0;NE ,1;NB,1

⎡
⎣ Rs

CNE W
,

1

CNBW

∣∣∣∣∣∣
(2,1,1)

−

∣∣∣∣∣∣
Θ̄1, · · · ,Θ̄NE

(1,1)

∣∣∣∣∣∣
Φ̄1, · · · ,Φ̄NB

(0,1)

⎤
⎦ , (7.39)

where Θ̄ j = (1−μE, j +
2

αE, j
, 2

αE, j
) and Φ̄i = (1−μB,i,

2
αB,i

).

Proof. See Appendix. III.2.

Remark 8. The secrecy outage probability over cascaded α − μ wiretap fading channels is

lower bounded by

PL
out = 1− KNBKNE

CNBCNE

HNB+1,NE
NE+1,NB+1

⎡
⎣RsCNB

CNE

∣∣∣∣∣∣
Θ̄1, · · · ,Θ̄NE ,(1,1)

(0,1),Φ1, · · · ,ΦNB

⎤
⎦ . (7.40)

Proof. As γ̄E tends to ∞, it physically means that the eavesdropper is super close to the trans-

mitter, the Pout is lower bounded by

Pout = Pr(γB ≤ RsγE +W )

≥ Pr(γB ≤ RsγE)︸ ︷︷ ︸
PL

out

= 1−
∫ ∞

0
F̄B(RsγE) fE(γE)dγE

= 1− KNBKNE

CNB

∫ ∞

0
HNE ,0

0,NE

⎡
⎣CNE γE

∣∣∣∣∣∣
−

Θ1, · · · ,ΘNE

⎤
⎦

×HNB+1,0
1,NB+1

⎡
⎣CNBRsγE

∣∣∣∣∣∣
(1,1)

(0,1),Φ1, · · · ,ΦNB

⎤
⎦dγE ,

(7.41)
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subsequently, the proof is achieved by using the Mellin transform of the product of two Fox’s

H-function (Prudnikov et al., 1990, eq.(2.25.1.1)).

Remark 9. When αB,i = 2, and αE, j = 2, by using the transformation between Meijer’s G-

function and Fox’s H-function (Prudnikov et al., 1990, eq.(8.3.2.21)), the asymptotic analy-

sis of (7.40) can be further simplified as follows in terms of the Meijer’s G-function (Grad-

shteyn & Ryzhik, 2014, eq. (7.811.1)) 2,

PAsy
out = 1− KNBKNE

CNBCNE

GNB+1,NE
NE+1,NB+1

⎡
⎣RsCNB

CNE

∣∣∣∣∣∣
1−μE,1, · · · ,1−μE,NE ,1

0,μB,1, · · · ,μB,NB

⎤
⎦ . (7.42)

7.5.2.2 Asymptotic Analysis

By using the residue approach given in Chergui et al. (2016), the asymptotic behavior of Pout

is given in Table. 7.3.

Table 7.3 Asymptotic analysis of the Pout

Scenario Asymptotic Pout

γ̄E → ∞ 1− KNBKNE
CNBCNE

⎡
⎢⎣

NB
∏
i=1

Γ
(

μB,i+
αE,kμE,k

αB,i

)NE−1

∏
j=1

Γ
(

μE, j−
αE,kμE,k

αE, j

)
μE

(
CNE

CNB Rs

)αE,kμE,k
2

⎤
⎥⎦ ,

where αE,kμE,k = min(αE,1μE,1, · · · ,αE, jμE, j), j = 1, · · · ,NE .

(7.43)

γ̄B → ∞
NE
∏
j=1

Γ
(

μE, j+
αB,kμB,k

αE, j

)NB−1

∏
i=1

Γ
(

μB,i−
αB,kμB,k

αB,i

)
μB,k

(
CNBRs
CNE

)αB,kμB,k
2

,

where αB,kμB,k = min(αB,1μB,1, · · · ,αB,iμB,i), i = 1, · · · ,NB.

(7.44)

γ̄E → 0 1− KNB
CNB

HNB+1,0
1,NB+1

⎡
⎣RsCNB

CNE

∣∣∣∣∣∣
(1,1)

(0,1),θ1, · · · ,θNB

⎤
⎦ , (7.45)

γ̄B → 0 1

2 The implementation of the Meijer’s G-function is available in mathematical packages, like Mat-

lab2017b, Maple and Mathematica Mei.
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Proof. See Appendix. III.3.

7.5.3 Probability of Non-zero Secrecy Capacity

Recalling the secrecy capacity over Wyner’s wiretap channel, a non-zero secrecy capacity event

happens when Cs is positive on the condition that γB > γE . By deploying the math language, it

can be thus expressed as follows

Pnz = Pr(Cs > 0) = Pr(γB > γE) = Pr
(

γE

γB
< 1

)
= FγE

γB
(1). (7.46)

7.5.3.1 Exact Analysis

Theorem 19. The probability of non-zero secrecy capacity over cascaded α−μ wiretap fading

channels is given by

Pnz = 1− KNBKNE

CNBCNE

HNE+1,NB
NB+1,NE+1

⎡
⎣CNE

CNB

∣∣∣∣∣∣
Φ̄1, · · · ,Φ̄NB ,(1,1)

(0,1),θ1, · · · ,θNE

⎤
⎦ , (7.47)

where θ j =
(

μE, j,
2

αE, j

)
.

Proof. Recalling the Remark. 7, and subsequently applying (Bodenschatz, 1992, Eq. (3.7)),

the proof is completed.

Motivated by Remark 9, when αB,i = 2, and αE, j = 2, which means both the main and the wire-

tap channel undergo the Nakagami-m fading, the Pnz is indeed over the cascaded Nakagami-m

wiretap fading channels, and it is thus given by

Pnz = 1− KNBKNE

CNBCNE

GNE+1,NB
NB+1,NE+1

⎡
⎣CNE

CNB

∣∣∣∣∣∣
1−μB,1, · · · ,1−μB,NB ,1

0,μE,1, · · · ,μE,NE

⎤
⎦ . (7.48)
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7.5.3.2 Asymptotic Analysis

When Rt = 0, Rs = 1, in accordance with the definition of SOP and PNZ, we have

Pout = Pr(γE ≤ RsγB +Rs −1) = 1−Pr(γB ≥ γE)︸ ︷︷ ︸
Pnz

.
(7.49)

Consequently, the asymptotic behavior of the PNZ can be easily derived by making some

simple algebraic substitutions.

7.5.4 Average Secrecy Capacity

Theorem 20. The average secrecy capacity over cascaded α − μ wiretap fading channels is

given by (7.50),

C̄s =
KNBKNE

ln(2)CNBCNE

H0,NB;1,2;NE ,1
NB,0;2,2;1,NE+1

⎡
⎣ 1

CNB

,
CNE

CNB

∣∣∣∣∣∣
D1, · · · ,DNB

−

∣∣∣∣∣∣
(1,1),(1,1)

(1,1),(0,1)

∣∣∣∣∣∣
(1,1)

θ1, · · · ,θNE ,(0,1)

⎤
⎦

︸ ︷︷ ︸
I1

+
KNBKNE

ln(2)CNBCNE

H0,NE ;1,2;NB,1
NE ,0;2,2;1,NB+1

⎡
⎣ 1

CNE

,
CNB

CNE

∣∣∣∣∣∣
E1, · · · ,ENE

−

∣∣∣∣∣∣
(1,1),(1,1)

(1,1),(0,1)

∣∣∣∣∣∣
(1,1)

φ1, · · · ,φNB ,(1,1)

⎤
⎦

︸ ︷︷ ︸
I2

+
KNE

ln(2)CNE

H1,2+NE
2+NE ,2

⎡
⎣ 1

CNE

∣∣∣∣∣∣
(1,1),(1,1),

(
1−μE,l,

2
αE,l

)
, · · · ,

(
1−μE,NE ,

2
αE,NE

)
(1,1),(0,1)

⎤
⎦

︸ ︷︷ ︸
I3

,

(7.50)

where Di =
(

1−μB,i,
2

αB,i
, 2

αB,i

)
, E j =

(
1−μE, j,

2
αE, j

, 2
αE, j

)
, φi =

(
μB,i,

2
αB,i

)
, Hm,n;m1,n1;m2;n2

p,q;p1,q1;p2,q2
[.]

and Hm,n
p,q [.] are the bivariate and univariate Fox’s H-function (Mathai et al., 2009a, Eqs. (1.2)

and (2.56)), respectively.

Proof. See Appendix. III.4.
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7.6 Numerical Results and Discussions

In this section, we confirm the accuracy of our analytical derivations demonstrated in Sections

7.4 and 7.5, in comparison with Monte-Carlo simulation results3. For the conciseness of illus-

trations, the curves only with markers are the Monte-Carlo simulation outcomes, whereas the

ones denoted with lines are used to depict our analytical results.

7.6.1 Reliability Analysis over Cascaded α-μ Fading Channels
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- ,  = 3,  = 3, N = 4
- ,  = 3,  = 3, N = 6

Theory

Figure 7.4 Pop versus γth/γ̄ over cascaded α −μ
wiretap fading channels for selected values of N

Considering the system configuration shown in Fig. 7.1, in Figs. 7.4-7.6, we plot the outage

probability, the average channel capacity and the ASEP with coherent demodulation scheme

over cascaded α −μ fading channels, respectively.

3 It is worthy to mention that (i) the α − μ fading channel is implemented by using the WAFO tool-

boxBrodtkorb et al. (2000); (ii) the implementation of the Fox’s H-function is computationally prac-

ticable, the numerical evaluation of univariate and bivariate Fox’s H-function of (7.39) and (7.40) for

MATLAB implementations are based on the method proposed in (Peppas et al., 2012, Table. II) and

(Peppas, 2012, Appendix. A), respectively.
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Figure 7.5 Average channel capacity C̄ over cascaded

α −μ fading channels
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Figure 7.6 The ASEP P̄C
se over cascaded α −μ fading

channels
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Those figures reveal that our derivations given by (7.16), (7.19) and (7.25) are in perfect match

with simulation outcomes, which are particularly validated for several specific cases, such as

Rayleigh, Nakagami-m, and Weibull, respectively.

To terminate the reliability analysis over cascaded α −μ fading channels, one can perceive the

following conclusions from the three figures (i) the performance metrics physically demon-

strate worse trend with the increase of N, outstandingly, it is caused by the fact that the mul-

tiplication of several successive fading makes it less likely to transmit the desired messages

successfully; (ii) for a given fading scenario, reliable communication can be assured only by

increasing the transmitting power.

7.6.2 Secrecy Analysis over Cascaded α-μ Wiretap Fading Channels
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Figure 7.7 Pout versus γ̄B over cascaded α −μ
wiretap fading channels when γ̄E = 6 dB, Rs = 0.5,

αB = 4, μB = 2, αE = 2, and μE = 3

In the presence of a malicious eavesdropper, the secrecy outage probability and probability of

non-zero secrecy capacity are presented in this subsection. Fig. 7.7 plots the secrecy outage

probability Pout against the average transmitted power γ̄B when fixing NB and NE for selected
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values. From this figure, it is observed that Pout decreases with the increase of γ̄B, which is

due to a better secrecy capacity which can be achieved with the increase of γ̄B. In addition,

the secrecy outage probability is, as expected, strongly influenced by the value of NB and NE ,

namely, the number of relays or keyholes. Naturally, this phenomenon can be explained via

the fact that more keyholes mean much severer propagation on the legitimate signals.

-5 0 5 10 15

10-4

10-3

10-2

10-1

100

Figure 7.8 Pout versus γ̄B over cascaded α −μ wiretap

fading channels when NB = NE = 2, Rs = 0.5, αB = 4,

μB = 3, αE = 2, and μE = 2

Additionally, as shown in Fig. 7.8, our derived asymptotic expression, the PAsy
out given in (7.40),

closely approximates the exact secrecy outage probability Pout , in particular, the gap between

them is becoming smaller as γ̄E increases.

In Fig. 7.9, we compare our analytical Pnz given in (7.47) with Monte-Carlo simulation re-

sults. On the contrary with Pout , positive secrecy capacity can be surely guaranteed with a

higher probability as γ̄B increases.
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Figure 7.9 Pnz versus γ̄B over cascaded α −μ wiretap

fading channels when γ̄E = 5 dB, αB = 3, μB = 2,

αE = 2, and μE = 2
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Figure 7.10 C̄s versus γ̄B for selected NB when αB = 3, αE = 4,

μB = 2, μE = 3, and γ̄E = 5dB
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In Figs. 7.10-7.11, the average secrecy capacity against γ̄B is presented for three case: (i)

selected values of NB; (ii) selected values of NE ; An obvious conclusion can be summarized

from Figs. 7.10 and 7.11 that: the average secrecy capacity is improved with the increase of

NE and degraded with the increase of NB. This is due to the fact, i.e., the bigger NB (or NE), the

worse quality of the received SNR of Bob (or Eve).

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

N
B

 = 2, N
E

 = 2

N
B

 = 2, N
E

 = 4

N
B

 = 2, N
E

 = 6

Theory

Figure 7.11 C̄s versus γ̄B for selected NE when αB = 3, αE = 4,

μB = 2, μE = 3, and γ̄E = 5dB

Overall, interesting observations drawn from Figs. 7.7 and 7.9 can be summarized as follows

(i) our analytical results given by (7.39) and (7.47) are successfully verified by Monte-Carlo

simulation outcomes; (ii) no matter for the Pout or Pnz, the number of keyholes or relays is of

great significance with the system security performance.

7.7 Conclusion and Future Work

In this paper, the notion of N ∗ (α − μ) cascaded fading channels was introduced, together

with its statistics characteristics. As stated in the context, it can be respectively reduced to the
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cascaded Rayleigh, Weibull, Nakagami-m fading channels by attributing α and μ to specific

values.

Based on such a general channel model, we further investigated one wireless multi-hop AF

relaying link when considering two scenarios: in the absence and presence of a malicious

eavesdropper. Regarding the former scenario, the outage probability, average channel capacity

and the ASEP were deduced with closed-form expressions, which were derived in terms of the

Fox’s H-function. When it comes to the latter case, we studied such a digital communication

system from the information theoretical perspective. The secrecy metrics, including the secrecy

outage probability, the probability of non-zero secrecy capacity, and average secrecy capacity

were evaluated, which were correspondingly given with respect to the bivariate and univariate

Fox’s H-function. In addition, the asymptotic analysis of the secrecy outage probability was

also derived and therefore compared with the exact expression. Subsequently, our analytical

mathematical representations for both cases were further successfully verified via the Monte-

Carlo simulation outcomes.

As readily observed from our work, it is so far limited to the investigations of digital wireless

communication systems under the assumptions of independent N ∗ (α − μ) fading channels,

generally speaking, one possible future research direction may be the extension of our results

to the correlated cascaded N ∗ (α −μ) fading channels.
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8.1 Abstract

In this paper, we investigate the secrecy performance of stochastic MIMO wireless networks

over small-scale α −μ fading channels, where both the legitimate receivers and eavesdroppers

are distributed with two independent homogeneous Poisson point processes (HPPPs). Specif-

ically, accounting for the presence of non-colluding eavesdroppers, secrecy performance met-

rics, including the connection outage probability (COP), the probability of non-zero secrecy

capacity (PNZ) and ergodic secrecy capacity, are derived regarding the k-th nearest/best user

cases. The index for the k-th nearest user is extracted from the ordering, in terms of the dis-

tances between transmitters and receivers, whereas that for the k-th best user is based on the

combined effects of path-loss and small-scale fading. In particular, the probability density

functions (PDFs) and cumulative distribution functions (CDFs) of the composite channel gain,

for the k-th nearest and best user, are characterized, respectively. Benefiting from these results,

closed-form representations of the COP, PNZ and ergodic secrecy capacity are subsequently

obtained. Furthermore, a limit on the maximal number of the best-ordered users is also com-

puted, for a given secrecy outage constraint. Finally, numerical results are provided to verify

the correctness of our derivations. Additionally, the effects of fading parameters, path-loss

exponent, and density ratios are also analyzed.
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Keywords: Physical layer security, Poisson point process, α −μ fading, random MIMO wire-

less networks, k-th legitimate user.

8.2 Introduction

The security issue impacting the wireless networks has recently attracted significant attention

from the academic and industrial communities. In this vein, the development of conventional

approaches, based on cryptography techniques, faces new challenges, especially in large-scale

wireless network, due to its high power consumption and complexity requirements. Alterna-

tively, physical layer security (PLS) appears as an appealing strategy to address such a concern

by conversely exploiting the inherent randomness and noisy characteristics of radio channels

in order to protect confidential messages from being wiretapped.

8.2.1 Background and Related Works

The fundamental of the PLS was initially built on the discovery of ‘perfect secrecy’ by Shannon

Shannon (1949) and the conceptual finding of degraded ‘wiretap channel’, for the discrete

memoryless channel, by Wyner Wyner (1975). Later on, successive efforts were devoted to

the generalization of the results in Wyner (1975) to additive Gaussian noise channels Leung-

Yan-Cheong & Hellman (1978), broadcast channels Csiszar & Korner (1978), fading channels

Bloch et al. (2008); Gopala et al. (2008); Kong et al. (2016b); Lei et al. (2015,1), multiple-input

multiple-output (MIMO) communications Chen, X. & Yin, R. (2013); Kong et al. (2016a);

Zhu, J., Zou, Y., Wang, G., Yao, Y. D. & Karagiannidis, G. K. (2016), cooperative networks

Thai, C. D. T., Lee, J. & Quek, T. Q. S. (2016), cellular networks Tolossa et al. (2018); Vuppala

et al. (2018) among other topics.

A common shortage of the aforesaid works Bloch et al. (2008); Csiszar & Korner (1978);

Gopala et al. (2008); Kong et al. (2016a,1); Lei et al. (2015,1); Leung-Yan-Cheong & Hell-

man (1978); Thai et al. (2016), based on the point-to-point communication links, lies in the

uncertainty of users’ spatial locations. Strictly speaking, users’ spatial locations undoubtedly
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play a crucial role when investigating the large scale fading in random networks. The pioneer

works, led by Haenggi Haenggi, M. (2008a,0), and where users distributed randomly based on

stochastic geometry, was modeled as the Poisson point process (PPP). Specifically, it is worthy

to mention that the concept of ‘secrecy graph’ was firstly proposed to study the secrecy con-

nectivity metric, and subsequently the maximum secrecy rate Pinto, P. C., Barros, J. & Win,

M. Z. (2012b) when colluding eavesdroppers are considered.

More recently, in Bai, J., Tao, X., Xu, J. & Cui, Q. (2014); Jeong, Y., Quek, T. Q. S., Kwak,

J. S. & Shin, H. (2014); Liu et al. (2014); Tolossa, Y. J., Vuppala, S. & Abreu, G. (2017);

Zheng, T. X., Wang, H. M. & Yin, Q. (2014), the authors considered the two-dimensional

random wireless network under Rayleigh, composite fading and Nakagami-m fading channels,

where both the legitimate receivers and eavesdroppers are drawn from two independent homo-

geneous PPPs (HPPPs). Authors in Jeong et al. (2014) studied the secure MIMO transmission

subjected to Rayleigh fading. Zheng et al. in Zheng et al. (2014) analyzed the transmission

secrecy outage probability for multiple-input and single-output (MISO) systems, and proposed

the concept of ‘security region (SR)’, which is a geometry region, defined as the legitimate

receiver’s locations having a certain guaranteed level of secrecy. Differently, Satyanarayana et

al. proposed another SR1 Vuppala, S., Biswas, S., Ratnarajah, T. & Sellathurai, M.; Vuppala,

S., Biswas, S. & Ratnarajah, T. (2017), which is defined as the region where the set of ordered

nodes can safely communicate with typical destination, for a given secrecy outage constraint.

Motivated by those references, it is thus of tremendous significance to study how many legiti-

mate users are located within the coverage of the transmitter (i.e., base station), in the presence

of unknown number of eavesdroppers. Most of the existing work can be summarized in terms

of the ordering policy, namely the k-th legitimate user, either based on the distances between

transmitters and users, or the instantaneous received composite channel gain. Moving in this

direction, it is reported that limited studies are seen on the secrecy assessment of the k-th legit-

imate receiver. Specifically, the result disclosed in Bai et al. (2014) is merely restricted to the

mathematical treatment of the secrecy outage probability of the k-th nearest receiver (i.e., the

1 Within the security region, all users can achieve high secrecy gains.
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index is from the ordering based on the distance between the source and the destination). In

contrast, the results unveiled in Liu et al. (2014); Tolossa et al. (2017); Vuppala et al., 2017)

are constrained to the k-th best receiver2 (i.e., the index is according to the array of the com-

posite channel gains). It is reported that Chen, G. & Coon, J. P. (2017) investigated the secrecy

issue over Rayleigh fading channels, while considering both ordering policies without offering

any SR. On the other hand, the introduced k-th nearest or best receiver is applicable to vehic-

ular networks. The k-th best user can be considered as any potential vehicle receiving the k-th

maximum path gain from a source vehicle. One can construct the security region by selecting

all the best nodes instead of random users. Selecting the best users to coordinate among each

other can further improve the security of the network.

Outstandingly, the aforesaid studies merely focus on the secrecy analysis, influenced by the

colluding/non-colluding eavesdroppers but have not taken the more general fading model,

namely, α − μ fading channel, into consideration. The α − μ distribution was first proposed

by Yacoub in Yacoub (2007a) to model the small scale variation of fading signal under line-

of-sight conditions Leonardo & Yacoub (2015b); Papazafeiropoulos, A. K. & Kotsopoulos,

S. A. (2010). It is physically described with two key fading parameters, i.e., non-linearity of

the propagation medium α and the clustering of the multipath waves μ . The advantage of

these two factors is regarded as a useful tool to vividly depict the inhomogeneous surroundings

compared with other existing fading models, such as Rayleigh, Nakagami-m. Most of them are

based on the unrealistic assumption of homogeneous (scattering) environment. Fortunately, the

α − μ fading model was later on found valid and feasible in many realistic situations Chong

et al. (2011); Dias & Yacoub (2009); Karadimas et al. (2010); Michalopoulou et al. (2011,1);

Reig & Rubio (2013); Wu et al. (2010), including the vehicle-to-vehicle (V2V) communica-

tion networks and wireless body area networks (WBAN). In addition, the α − μ distribution

is flexible and mathematical tractable, since it can be extended to Rayleigh, Nakagami-m and

Weibull fading by simply attributing the fading parameters α and μ to selected values. For

2 It is worth mentioning that the k-th best user is the one with the k-th maximal received signal out of

K users.
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example, choosing α = 2 and μ = 1 will reduce it to Rayleigh fading, while choosing α = 2

and μ = m will make it correspond to Nakagami-m fading.

To the best knowledge of the authors, in Kong et al. (2016b); Lei et al. (2015), the authors

derived the probability of non-zero secrecy capacity and secrecy outage probability of point-

to-point communication over α − μ fading channels. Lei et al. Lei et al. (2017a) later on

studied the average secrecy capacity of α − μ wiretap fading channels. The importance of

evaluating the aforementioned two metrics is based on the behavior of the eavesdroppers. If

they are active, meaning that it is possible to have their channel state information (CSI) at the

transmitter, the probability of non-zero secrecy capacity and the secrecy outage probability

are crucial. If they are passive, average secrecy capacity is therefore a key benchmark. With

respect to the random single-input and single-output (SISO) wireless networks, the authors in

Vuppala et al., 2017) and Liu, W., Ding, Z., Ratnarajah, T. & Xue, J. (2016) correspondingly

investigated the secrecy outage probability and the ergodic secrecy capacity in terms of the k-th

best user, respectively. Apart from the literature Kong et al. (2016b,1,1); Lei et al. (2015,1);

Liu et al. (2016); Vuppala et al., 2017), efforts to explore the secrecy evaluation of random

MIMO wireless networks over α −μ fading channels are rarely witnessed.

8.2.2 Contribution and Organization

Consequently, the essence of this paper is the exploration of the k-th legitimate user’s secrecy

performance over α −μ fading channel in typical random wireless networks.

In this paper, we consider a stochastic MIMO wireless system, in the presence of two types of

receivers, namely, legitimate users and eavesdroppers. They are assumed to be distributed with

two independent HPPPs. The conventional space-time transmission (STT) is considered Zhu

et al. (2016). All receivers have access to perfect channel state information (CSI), which are

all subjected to quasi-static α −μ fading. Since Wyner had concluded that perfect secrecy can

be assured only if legitimate links have higher transmission rate, compared to wiretap links,

the pursuit of outage-based secrecy performance analysis is considered reasonable and feasible



138

when a fixed data transmission scheme is adopted for such quasi-static fading channels, as

indicated in Tolossa et al. (2017); Wang & Wang (2016). In Liu et al. (2016), the secure

connection probability of the k-th legitimate receiver to the transmitter was studied, as well as

the ergodic secrecy capacity.

To this end, the connection outage probability (COP), the probability of non-zero secrecy ca-

pacity (PNZ) and the ergodic secrecy capacity, in terms of the k-th nearest and best legitimate

receivers, are taken into consideration.

Since the concept of the k-th best user can be regarded as a security region, it is crucial to

identify the k∗ best users out of K users that can communicate securely with the transmitter

in such region. In this work, we identify a zone (i.e., a limited number of legitimate users)

comprising of such ordered k∗ best users, for a given secrecy constraint.

The contributions of this paper are multifold, which can be pointed out as:

1) The probability of density functions (PDFs) and cumulative distribution function (CDFs) of

the composite channel gain for the k-th nearest and best user are derived, respectively. This

is essentially important for formulating the secrecy metrics, including the connection outage

probability, the probability of non-zero secrecy capacity and ergodic secrecy capacity.

2) Unlike the model studied in Lei et al. (2017a), which considered the point-to-point system

and a single eavesdropper, we study the secrecy capacity of random networks with multiple

legitimate receivers and eavesdroppers. The exact closed form expressions of the COP, PNZ

and ergodic secrecy capacity of the k-th legitimate user are derived.

3) Motivated by the PNZ of the k-th best receiver, a limit on the maximal number of the best-

ordered receivers is calculated thereafter respecting a given secrecy outage probability. In

other words, this limit eventually provides a security region concept, henceforth, all the

system parameters are looked upon, based on this concept, giving a better insight into the

secrecy capacity regions of random wireless networks.
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4) The accuracy of our derivations are successfully validated by Monte-Carlo simulation. Nu-

merical outcomes are presented to indicate the effect of the path-loss exponent, densities of

the users and fading parameters.

The insights obtained from the outcomes of this paper, regarding the crucial parameters of

the secrecy performance, inspire researchers and vehicle wireless communication engineers

to quickly evaluate system performance and optimize available parameters when confronting

various security risks.

The rest of this paper is organized as follows: system model and problem formulation are

depicted in Sections 8.3 and 8.4, respectively. The COP, PNZ and the ergodic secrecy capacity

are derived in Section 8.5. Numerical results and discussions are then presented in Section

8.6 and followed by Section 8.7 with concluding remarks. Notations and symbols used in this

paper are shown in Table. 8.1.

8.3 System Model

In this paper, a random wireless network, displayed in Fig. 8.1 in an unbound Euclidean space

of dimension d is under consideration. The typical transmitter is located at the origin, who

has Na (Na ≥ 1) antennas, and two types of receivers, namely the legitimate receivers and

eavesdroppers with Nb (Nb ≥ 1), Ne (Ne ≥ 1) antennas, respectively. The locations of these

receivers are drawn from two independent HPPPs. Their location sets are separately denoted

by Φb(λb) and Φe(λe) with corresponding densities λb and λe Jeong et al. (2014); Liu et al.

(2014). In such a network configuration, it is assumed that the communication links undergo a

path-loss characterized by the exponent υ and α −μ fading.

Consider a transmitter that intends to send private messages to a legitimate user in the presence

of eavesdroppers located at some unknown distances re. In such a stochastic MIMO wireless

system, the conventional STT scheme is considered at the transmitter and receivers Zhu et al.

(2016), then the instantaneous received signal-to-noise ratios (SNRs) at a legitimate user, γb,
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Table 8.1 Notations and symbols

Notations Description

[x]+ [x]+ = max(x,0)

N positive integer

E expectation operator

i.i.d identical independent distributed

Rt transmission rate

d dimensions of the network

r distance from the origin to the receiver

υ path-loss exponent

fX PDF of X

FX CDF of X

cd πd/2/Γ(1+d/2)

δ d/υ
Ψ path-loss process before fading

Ξk path-loss process with fading for legitimate users

Ξe path-loss process with fading for eavesdroppers

λb density for legitimate receivers

λe density for eavesdroppers

Γ(a)
Γ(a) =

∫ ∞
0 ta−1e−tdt

Gamma function (Gradshteyn & Ryzhik, 2014, eq. (8.310.1))

γ(a,x)
γ(a,x) =

∫ x
0 ta−1e−tdt

lower incomplete gamma function (Gradshteyn & Ryzhik, 2014, eq. (8.350.1))

Γ(a,x)
Γ(a,x) =

∫ ∞
x ta−1e−tdt

upper incomplete gamma function(Gradshteyn & Ryzhik, 2014, eq. (8.350.2))

H p,q
m,n[·] Fox’s H-function (Mathai & Saxena, 1978, eq. (1.1.1))

and an eavesdropper, γe, would be expressed as (Zhu et al., 2016, eq.(1))

γb =

P
Na
∑

na=1

Nb
∑

nk=1
gna,nk

rυ
l σ2

k
= ηk

gk

rυ
l
, (8.1a)
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Figure 8.1 A 2-dimensional stochastic MIMO

wireless network with independently HPPP distributed

legitimate receivers and eavesdroppers

γe =

P
Na
∑

na=1

Ne
∑

ne=1
gna,ne

rυ
e σ2

e
= ηe

ge

rυ
e
, (8.1b)

where ηi =
P

σ2
i

, gna,ni = |hna,ni |2, i ∈ {k,e}, denote the instantaneous channel power gain with

unit mean. P denotes the transmission power and the terms σi denote the noise power at the

legitimate and eavesdropping receivers, respectively. So herein, rl and hna,nk are the distance

and fading envelope from the transmitter to the k-th legitimate receiver, respectively. Similarly,

re and hna,ne are the distance and fading envelope from the transmitter to the eavesdropper,

respectively. Here, hna,ni are modeled by α − μ fading with an arbitrary fading parameter

αi > 0 and an inverse normalized variance of hαi
i denoted as μi.

Since STT scheme is used, gi is obviously the sum of all the receivers’ channel gain. Recalling

the results obtained in da Costa et al. (2008), the exact PDF and CDF of gi are too complex

due to the convolution of M PDFs of each eavesdropper’s channel gain when developing the

secrecy performance. Thanks to the highly tight approximation method provided therein, it is
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deduced therein that the PDF of gi is given as the following form with parameters (αi, μi, Ωi)
3,

fgi(x)≈
αix

αiμi
2 −1

2Ω
αiμi

2
i Γ(μi)

exp

(
−
(

x
Ωi

)αi
2

)
= εiH

1,0
0,1

⎡
⎣θix

∣∣∣∣∣∣
−

(μi − 2
αi
, 2

αi
)

⎤
⎦ , (8.2)

where Ωi =
Γ(μi)

Γ
(

μi+
2
αi

) , εi =
1

ΩiΓ(μi)
, and θi =

1
Ωi

. After integrating (8.2), the CDF of gi is given

by

Fgi(x) =
γ
(

μi,
(

x
Ωi

)αi
2

)
Γ(μi)

= 1− εi

θi
H2,0

1,2

⎡
⎣θix

∣∣∣∣∣∣
(1,1)

(0,1),(μi,
2
αi
)

⎤
⎦ . (8.3)

8.4 Problem Formulation

8.4.1 User Association

8.4.1.1 The nearest user

In this case, all the receivers are ordered according to their distance from the transmitter. Let

{rk} be a random set of legitimate receivers in ascending order of the distances from the re-

ceiver to the transmitter (i.e., |r1|< |r2|< |r3|< · · · ). Letting Z = gk
rυ
k

, the PDF and CDF of the

composite channel gain are respectively given in the following Lemma.

Lemma 1. The PDF and CDF of the composite channel gain for the k-th nearest legitimate

user are given by (8.4a) and (8.4b) in terms of the Fox’s H-function4, respectively.

f gk
rυ
k

(z) =
εk

A
1
δ
k Γ(k)

H1,1
1,1

⎡
⎣θkz

A
1
δ
k

∣∣∣∣∣∣
(1− k− 1

δ ,
1
δ )

(μk − 2
αk
, 2

αk
)

⎤
⎦ , (8.4a)

3 The method of obtaining all these three parameters is suggested to refer to da Costa et al. (2008).

4 The numerical evaluation of Fox’s H-function for MATLAB implementations is to use the method

given in (Peppas et al., 2012, Table. II).
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Fgk
rυ
k

(z) = 1− εk

θkΓ(k)
H2,1

2,2

⎡
⎣θkz

A
1
δ
k

∣∣∣∣∣∣
(1− k, 1

δ ),(1,1)

(0,1),(μk,
2

αk
)

⎤
⎦ , (8.4b)

where Ak = πλb.

Proof. See Appendixes IV.1 and IV.2, respectively.

Similarly, the PDF and CDF for the k-th nearest eavesdropper can be obtained with parameters

Ae = πλe.

8.4.1.2 The best user

Unlike the nearest user, the k-th best user describes the ordering of the recerivers according to

the received SNR function of the combination of the path-loss and small-scale fading. Letting

Ξk = {ξk � rυ
k /gk,k ∈ N} be the path-loss process with small-scale fading. It is reported in

Haenggi (2008b) that Ξk is also a PPP with the intensity function λΞk . For the k-th best user,

we have |ξ1|< |ξ2|< |ξ3|< · · · , since ξk takes the inverse shape of the composite channel gain.

Lemma 2. Given the path-loss process with the α −μ fading, the intensity of Ξk is given by

λΞk = Ab0xδ−1, (8.5)

where Ab0 =
λbcdδΩδ

k Γ
(

μk+
2δ
αk

)
Γ(μk)

.

Proof. See Appendix IV.3.

Similarly, with regard to eavesdroppers, we have Ξe = {rυ
e /ge,e ∈ N}, λΞe = Ae0yδ−1, Ae0 =

λecdδΩδ
e Γ(μe+

2δ
αe )

Γ(μe)
.

Let 1
ξk

= Z, then the PDF and CDF of 1
ξk

are provided in the following Lemma.
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Lemma 3. The PDF and CDF of the composite channel gain for the k-th best user are

f 1
ξk
(z) = exp

(
−Ab1z−δ

) δ (Ab1z−δ )k

z−1Γ(k)
. (8.6a)

F 1
ξk
(z) =

Γ(k,Ab1z−δ )

Γ(k)
, (8.6b)

where Ab1 = Ab0/δ .

Proof. See Appendix IV.4.
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Figure 8.2 The PDFs for the k-th best and nearest users when

αk = 2, μk = 3, ηk = 0 dB, d = υ = 2, λb = 2, Na = Nb = 1

As shown in Fig. 8.2, the PDFs for the k-th nearest and the k-th best legitimate user are respec-

tively demonstrated, it is observed that our analysis are successfully validated by simulation

results.
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8.4.2 Secrecy Metrics

8.4.2.1 Connection outage probability

Connection outage probability is defined as the event in which the legitimate receiver cannot

successfully decode the transmitted messages. This happens when the main channel capacity

falls below the actual transmission rate Rt . It is mathematically defined as

Pco(Rt) = Pr

(
log2

(
1+

ηkgk

rυ
l

)
< Rt

)
. (8.7)

8.4.2.2 Probability of non-zero secrecy capacity

The secrecy capacity of the aforementioned system model under the assumption that eaves-

droppers do not collude, is Liu et al. (2014)

Cs:k =

[
log2

(
1+

ηkgk

rυ
l

)
− log2

(
1+

ηege

rυ
e

)]+
. (8.8)

When the wiretap channel capacity is less than the main channel capacity, the eavesdroppers are

incapable of successfully decoding the transmitted messages. The probability of the occurrence

for this event is called as the probability of non-zero secrecy capacity. Mathematically from

(8.8), the probability of non-zero secrecy capacity is defined as

Pnz = Pr
(

ηkgk

rυ
l

>
ηege

rυ
e

)
. (8.9)

8.4.2.3 Ergodic secrecy capacity

In line with Chen & Yin (2013); Kong et al. (2018b); Li, N., Tao, X. & Xu, J. (2014); Li, N.,

Tao, X., Wu, H., Xu, J. & Cui, Q. (2016); Liu et al. (2016); Zhou, X. & McKay, M. R. (2010),
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the ergodic secrecy capacity is obtained as follows

Cs:k =

⎡
⎢⎢⎢⎢⎣E
[

log2

(
1+

ηkgk

rυ
l

)]
︸ ︷︷ ︸

RM
k

−E

[
log2

(
1+

ηege

rυ
e

)]
︸ ︷︷ ︸

RW
k

⎤
⎥⎥⎥⎥⎦
+

, (8.10)

where RM
k and RW

k are the ergodic capacity of the transmitter to the k-th legitimate receiver and

the k-th eavesdropper, respectively.

8.5 Performance Characterization

By using the PDFs and CDFs of the composite channel gain for the k-th nearest/best user, we

study the COP, PNZ, and ergodic secrecy capacity, respectively.

8.5.1 Performance Characterization of the COP

8.5.1.1 Connection outage probability for the k-th nearest receiver

From the definition, the COP for the k-th nearest legitimate receiver is mathematically ex-

pressed as

Pco,N(Rt) = Pr

(
log2

(
1+

ηkgk

rυ
k

)
< Rt

)
= Pr

(
gk

rυ
k
<

2Rt −1

ηk

)
. (8.11)

Notably, Pco,N(Rt) can be assessed from the PDF of the k-th legitimate receiver’s channel

gain. For the ease of notations, we set Δ = 2Rt−1
ηk

.

Proposition 5. The COP of the k-th nearest legitimate receiver is given as

Pco,N(Rt) = Fgk
rυ
k

(Δ) . (8.12)

Proof. Substituting (8.4b) into (8.11), the proof is achieved.
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8.5.1.2 Connection outage probability for the k-th best receiver

Similarly, the COP for the k-th best receiver is given

Pco,B(Rt) = Pr

(
log2

(
1+

ηk

ξk

)
< Rt

)
= 1−Pr

(
ξk <

1

Δ

)
. (8.13)

Based on (8.13), it is becoming apparent that the COP for the k-th best receiver is termed as

Fξk
.

Proposition 6. The COP of the k-th best legitimate receiver takes the following shape

Pco,B(Rt) =
Γ
(

k,Ab1Δ−δ
)

Γ(k)
. (8.14)

Proof. Substituting (8.6b) into (8.13), the proof is completed.

8.5.2 Performance Characterization of the PNZ

In this section, the PNZs, with respect to the k-th nearest and best legitimate receiver, are well

investigated.

As seen from (8.8) for the non-colluding eavesdroppers, the non-zero secrecy capacity for

the k-th legitimate receiver is mathematically guaranteed with the probability given for the

following four scenarios:

• case 1): the k-th nearest legitimate receiver in the presence of the 1st nearest eavesdropper5;

Pnz,NN = Pr
(

ηkgk

rυ
k

>
ηege

rυ
e

)
= Pr

(
ge

rυ
e

rυ
k

gk
<

ηk

ηe

)
=
∫ ∞

0
Fge

rυ
e
(ϖy) f gk

rυ
k

(y)dy. (8.15)

5 The nearest eavesdropper is the one closest to the legitimate receiver.
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• case 2): the k-th best legitimate receiver in the presence of the 1st best eavesdropper6;

Pnz,BB = Pr
(

ηk

ξk
>

ηe

ξe

)
= 1−Pr

(
ξe

ξk
<

1

ϖ

)
= 1−

∫ ∞

0
Fξe

( y
ϖ

)
fξk

(y)dy. (8.16)

• case 3): the k-th nearest legitimate receiver in the presence of the 1st best eavesdropper;

Pnz,NB = Pr
(

ηkgk

rυ
k

>
ηe

ξe

)
= 1−Pr

(
gk

rυ
k

ξe <
1

ϖ

)
= 1−

∫ ∞

0
Fgk

rυ
k

(
1

ϖy

)
fξe(y)dy. (8.17)

• case 4): the k-th best legitimate receiver in the presence of the 1st nearest eavesdropper

Pnz,BN = Pr
(

ηk

ξk
>

ηege

rυ
e

)
= Pr

(
ge

rυ
e

ξk < ϖ
)
=
∫ ∞

0
Fge

rυ
e

(
ϖ
y

)
fξk

(y)dy. (8.18)

8.5.2.1 The k-th nearest receiver & the 1st nearest eavesdropper

Proposition 7. The PNZ of the k-th nearest legitimate receiver in the presence of the 1st nearest

eavesdropper can be calculated from

Pnz,NN = 1− εkεe

θkθeΓ(k)
H3,2

3,3

⎡
⎣θeϖ

θk

(
Ak

Ae

) 1
δ

∣∣∣∣∣∣
(1,1),(1−μk,

2
αk
),(0, 1

δ )

(0,1),(μe,
2

αe
),(k, 1

δ )

⎤
⎦ . (8.19)

Proof. See Appendix IV.5.

8.5.2.2 The k-th best receiver & the 1st best eavesdropper

Proposition 8. The PNZ of the k-th best legitimate receiver in the presence of the 1st best

eavesdropper is given as

Pnz,BB =

(
Ab1

Ab1 +Ae1ϖ−δ

)k

. (8.20)

6 The best eavesdropper is supposed to be the one with the smallest ξe.
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Proof. Motivated by (A IV-6), for the best eavesdropper, the CDF of ξe is given by

Fξe(x) = γ
(

1,Ae1xδ
)

= 1− exp(−Ae1xδ ),
(8.21)

where Ae1 = Ae0/δ .

After plugging (8.21) and (A IV-7) into (8.16), it yields

Pnz,BB = 1−Pr
(

ξe

ξk
<

1

ϖ

)
= 1−

∫ ∞

0
Fξe

( y
ϖ

)
fξk

(y)dy

=
∫ ∞

0
exp

(
−Ae1

( y
ϖ

)δ
)

exp(−Ab1yδ )
δ (Ab1yδ )k

yΓ(k)
dy

(a)
=

δAk
b1

Γ(k)

∫ ∞

0
exp
(
−(Ab1 +Ae1ϖ−δ )yδ

)
yδk−1dy

=

(
Ab1

Ab1 +Ae1ϖ−δ

)k

,

(8.22)

where (a) follows from (Gradshteyn & Ryzhik, 2014, Eq. (3.351.3)).

In the following lemma we characterize a limit on the k-th best receiver. From Proposition

8, one can obtain the maximum possible k-th index for a given probability constraint, τ =

1−Pnz,BB.

Lemma 4. The maximum number of ordered best intended receivers that can securely commu-

nicate with the source in the presence of the best eavesdropper is given as

k∗ = log Ab1

Ab1+Ae1ϖ−δ
(τ) . (8.23)

Proof. The proof directly follows from Proposition 8.
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8.5.2.3 The k-th nearest receiver & the 1st best eavesdropper

Proposition 9. The PNZ of the k-th nearest legitimate receiver in the presence of the 1st best

non-colluding eavesdropper is given by

Pnz,NB =
εk

θkΓ(k)
H1,3

3,2

⎡
⎣ϖ

θk

(
Ak

Ae1

) 1
δ

∣∣∣∣∣∣
(1,1),(1−μk,

2
αk
),(0, 1

δ )

(k, 1
δ ),(0,1)

⎤
⎦ . (8.24)

Proof. See Appendix IV.6.

8.5.2.4 The k-th best receiver & the 1st nearest eavesdropper

Proposition 10. The PNZ of the k-th best legitimate receiver in the presence of the 1st nearest

non-colluding eavesdropper is given by

Pnz,BN = 1− εe

θeΓ(k)
H1,3

3,2

⎡
⎣ 1

θeϖ

(
Ae

Ab1

) 1
δ

∣∣∣∣∣∣
(1,1),(1−μe,

2
αe
),(1− k, 1

δ )

(1, 1
δ ),(0,1)

⎤
⎦ . (8.25)

Proof. See Appendix IV.7.

8.5.3 Performance Characterization of Ergodic Secrecy Capacity

From the perspective of the eavesdroppers’ received signal quality, the first nearest or best

eavesdropper can achieve the highest composite channel gain. As such, the ergodic secrecy

capacity can be similarly analyzed for the four considered scenarios. Motivated from (8.10),

the ergodic secrecy capacity can be obtained from the difference of the ergodic capacities

between the transmitter-legitimate receiver link and the transmitter-eavesdropper link Liu et al.

(2016). In accordance with our proposed user association method, i.e., the k-th nearest or best

user, the ergodic capacity of the transmitter to the k-th nearest legitimate receiver, RM
N,k, and the

transmitter to the k-th best legitimate receiver, RM
B,k, are correspondingly obtained in the follow

proposition in order to simplify our derivations of ergodic secrecy capacity.
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Proposition 11. The ergodic capacity of the transmitter to the k-th nearest or best legitimate

user, RM
N,k and RM

B,k, are respectively given by

RM
N,k =

εk

θkΓ(k) ln2
H2,3

3,3

⎡
⎣ηkA

1
δ
k

θk

∣∣∣∣∣∣
(1,1),(1,1),(1−μk,

2
αk
)

(1,1),(k, 1
δ ),(0,1)

⎤
⎦ , (8.26a)

RM
B,k =

δ
Γ(k) ln2

H2,2
3,2

⎡
⎣Ab1ηδ

k

∣∣∣∣∣∣
(1,δ ),(1,δ ))

(k,1),(1,δ ),(0,δ )

⎤
⎦ , (8.26b)

where Hm,n
p,q [.] is the Fox’s H-function.

Proof. See Appendix. IV.8.

Similarly, the RW
N,k and RW

B,k can be easily derived by making some simple manipulations. Ac-

cordingly, considering either the 1st nearest or best eavesdropper, by letting k = 1 for RW
N,k and

RW
B,k, and setting RW

N,1 and RW
B,1 as RW

N and RW
B , then we have the following remark.

Remark 10. Taking account of the aforementioned four scenarios, the ergodic secrecy capacity

are respectively given by

- case 1:

C̄s:k,NN = [RM
N,k −RW

N ]+, (8.27a)

- case 2:

C̄s:k,BB = [RM
B,k −Rw

B ]
+, (8.27b)

- case 3:

C̄s:k,NB = [RM
N,k −RW

B ]+, (8.27c)

- case 4:

C̄s:k,BN = [RM
B,k −RW

N ]+. (8.27d)
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For the sake of showing brevity, the details are not given in (8.27a-8.27d), respectively, how-

ever, those can be easily obtained from Proposition. 11 by making some simple algebraic

substitutions.

8.6 Numerical Results and Discussions

For a given network configuration, the secrecy metrics, including the COP and PNZ, are under

analysis in Section 8.5. In this section, the accuracy of our analysis is validated by presenting

numerical simulations. In the whole simulation configuration, it is assumed that r = 10 and the

simulation solely takes places under α −μ fading channels.

In addition, we will study the effects of the density, the path-loss exponent υ , different α −μ

fading factors and dimensions of space on the secrecy metrics. Note that in our simulation, the

WAFO toolbox of MATLAB Brodtkorb et al. (2000) has been used to generate α −μ variates.

It is very important to note that higher system performance is achieved at lower COP as well

as higher PNZ probabilities.

8.6.1 Results Pertaining to COP

This subsection studies the system performance with respect to the nearest and best legitimate

receivers, and we provide a comparison between the two performances.

The Pco,N stated in (8.11) versus the k-th nearest legitimate receiver under α − μ fading is

shown in Fig. 8.3. It demonstrates how the COP for the k-th nearest legitimate receiver is

affected as the legitimate user’s index increases, for various α−μ fading scenarios. In addition,

Fig. 8.3 also demonstrates the conformity of our analytical derivations to simulation outcomes.

The Pco,B drafted in (8.13) versus λb is illustrated and compared with the Pco,B in Fig. 8.4

for selected values of the k-th legitimate nearest/best receiver. From this graph, we obtain the

conclusions that: (i) the connection outage occurs with a higher probability for larger index
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values and larger λb; and (ii) since λb grows in equal steps, the gap between Pco,N and Pco,B

tends to be larger for higher index values λb.

Having studied the performance with respect to the nearest and best legitimate receivers, we

compare the COP for the 1st nearest and best legitimate receiver for various selected path-loss

exponent υ values and Nb, in the next step.

The result of this comparison is shown in Fig. 8.5. Strikingly, one can conceive that on one

hand, higher path-loss exponent always results in a higher probability of connection outage

both for the k-th nearest and best receivers. On the other hand, the k-th best receiver always

owns a relatively lower connection outage probability compared with the k-th nearest one, as

predicted. In addition, the COP deserves with lower probability due to its better quality of

received signal, as Nb increase.

1 2 3 4 5 6 7 8 9 10
10-3

10-2

10-1

100

Figure 8.3 Pco,N versus the k-th nearest legitimate

receiver for ηk = 5 dB, λb = 1, Na = Nb = 1 Rt = 1
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Figure 8.4 Pco versus λb for selected k-th (k ∈ {2,4})

nearest/best user when ηk = 0 dB, Rt = 1, αk = 2,

μk = 3, υ = 4, d = 2
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100

Figure 8.5 Comparison of Pco,N to Pco,B versus Nb
for λb = 0.1, ηk =−5 dB, αk = 2, μk = 3, Rt = 1,

d = 3 and various path-loss exponent υ ∈ {2,4}
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8.6.2 Results Pertaining to PNZ

In this subsection, we study the probability of non-zero secrecy capacity in the presence of non-

colluding eavesdroppers. Be reminded that higher PNZ probabilities indicate a better system

performance. For the sake of simplicity, the first nearest/best eavesdropper is considered for

evaluating the secrecy risk.

Figs. 8.6–8.12 demonstrate the PNZ versus the k-th legitimate receiver in the presence of

non-colluding eavesdroppers. It is easily observed that our theoretical analyses are in strong

agreement with the simulation outcomes.
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10-1

100
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e
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 = 3, 
k
 = 

e
 = 2

 = 4, 
k
 = 2, 

e
 = 3

Analysis, eq. (8.19)

Figure 8.6 Pnz,NN versus the k-th nearest legitimate

receiver for ϖ = 0 dB, Na = Nb = Ne = 1, αk = αe = α ,

λb = 0.2, λe = 0.1, d = 2, υ = 2

Fig. 8.6 plots the PNZ against the k-th nearest legitimate receiver’s index for selected values

of α and μ when the nearest eavesdropper is considered. It is observed here that almost for all

values of the k-th user index, the PNZ performance is better (probability is higher) for smaller

values of α , μm and μw.
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Figure 8.7 Pnz versus the k-th legitimate receiver for

ϖ = 0 dB, λb = 0.2, λe = 0.1, Na = 2,Nb = 1,Ne = 2,

αk = 2, μk = 1, αe = 2, μe = 4, d = 2, υ = 2

Fig. 8.7 compares the PNZs given in (8.19), (8.20), (8.24) and (8.25) for the four scenar-

ios, where the 1st nearest or best eavesdropper is considered. One can conceive that (i)

our closed-form expressions are confirmed by the Monte-Carlo simulation outcomes; (ii) the

Pnz,BN outperforms the other three scenarios when k = 1,2, this trend is changing as k reach

4, the probability of having a positive secrecy capacity drops in a descending order, namely,

Pnz,NN >Pnz,NB >Pnz,BN >Pnz,BB. The reason behind lies in that two ordering key factors,

i.e., distances and composite channel gain, are in turn playing a critical role on the secrecy

performance especially as k increases.

As shown in Fig. 8.8, the influence of υ on the PNZ is demonstrated. As it can be readily

observed, the PNZs tend to decrease as the k-th user index grows for all considered υ .

Fig. 8.9 presents the maximum number of the k-th best users for a given probability constraint

τ . As illustrated in this figure, it can be easily seen that many more best users are permitted for

higher ϖ and higher λb/λe.
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Figure 8.8 Pnz versus the k-th nearest/best legitimate

receiver for ϖ = 0 dB, λb = 0.2, λe = 0.1,

Na = 2,Nb = 1,Ne = 2, αk = αe = μk = 2, μe = 3, and

d = 3

As observed in Fig. 8.7, the 1st nearest/best legitimate receiver is mostly endangered by the

malicious eavesdropper. As a result, in the following three Figs, the impacts of ϖ , the receiving

antenna numbers Nb,Ne, and the density of two kinds of receivers, λb and λe on the PNZ are

investigated. In this case, the first nearest/best legitimate receiver is considered in Figs. 8.10-

8.12.

In Fig. 8.10, the PNZs are anticipated to witness an increasing trend as ϖ increases. It is

intuitively observed that the 1st best user is guaranteed with a higher probability in the presence

of the 1st nearest eavesdropper. Such a phenomenon repeats itself for the Figs 8.11 and 8.12.

To terminate the discussion, in Figs. 8.11 and 8.12, we present the PNZs against the number

of receiving antennas and the densities, respectively. It is observed that an increased Nb/Ne

ratio indicates the legitimate receivers are much more capable to achieve a higher quality of

receiving signals, which naturally yields a higher probability of positive secrecy capacity. It is

validated by Fig. 8.11(a).
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Figure 8.9 The maximum size of the best ordered user

k∗ versus ϖ for selected values of τ and density ratios

λb/λe, according to (8.23), when Na = Nb = Ne = 1,

αk = 3,μk = 2, αk = 2,μk = 3, and d = υ = 2

On the contrary, this trend is conversely preserved regardless of the k-th user index value.

As Ne/Nb increases, the k-th best legitimate receiver achieves the highest and second-highest

probability of non-zero secrecy capacity (best performance), in the presence of the nearest/best

eavesdropper, respectively, which are characterized by Pnz,BN and Pnz,BB. Next, the 1st near-

est legitimate receiver suffers more, resulting in a lower probability, as denoted by Pnz,NN .

Naturally, the worst performance is recoded when the system challenges against the best eaves-

dropper, described by Pnz,NB.

From the comparison of the PNZ against densities shown in Fig. 8.12, one can conclude that (i)

conditioned on a given λb, the higher λe indicates a system with relatively more eavesdroppers.

An increase in the number of eavesdroppers progressively endangers the legitimate link, i.e.,

probability becomes worse (lower) for higher number of eavesdroppers; and (ii) for a fixed

number of eavesdroppers, lower λb values result in worse performance, i.e., lower probability

of non-zero secrecy capacity.
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Figure 8.10 Pnz versus ϖ for the 1st nearest/best

legitimate receiver for λb = 0.2, λe = 0.1,

Na = Nb = Ne = 2, αk = αe = 2, μk = 2, μe = 3,

d = 3 and υ = 2
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Figure 8.11 Pnz versus the number of received

antennas at the 1st nearest/best receivers for ϖ = 10

dB, λb = 0.2, λe = 0.1, αk = αe = 2, μk = 1,

μe = 3, d = 3, Na = 2 and υ = 2
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Figure 8.12 Pnz versus the density of 1st nearest/best

receivers for ϖ = 10 dB, Na = Nb = Ne = 2, αk = αe = 2,

μk = 2, μe = 3, d = 3 and υ = 2

8.6.3 Results Pertaining to Ergodic Secrecy Capacity

Fig. 8.13 plots the ergodic secrecy capacity versus the k-th nearest or best legitimate receiver,

while in the presence of the 1st nearest or best eavesdropper, respectively. Again, the same

conclusion can be obtained: the ergodic secrecy capacity, as depicted in case 4, outperforms

the other 3 cases.

8.7 Conclusion

In the context of this paper, we investigated the secrecy performance of HPPP-based random

MIMO wireless networks over α−μ fading channels for the first time. For the purpose of eval-

uating the secrecy performance of such a network, the COP, PNZ and ergodic secrecy capacity

for the k-th nearest/best legitimate receiver in the presence of non-colluding eavesdroppers are

derived and quantified with closed-form expressions.
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Figure 8.13 C̄s versus the k-th nearest/best legitimate

receiver for λb = λe = 1, Na = Nb = Ne = 1,

αk = αe = 2, μk = μe = 1, d = 2 and υ = 2, ηk = 15 dB,

ηe = 0 dB

The accuracy of our analytical derivations are further successfully confirmed by simulation out-

comes. Remarkable observations are drawn from the numerical results obtained in this paper.

Indeed, the secrecy performance metrics are influenced by the density of users, the path-loss

exponent, the number of transmitting and receiving antennas, as well as the fading parameters.

In addition, the secrecy performance regarding the k-th best legitimate receiver outperforms

that of the k-th nearest one. Hence, the nearest path does not necessarily provide the best

secrecy performance. This paper’s results and outcomes regarding parameters that influence

secrecy performance will enable researchers or wireless system designers to quickly evaluate

system performance and determine the optimal available parameter choices when facing differ-

ent security risks. Finally, inspired from Wang, G., Liu, Q., He, R., Gao, F. & Tellambura, C.

(2015b), future works will focus on using the beamforming deploying artificial noise technique

over the homogeneous stochastic MIMO wireless network.





CONCLUSION AND RECOMMENDATIONS

9.1 Conclusions

The aim of this dissertation is the secrecy characterization of physical layer security over

the α − μ , Fisher-Snedecor F , and Fox’s H-function wiretap fading channels. Conclusively

speaking, there are four main contributions in this dissertation: (i) secrecy investigation over

three fading models, where secrecy metrics are derived with closed-form expressions; (ii) ex-

ploration of physical layer security over wireless fading channels, with the assistance of MG

distributions; (iii) reliability and secrecy exploration of a new fading model, i.e., the cascaded

α − μ , and (iv) secrecy evaluation of random MIMO wireless networks over α − μ fading

channels. Specifically, the aforementioned contributions are further detailed as follows:

- The first aspect of this dissertation contains three sub-contributions. Those contributions are

organized in accordance with the three fading models, namely, α −μ , Fisher-Snedecor F ,

and Fox’s H-function. The secrecy performance over SISO and SIMO α−μ wiretap fading

channels are provided in Chapters 2 and 3, respectively. Secrecy metrics, including secrecy

outage probability and the probability of non-zero secrecy capacity, are both characterized

by closed-form expressions. Similarly, secrecy evaluation over Fisher-Snedecor F and

Fox’s H-function wiretap fading channels are subsequently conducted in Chapters 4 and 5,

respectively. The exact and asymptotic behaviors of secrecy metrics are also provided. In

addition, the MG distribution was deployed in Chapter 6 to analyze the secrecy metrics.

- In continuation with the secrecy characterization over α − μ wiretap fading channels, in

Chapter 7, the cascaded α − μ fading channel was proposed. This new fading model can

be used to characterize several wireless communication scenarios, such as multi-hop AF

relaying networks and MIMO keyhole communication systems. The key contributions of

Chapter 7 are two-fold: (i) mathematical characteristics of the cascaded α −μ distribution;
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and (ii) feasibility and applicability of this model to a wireless communication system, in

other words, reliability and secrecy analysis over cascaded α −μ fading channels.

- The aforementioned chapters considered the secrecy analysis over three fading channels.

On account of the realistic wireless communication system, i.e., the impacts from the spa-

tial distribution of users, the path-loss exponent, the number of antennas, and the density of

users, secrecy exploration of random MIMO wireless networks over α − μ wiretap fading

channels was studied in Chapter 8. The legitimate and malicious users are respectively mod-

eled with two independent HPPPs. The connection outage probability, the probability of

non-zero secrecy capacity, and the ergodic secrecy capacity were derived with closed-form

expressions. This work enables wireless communication engineers to have quick access and

thus to perform secrecy evaluations when facing security risks.

9.2 Future work

In this dissertation, the contributions presented could be extended to the following future di-

rections:

9.2.1 Imperfect CSI, Outdated CSI, and Aging CSI

In this dissertation, assuming the availability of perfect CSI at the transmitters and receivers,

secrecy performance was explored over several fading channel models. Actually, the imperfect

CSI caused by the channel estimation process, and the outdated and aging CSI caused by

the users’ mobility, are of high significance to the secrecy performance evaluation. As stated

in one of the conference papers entitled ‘Secrecy Analysis of A MIMO Full-Duplex Active

Eavesdropper with Channel Estimation Errors’, it has shown that imperfect CSI degrades the

secrecy performance. Also, the works in Hu, J., Yang, W., Yang, N., Zhou, X. & Cai, Y. (2016);

Michalopoulos, D. S., Suraweera, H. A., Karagiannidis, G. K. & Schober, R. (2012); Zhao, R.,
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Lin, H., He, Y. C., Chen, D. H., Huang, Y. & Yang, L. (2018) investigated the impacts caused

by outdated CSI and channel aging on secrecy metrics. As a result, the secrecy performance

with consideration of the practical CSI situation is worthwhile to be examined and analyzed in

the future.

9.2.2 Unavailability of Eavesdroppers’ CSI

Throughout this thesis, it is assumed that the eavesdroppers’ CSI is perfectly known at the

transmitter. Such an assumption is usually impractical, especially in the presence of passive

eavesdroppers. Towards this end, how to elaborate the influences of the uncertainty of the

eavesdroppers’ CSI into the secrecy exploration will be a promising direction.

9.2.3 Full-duplex Transceivers and Interference

In the aforementioned conference paper, a full-duplex eavesdropper is considered to wiretap the

legitimate link while sending jamming signals to the legitimate receiver. From the perspective

of legitimate users, jamming signals from illegitimate users are surely regarded as interference

to prevent secure transmission of intended private messages. To this end, how to reasonably

employ full-duplex techniques and jamming policies at the legitimate users is a promising and

interesting research problem to enhance secrecy in wireless networks.

9.2.4 Relaying Scheme and Randomly Distributed Users

In Chapter 8, the legitimate users and eavesdroppers are modeled as two independent HPPPs.

Random eavesdroppers are ordered according to the quality of eavesdroppers’ received signal

or to the distance from the transmitter, to explore how much risk are burdened on the legitimate

receivers. Motivated by the results obtained in Chapter 8, a new future research work could

be the investigation of multi-hop relaying networks in the presence of random eavesdroppers.
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Relaying schemes can be AF or decode-and-forward (DF). Linear and non-linear multi-hop

relaying networks can be configured to evaluate the security concern.



APPENDIX I

PROOFS FOR CHAPTER 4

1. Proof for Pout,1

In order to obtain the analytical solution to (4.7), the Parseval’s relation for Mellin transform

(Debnath & Bhatta, 2014, eq. (8.3.23)) is recalled, which is given by

Pout(Rt) =
∫ ∞

0
FB(γ0) fE(γE)dγE =

1

2π j

∫
L1

M [FB(γ0),1− s]M [ fE(γ),s]ds, (A I-1)

where L1 is the integration path from υ − j∞ to υ + j∞, and υ is a constant Debnath & Bhatta

(2014).

Then by introducing the definition of univariate Meijer’s G-function, M [FB(γ0),1− s] can be

rewritten as

M [FB(γ0),1− s] =
∫ ∞

0
γ−s

E FB(γ0)dγE

(b)
=

ΦB

2π j

∫
L2

Γ(−ξ )Γ(mB +ξ )Γ(mB,s −ξ )
Γ(1−ξ )

λ−ξ
B ×

∫ ∞

0
γ−s

E γ−ξ
0 dγEdξ ,

(A I-2)

where step (b) is developed by interchanging the order of two integrals.

The inner integral in (A I-2) can be further written as

∫ ∞

0
γ−s

E γ−ξ
0 dγE

(c)
=W −ξ

∫ ∞

0

γ−s
E(

1+ Rs
W γE

)ξ dγE

(d)
= W −ξ B(1− s,ξ + s−1)

(
Rs

W

)s−1
(e)
=W −ξ Γ(1− s)Γ(ξ + s−1)

Γ(ξ )

(
Rs

W

)s−1

,

(A I-3)

where step (c) is developed by representing γ0 = RsγE +W , step (d) is obtained from (Grad-

shteyn & Ryzhik, 2014, eq. (3.194.3)), and step (e) is further simplified in a closed-form by

deploying the property B(x,y) = Γ(x)Γ(y)
Γ(x+y) (Gradshteyn & Ryzhik, 2014, eq. (8.384.1)).
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Next, plugging (A I-3) into (A I-2), yields the following result

M [FB(γ0),1− s] =
ΦB

2π j

∫
L2

Γ(−ξ )Γ(mB +ξ )
Γ(1−ξ )

Γ(mB,s −ξ )Γ(1− s)Γ(ξ + s−1)

Γ(ξ )(λBW )ξ

(
Rs

W

)s−1

dξ

=
ΦBΓ(1− s)Rs−1

s
W s−1

G2,2
3,3

⎡
⎣λBW

∣∣∣∣∣∣
(1−mB,s,1,0)

(s−1,mB,0)

⎤
⎦ ,

(A I-4)

where L2 is a certain contour, which separates the poles of Γ(−ξ ) from the poles of Γ(mB+ξ ).

In continuation, with the help from (Mathai et al., 2009a, eq. (2.9)), M [ fE(γ),s] is given by

M [ fE(γE),s] = CE
Γ(mE −1+ s)Γ(1+mE,s − s)

λ s
E

. (A I-5)

Next, substituting (A I-4) and (A I-5) into (A I-1), yields

Pout =−ΦBCEW

4π2Rs

∫
L1

∫
L2

Γ(ξ + s−1)Γ(−ξ )
Γ(1−ξ )Γ(ξ )

Γ(mB,s −ξ )Γ(mB +ξ )Γ(1− s)

×Γ(mE −1+ s)Γ(1+mE,s − s)
(

Rs

λEW

)s(
1

λBW

)ξ
dξ ds,

(A I-6)

subsequently, applying the definition of bivariate Meijer’s G-function results in the accom-

plishment of the proof.

2. Proof for Pout,2

By substituting (4.5) and (4.3) into (4.7), making change of variables λBRsγE = y, then we have

Pout =
ΦBCE

λBRs

∫ ∞

0
G1,1

1,1

⎡
⎣ λE

λBRs
y

∣∣∣∣∣∣
−mE,s

mE −1

⎤
⎦G1,2

2,2

⎡
⎣y+λBW

∣∣∣∣∣∣
(1−mB,s,1)

(mB,0)

⎤
⎦dy, (A I-7)

next, using (Prudnikov et al., 1990, eq.(2.24.1.3)), we complete the proof.



APPENDIX II

PROOFS FOR CHAPTER 5

1. Proof of the Theorem 4

At the very beginning, revisiting (5.12a)

Pout =
∫ ∞

0
FB(γ0) fE(γE)dγE

= 1−
∫ ∞

0
F̄B(γ0) fE(γE)dγE

= 1− 1

2π j

∫
L1

M [F̄B(γ0),1− s]M [ fE(γE),s]ds,

(A II-1)

and using the definition of Mellin transform and Fox’s H-function, we arrive at M [FB(s)]

M [FB(γ0),1− s] =
∫ ∞

0
γ−s

E FB(γ0)dγE

(a)
=

κB

2λBπ j

∫
L1

ΘF
B(ξ )λ

−ξ
B

∫ ∞

0
γ−s

E γ−ξ
0 dγEdξ ,

(A II-2)

where step (a) is developed by interchanging the order of two integrals. The inner integral in

(A II-2) can be further expressed as

∫ ∞

0
γ−s

E γ−ξ
0 dγE = W −ξ

∫ ∞

0
γ−s

E

(
1+

Rs

W
γE

)−ξ
dγE

(b)
=

B(1− s,ξ + s−1)

W ξ

(
Rs

W

)s−1

(c)
=

Γ(1− s)Γ(ξ + s−1)

Γ(ξ )W ξ
( Rs

W

)1−s ,

(A II-3)

where step (b) is developed from (Gradshteyn & Ryzhik, 2014, eq. (3.194.3)), and step (c) is

obtained by using B(x,y) = Γ(x)Γ(y)
Γ(x+y) (Gradshteyn & Ryzhik, 2014, eq. (8.384.1)).
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Plugging (A II-3) into (A II-2), yields the result given in (A II-4),

M [FB(γ0),1− s]
(d)
=

κB

2λBπ j

(
Rs

W

)s−1

Γ(1− s)
∫
L1

Γ(ξ + s−1)ΘF
B(ξ )

Γ(ξ )
(λBW )−ξ dξ

=
κBΓ(1− s)

λB

(
Rs

W

)s−1

Hm1+1,n1+1
p1+2,q1+2

⎡
⎣λBW

∣∣∣∣∣∣
(1,1),(a j +A j,A j) j=1:p,(0,1)

(s−1,1),(b j +B j,B j) j=1:q,(0,1)

⎤
⎦ , (A II-4)

and step (d) is directly achieved from the definition of bivariate Fox’s H-function.

Subsequently, substituting (A II-4) and M [ fE(γE),s] =
κE χ f

E(s)
λ s

E
into (A II-1), yields the follow-

ing result

Pout = 1− κBκEW

4λBRsπ2

∫
L1

∫
L2

Γ(ξ + s−1)ΘF̄
B(ξ )

Γ(ξ )(λBW )ξ Γ(1− s)Θ f
E(s)

(
Rs

λEW

)s

dξ ds, (A II-5)

Next, deploying the definition of the bivariate Fox’s H-function Gradshteyn & Ryzhik (2014),

the proof is achieved.

2. Proof for Theorem 20

Since the logarithm function can be alternatively re-expressed in terms of Fox’s H-function

with the help from (Prudnikov et al., 1990, eq. (8.4.6.5)) and (Prudnikov et al., 1990, eq.

(8.3.2.21)),

ln(1+ x) = H1,2
2,2

⎡
⎣x

∣∣∣∣∣∣
(1,1),(1,1)

(1,1),(0,1)

⎤
⎦ , (A II-6)

For the ease of proof, we take the proof for I1 as an example.

I1 =
1

2π j

∫
L1

M [FE(γB),s]M [g(γB),1− s]ds, (A II-7)

M [FE(γB),s] =
κE

λ 1+s
E

ΘF
E(s), (A II-8)
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where ΘF
E(s) is given by

ΘF
E(s) =

Γ(−s)
m2

∏
l=1

Γ(dl +Dl +Dls)

Γ(1− s)
q2

∏
l=m2+1

Γ(1−dl −Dl −Dls)

n2

∏
i=1

Γ(1− ci −Ci −Cis)

p2

∏
i=n2+1

Γ(ci +Ci +Cis)
, (A II-9)

M [gk(γk),1 − s] can be regarded as the Mellin transform of the product of two Fox’s H-

function (Prudnikov et al., 1990, eq. (2.25.1.1)), which is given by (A II-10)

M [gB(γB),1− s] =
∫ ∞

0
γ−s

B ln(1+ γB) fB(γB)dγB

= κB

∫ ∞

0
γ−s

B H1,2
2,2

⎡
⎣x

∣∣∣∣∣∣
(1,1),(1,1)

(1,1),(0,1)

⎤
⎦Hm1,n1

p1,q1

⎡
⎣λBγB

∣∣∣∣∣∣
(a j,A j) j=1:p1

(b j,B j) j=1:q1

⎤
⎦dγB

=
κB

λ 1−s
B

Hn1+1,m1+2
q1+2,p1+2

⎡
⎣ 1

λB

∣∣∣∣∣∣
(1,1),(1,1),(1−b j − (1− s)B j,B j) j=1:q1

(1,1),(1−a j − (1− s)A j,A j) j=1:p1
,(0,1)

⎤
⎦ .

(A II-10)

Next, substituting (A II-8) and (A II-10) into (A II-7), yields the following result

I1 =− κBκE

4π2λBλE

∫
L1

∫
L2

Θ(s,ξ )Θ(ξ )ΘF
E(s)(

λE
λB

)s
λ ξ

B

dsdξ , (A II-11)

where Θ(s,ξ ) and Θ(ξ ) are respectively given by (A II-12a) and (A II-12b)

Θ(s,ξ ) =

n1

∏
i=1

Γ(1−ai −Ai +Ais+Aiξ )
m1

∏
l=1

Γ(bl +Bl −Bls−Blξ )

p1

∏
i=n1+1

Γ(ai +Ai −Ais−Aiξ )
q1

∏
l=m1+1

Γ(1−bl −Bl +Bls+Blξ )
, (A II-12a)

Θ(ξ ) =
Γ(1+ξ )Γ(−ξ )Γ(−ξ )

Γ(1−ξ )
. (A II-12b)
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Next, replacing ξ = −η , s = −τ , I1 can be expressed as (5.21a) in terms of the bivariate

Fox’s H-function. In particular, when n1 = 0, I1 is further simplified in terms of the extended

generalized bivariate Fox’s H-function.

Following the same methodology, I2 can be obtained. I3 can be finally achieved from (Alhen-

nawi et al., 2016, eq. (18)),

I3 =
κE

2π j

∫
L1

M {ln(1+ γE),s}λ−1+s
E Θ f

E(1− s)ds

=
κE

λE
Hn2+1,m2+2

q2+2,p2+2

⎡
⎣ 1

λE

∣∣∣∣∣∣
(1,1),(1,1),(1−dl −Dl,Dl)l=1:p2

(1,1),(1− ci −Ci,Ci)i=1:q2
,(0,1)

⎤
⎦ . (A II-13)

3. Proof for Asymptotic ASC

Specifically, at high γ̄B regime, I1 can be expanded at the pole, i.e., ξ = 0, since ξ = 0 is the

second order pole, as such, by using the residue theorem, we have

Res

[
Θ(s,ξ )Θ(ξ )

λ ξ
B

,0

]
= lim

ξ→0

d
dξ

ξ 2Θ(s,ξ )Γ(ξ )2Γ(1−ξ )

λ ξ
B Γ(1+ξ )

. (A II-14)

Using the fact that
dΓ(s)

ds = Γ(s)Ψ0(s) and the general Leibniz rule, we have

Res

[
Θ(s,ξ )Θ(ξ )

λ ξ
B

,0

]
=Θ(s,0)

[
m1

∑
l=1

BlΨ0(bl +Bl +Bls)−
n1

∑
j=1

A jΨ0(1−a j −A j −A js)

+
q1

∑
l=ml+1

BlΨ0(1−bl −Bl −Bls)−
p1

∑
i=n1+1

AiΨ0(ai +Ai +Ais)− lnλB

]
,

(A II-15)

and subsequently when
λE

λB
→ ∞, we evaluate the residue at s, where

s = max

[
0,

(
−bl +Bl

Bl

)
l=1,··· ,ml

,

(
ci +Ci −1

ci

)
i=1,··· ,n2

]
. (A II-16)



173

Considering all poles are simple, we arrive at the derived asymptotic I1.

Similarly, at high γ̄B regime, I2 can be obtained at the point u = min
(

bl+Bl
Bl

)
l=1,··· ,m1

, we

complete the proof.





APPENDIX III

PROOFS FOR CHAPTER 7

1. Proof for Asymptotic Pop

Rewrite (7.16) in terms of the Fox’s H-function, we have

Pop = 1− KN

2πC j

∫
L

Γ(s)
N
∏

k=1
Γ
(

μi +
2

αk
s
)

Γ(1+ s)(KNγth)
s︸ ︷︷ ︸

ε(s)

ds. (A III-1)

According to Chergui et al. (2016), expansions of the univariate and bivariate Fox’s H-functions

can be derived by evaluating the residue of the corresponding integrands at the closest poles to

the contour, namely, the minimum pole on the right for large Fox’s H-function arguments and

the maximum pole on the left for small ones.

When KNγth → ∞, then applying the residue method given in (Chergui et al., 2016, Sec. IV),

one can obtain

Pop ≈ 1− KN

C
Res[ε(s),0] = 1− lim

s→0
su(s) = 1− KN

C

N

∏
k=1

Γ(μk). (A III-2)

2. Proof for Theorem 18

Revisiting (7.37) and using the Parseval’s relation for Mellin transform (Debnath & Bhatta,

2014, eq. (8.3.23)), we have

I =
∫ ∞

0
F̄B(γ0) fE(γE)dγE

=
1

2π j

∫
L1

M [F̄B(γ0),1− s]M [ fE(γE),s]ds.
(A III-3)
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where L1 is the integration path from υ − j∞ to υ + j∞, and υ is a constant Debnath & Bhatta

(2014) Then by introducing the definition of univariate Fox’s H-function, M [F̄B(γ0),1−s] can

be rewritten as

M [F̄B(γ0),1− s] =
∫ ∞

0
γ−s

E FB(γ0)dγE

(c)
=

KNB

2CNBπ j

∫
L2

Γ(ξ )
NB
∏
i=1

Γ(μB,i +
2

αB,i
ξ )

Γ(1+ξ )C ξ
NB

∫ ∞

0

γ−s
E

γξ
0

dγEdξ ,

(A III-4)

where step (c) is developed by interchanging the order of two integrals.

The inner integral in (A III-4) can be further written as

∫ ∞

0
γ−s

E γ−ξ
0 dγE

(d)
= W −ξ

∫ ∞

0

γ−s
E(

1+ Rs
W γE

)ξ dγE

(e)
=W −ξ B(1− s,ξ + s−1)

(
Rs

W

)s−1

( f )
= W −ξ Γ(1− s)Γ(ξ + s−1)

Γ(ξ )

(
Rs

W

)s−1

,

(A III-5)

where step (d) is developed by representing γ0 = RsγE +W , step (e) is obtained from (Grad-

shteyn & Ryzhik, 2014, eq. (3.194.3)), and step ( f ) is further simplified in a closed-form by

deploying the property B(x,y) = Γ(x)Γ(y)
Γ(x+y) (Gradshteyn & Ryzhik, 2014, eq. (8.384.1)).

Next, plugging (A III-5) into (A III-4), yields the following result

M [F̄B(γ0),1− s] =
KNB

2CNBπ j

(
Rs

W

)s−1

Γ(1− s)
∫
L

Γ(ξ + s−1)
NB
∏
i=1

Γ(μB,i +
2

αB,i
ξ )

Γ(1+ξ )(λBW )ξ dξ

(g)
=

KNBΓ(1− s)Rs−1
s

CNBW
s−1

HNB+1,0
1,NB+1

⎡
⎣CNBW

∣∣∣∣∣∣
(1,1)

(s−1,1),θ1, · · · ,θNB

⎤
⎦ ,

(A III-6)

where step (g) is directly achieved from the definition of Fox’s H-function.
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Subsequently, substituting (A III-6) and M [ fE(γE),s] into (A III-3), where M [ fE(γE),s] is

given by (Alhennawi et al., 2016, eq. (5))

M [ fE(γE),s] = CNE

NE
∏
i=1

Γ
(

μE,i − 2
αE,i

+ 2
αE,i

s
)

C s
NE

, (A III-7)

results in the following result

I =−KNBKNE W

4CNBRsπ2

∫
L1

∫
L2

Γ(ξ + s−1)
NB
∏
i=1

Γ(μB,i +
2

αB,i
ξ )

Γ(1+ξ )(CNBW )ξ

×Γ(1− s)
NE

∏
i=1

Γ
(

μE,i − 2

αE,i
+

2

αE,i
s
)(

Rs

CNE W

)s

dξ ds.

(A III-8)

Finally, plugging (A III-8) in (7.37) and subsequently applying the bivariate Fox’s H-function

(Mathai et al., 2009a, eq. (2.57)), the proof is eventually achieved.

3. Proof for Asymptotic Pout

In the case of γ̄E → ∞, we have Rs
CNE W → ∞. The bivariate Fox’s H-function is evaluated at the

highest poles on the left of L1, i.e., s = 1− ξ , by using the residue approach Chergui et al.

(2016), therefore, it leads to the following result,

1

2π j

∫
L1

Γ(ξ + s−1)Γ(1− s)
NE

∏
i=1

Γ
(

μE,i − 2

αE,i
+

2

αE,i
s
)(

Rs

CNE W

)s

︸ ︷︷ ︸
ψ(s)

ds

≈ Res[ψ(s),1−ξ ]

= lim
s→1−ξ

(s+ξ −1)ψ(s)

= Γ(ξ )
NE

∏
i=1

Γ
(

μE,i − 2

αE,i
ξ
)(

Rs

CNE W

)1−ξ
.

(A III-9)
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Therefore, we have

Pout ≈ 1− KNBKNE

2πCNBCNE j

∫
L2

Γ(ξ )
NE
∏
i=1

Γ
(

μE,i − 2
αE,i

ξ
) NB

∏
i=1

Γ
(

μB,i +
2

αB,i
ξ
)

Γ(1+ξ )
(

CNB Rs
CNE

)ξ

︸ ︷︷ ︸
τ(ξ )

dξ ,
(A III-10)

continuation (A III-10) can be successively and asymptotically simplified as (10) by comput-

ing the highest pole on the right of the contour L2, namely ξ =
αE,kμE,k

2 , where αE,kμE,k =

min(αE,1μE,1, · · · ,αE, jμE, j), j = 1, · · · ,NE .

Pout ≈ 1− KNBKNE

CNBCNE

Res
[
τ(ξ ),

αE,kμE,k

2

]
, (A III-11)

then making some simple manipulations, the proof for (43) is achieved.

Following the same methodology, the proof for the case, γ̄B → ∞, can be similarly achieved

by first computing (A III-8) at the highest pole of L2 at ξ = 1− s, and subsequently eval-

uating the obtained result at the poles of L1, i.e., s = 0 and s = αB,kμB,k
2 , where αB,kμB,k =

min(αB,1μB,1, · · · ,αB,iμB,i), i = 1, · · · ,NB, respectively.

When γ̄E → 0, the asymptotic Pout is computed at the pole of L1, i.e., s = 1. For the case

γ̄B → 0, no pole exists on the right of the contour L2, I is directly equal to 1.

4. Proof for Theorem 16

For the ease of deriving the average secrecy capacity, the CDFs of γB and γE can be equivalently

rewritten as follows by using (Bodenschatz, 1992, eq. (3.9))

FB(γB) =
KNB

CNB

HNB,1
1,NB+1

⎡
⎣CNBγ

∣∣∣∣∣∣
(1,1)

φ1, · · · ,φNB ,(0,1)

⎤
⎦ , (A III-12a)
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FE(γE) =
KNE

CNE

HNE ,1
1,NE+1

⎡
⎣CNE γ

∣∣∣∣∣∣
(1,1)

θ1, · · · ,θNE ,(0,1)

⎤
⎦ , (A III-12b)

Recalling the result given in Lei et al. (2017a), the ASC given in (7.36) can be further mathe-

matically expressed as

C̄s =
∫ ∞

0

∫ ∞

0
Cs(γB,γE) fγB(γB) fγE (γE)dγBdγE = I1 +I2 −I3, (A III-13)

where I1 =
∫ ∞

0 log2(1+ γB) fB(γB)FE(γB)dγB,I2 =
∫ ∞

0 log2(1+ γE) fE(γE)FB(γE)dγE ,

I3 =
∫ ∞

0 log2(1+ γE) fE(γE)dγE .

Next, re-expressing the logarithm function in terms of the Meijer’s G-function Prudnikov et al.

(1990), and then using (Prudnikov et al., 1990, Eq. (8.3.2.21))

log2(1+ x) =
1

ln2
G1,2

2,2

⎡
⎣x

∣∣∣∣∣∣
(1,1)

(1,0)

⎤
⎦ , Hm,n

p,q

⎡
⎣x

∣∣∣∣∣∣
(ap,1)

(bq,1)

⎤
⎦= Gm,n

p,q

⎡
⎣x

∣∣∣∣∣∣
(ap)

(bq)

⎤
⎦ .

I1 can be rewritten in (A III-14),

I1 =
KNBKNE

ln(2)CNE

∫ ∞

0
H1,2

2,2

⎡
⎣γB

∣∣∣∣∣∣
(1,1)(1,1))

(1,1),(0,1))

⎤
⎦HNB,0

0,NB

⎡
⎣CNBγB

∣∣∣∣∣∣
−

Φ1, · · · ,ΦNB

⎤
⎦

×HNE ,1
1,NE+1

⎡
⎣CNE γB

∣∣∣∣∣∣
(1,1)

θ1, · · · ,θNE

⎤
⎦dγB

=
KNBKNE

2π j ln(2)CNE

∫
L1

NE
∏

l=1
Γ
(

μE,l − 2s
αE,l

)
Γ(s)

Γ(1+ s)C−s
NE

×
∫ ∞

0
γs

BH1,2
2,2

⎡
⎣γB

∣∣∣∣∣∣
(1,1),(1,1))

(1,1),(0,1)

⎤
⎦HNB,0

0,NB

⎡
⎣CNBγ

∣∣∣∣∣∣
−

Φ1, · · · ,ΦNB

⎤
⎦dγB

︸ ︷︷ ︸
U

ds,

(A III-14)
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where L1 is a certain contour separating the poles of
NE
∏

l=1
Γ(μE,l − s) from the poles of Γ(s).

The inner integral U can be directly developed by using the Mellin transform for the product

of two Fox’s H-functions (Prudnikov et al., 1990, eq. (2.25.1.1)) as follows

U = C s+1
NB

H1,2+NB
2+NB,2

⎡
⎣ 1

CNB

∣∣∣∣∣∣
(1,1),(1,1),ω1, · · · ,ωNB

(1,1),(0,1)

⎤
⎦ , (A III-15)

where ωi = (1−μB,i− 2s
αB,i

, 2
αB,i

), subsequently, rewriting (A III-15) in terms of the definition of

Fox’s H-function, then substituting the obtained result into (A III-14), leads to the result given

in (A III-16),

I1 =− KNBKNE

4π2 ln(2)CNBCNE

∫
L1

∫
L2

NE
∏

l=1
Γ
(

μE,l − 2s
αE,l

)
Γ(s)Γ(1− t)Γ2(t)

Γ(1+ s)Γ(1+ t)C t
NB

(
CNE

CNB

)s

×
NB

∏
i=1

Γ
(

mB,i +
2s

αB,i
+

2t
αB,i

)
dtds,

(A III-16)

where L2 is another contour, next recognizing the definition of bivariate Fox’s H-functions

Mathai et al. (2009a), the proof for I1 is accomplished.

Similarly, following the same methodology, the proof for I2 is achieved.

With the help of (Prudnikov et al., 1990, eq. (2.25.1.1)), the proof for I3 can be similarly

obtained.



APPENDIX IV

PROOFS FOR CHAPTER 8

1. Derivation of f gk
rυ
k

(z)

Setting Z = gk
rυ

k
, the PDF of Z can be assessed by the ratio of gk and rυ

k , given by the following

form

f gk
rυ
k

(z) =
∫ ∞

0
y fgk(yz) frυ

k
(y)dy

(b)
=

δAk
kεk

Γ(k)

∫ ∞

0
ykδ exp(−Akyδ )H1,0

0,1

⎡
⎣θkzy

∣∣∣∣∣∣
−

(μk − 2
αk
, 2

αk
)

⎤
⎦dy,

(A IV-1)

where frυ
k
(y) = exp(−Akyδ )δ (Akyδ )k

yΓ(k) , Ak = πλb (Liu et al., 2014, eq. (5)), (b) is developed by

substituting (8.2).

Since the exponential function can be expressed in terms of Fox’s H-function (Jeong et al.,

2014, eq. (17)), given as

exp(−Akyδ ) =
1

δ
H1,0

0,1

⎡
⎣A

1
δ
k y

∣∣∣∣∣∣
−

(0, 1
δ )

⎤
⎦ , (A IV-2)

subsequently, substituting (A IV-2) into (A IV-1) and using the Mellin transform of the product

of two Fox’s H-function (Prudnikov et al., 1990, eq. (2.25.1.1)), the proof is concluded.

2. Derivation of Fgk
rυ
k

(z)

Essentially, Fgk
rυ
k

(z) can be mathematically expressed as

Fgk
rυ
k

(z) =
∫ ∞

0
Fgk(yz) frυ

k
(y)dy

= 1− δεkAk
k

θkΓ(k)

∫ ∞

0
ykδ−1 exp(−Akyδ )H2,0

1,2

⎡
⎣A

1
δ
k y

∣∣∣∣∣∣
(1,1)

(0,1),(μk,
2

αk
)

⎤
⎦dy,

(A IV-3)
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by using (A IV-2) and with the aid of (Prudnikov et al., 1990, eq. (2.25.1.1)), the proof is

finally achieved.

3. Proof of Lemma 2

The intensity function of Ψ = {rυ
k } can be derived from E{Ψ[0,x)}= λbcdxδ by utilizing the

mapping theorem (Haenggi, 2008b, Corollary 2.a), i.e., λΨ = λbcdδxδ−1.

The intensity of Ξk is obtained by applying the displacement theorem Haenggi, M. (2012) as

follows

λΞk =
∫ ∞

0
λΨρ(x,y)dx =

∫ ∞

0
λΨ

x
y2

fgk(x/y)dx

=
∫ ∞

0
λbcdδ

xδ

y2
fgk(x/y)dx

(c)
= λbcdδyδ−1

∫ ∞

0
zδ fgk(z)dz︸ ︷︷ ︸

U4

,
(A IV-4)

where (c) is obtained by changing the variable z = x/y. The integral in (A IV-4) is solved as

U4 =
∫ ∞

0

αkz
αkμk

2 +δ−1

2Ω
αkμk

2
k Γ(μk)

exp

(
−
(

z
Ωk

)αk
2

)
dz

(d)
=

Γ(μk +
2δ
αk
)Ωδ

k

Γ(μk)
, (A IV-5)

where (d) holds by using (Gradshteyn & Ryzhik, 2014, eq. (3.381.10)). The proof is eventually

concluded by substituting (A IV-5) into (A IV-4).

4. Proof of Lemma 3

By using (Tolossa et al., 2017, Lemma 2), we have

Fξk
(x) = Pr(ξk < x) = 1−Pr(Ξ[0,x]< k) = 1−

k−1

∑
n=0

exp

(
−
∫ x

0
λΞk(y)dy

) (∫ x
0 λΞk(y)dy

)
n!

= 1−
k−1

∑
n=0

exp(−Ab1xδ )
(Ab1xδ )n

n!
=

γ
(

k,Ab1xδ
)

Γ(k)
.

(A IV-6)
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When taking the derivative of (A IV-6), all terms in the sum are canceled out but the one for

n−1. The PDF of ξk becomes

fξk
(x) = exp

(
−Ab1xδ

) δ (Ab1xδ )k

xΓ(k)
. (A IV-7)

Therefore, the composite channel gain for the k-th best user can be termed as

F 1
ξk
= Pr

(
1

ξk
< z
)
= 1−Fξk

(
1

z

)
= 1−

γ
(

k,Ab1z−δ
)

Γ(k)
=

Γ
(

k,Ab1z−δ
)

Γ(k)
. (A IV-8)

Herein, the last step is derived from (Gradshteyn & Ryzhik, 2014, eq. (8.356.3)). By taking

the derivative of F 1
ξk
(z) in terms of z, the PDF of 1

ξk
is directly obtained.

5. Derivation of Pnz,NN in (8.19)

Inspired by Lemma 1, Pnz,NN can be essentially derived as follows

Pnz,NN =
∫ ∞

0
Fge

rυ
e
(ϖy) f gk

rυ
k

(y)dy

= 1− εkεe

θeA
1
δ
k Γ(k)

∫ ∞

0
H1,1

1,1

⎡
⎣ θk

A
1
δ
k

y

∣∣∣∣∣∣
(1− k− 1

δ ,
1
δ )

(μk − 2
αk
, 2

αk
)

⎤
⎦H2,1

2,2

⎡
⎣ θe

A
1
δ
e

ϖy

∣∣∣∣∣∣
(0, 1

δ ),(1,1)

(0,1),(μe,
2

αe
)

⎤
⎦dy,

(A IV-9)

with the help of (Prudnikov et al., 1990, eq. (2.25.1.1)), the proof is accomplished.

6. Derivation of Pnz,NB in (8.24)

Thanks to the CDF of gk
rυ
k

and PDF of ξe, respectively given in (8.4b) and (A IV-7), the expres-

sion Pnz,NB can be easily stated as

Pnz,NB = 1−
∫ ∞

0
Fgk

rυ
k

(
1

ϖy

)
fξe(y)dy

=
2δAe1

αkΓ(μk)Γ(k)

∫ ∞

0
yδ−1 exp(−Ae1yδ )H2,1

2,2

⎡
⎣ ϖk

ϖA
1
δ
k y

∣∣∣∣∣∣
(1− k, 1

δ ),(1,1)

(0,1),(μk,
2

αk
)

⎤
⎦dy.

(A IV-10)
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By using (A IV-2) and with the assistance of the property of Fox’s H-function (Prudnikov et al.,

1990, eq. (8.3.2.7)),

H2,1
2,2

⎡
⎣ ϖk

ϖA
1
δ
k y

∣∣∣∣∣∣
(1− k, 1

δ ),(1,1)

(0,1),(μk,
2

αk
)

⎤
⎦= H1,2

2,2

⎡
⎣ϖA

1
δ
k y

ϖk

∣∣∣∣∣∣
(1,1),(1−μk,

2
αk
)

(k, 1
δ ),(0,1)

⎤
⎦ . (A IV-11)

Pnz,NB can be further developed as

Pnz,NB =
2Ae1

αkΓ(μk)Γ(k)

∫ ∞

0
yδ−1H1,0

0,1

⎡
⎣A

1
δ
e1y

∣∣∣∣∣∣
−

(0, 1
δ )

⎤
⎦

×H1,2
2,2

⎡
⎣ϖΩkA

1
δ
k y

∣∣∣∣∣∣
(1− k, 1

δ ),(1,
2

αk
)

(μk,
2

αk
),(0, 2

αk
)

⎤
⎦dy,

(A IV-12)

afterwards, performing the Mellin transform of the product of two Fox’s H-functions (Prud-

nikov et al., 1990, eq. (2.25.1.1)), the proof is eventually obtained.

7. Derivation of Pnz,BN in (8.25)

The Pnz,BN in (8.18) can be tracked from the PDF of ξk and the CDF of ge
rυ

e
, Pnz,4 is given by

Pnz,BN =
∫ ∞

0
Fge

rυ
e

(
ϖ
y

)
fξk

(y)dy

= 1− εeδA
1
δ
b1

θeΓ(k)

∫ ∞

0
ykδ−1 exp(−Ab1yδ )H2,1

2,2

⎡
⎣θeϖ

A
1
δ
e y

∣∣∣∣∣∣
(0, 1

δ ),(1,1)

(0,1),(μe,
2

αe
)

⎤
⎦dy.

(A IV-13)

Subsequently, following the similar steps as (A IV-10-A IV-12), the proof is easily proved.

8. Derivation of Proposition (11)

As the very beginning, the logarithm function and exponential function can be alternatively

rewritten in terms of the Fox’s H-function (Mathai & Saxena, 1978, eq. (1.7.2)) and (Prudnikov
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et al., 1990, eq. (8.4.6.5))

log2(1+ x) =
1

ln2
H1,2

2,2

⎡
⎣x

∣∣∣∣∣∣
(1,1),(1,1)

(1,1),(0,1)

⎤
⎦ , (A IV-14)

exp(−x) = H1,0
0,1

⎡
⎣x

∣∣∣∣∣∣
−

(0,1)

⎤
⎦ . (A IV-15)

RM
N,k = E gk

rυ
k

[
log2

(
1+

ηkgk

rυ
k

)]

=
εk

A
1
δ
k Γ(k) ln2

∫ ∞

0
H1,2

2,2

⎡
⎣ηky

∣∣∣∣∣∣
(1,1),(1,1)

(1,1),(0,1)

⎤
⎦H1,1

1,1

⎡
⎣θky

A
1
δ
k

∣∣∣∣∣∣
(1− k− 1

δ ,
1
δ )

(μk − 2
αk
, 2

αk
)

⎤
⎦dy.

(A IV-16)

Next, applying the Mellin transform of the product of two Fox’s H-function (Prudnikov et al.,

1990, eq. (2.25.1.1)), the proof is accomplished.

Using (Mathai & Saxena, 1978, eq. (1.2.4)), the PDF of ξk in (A IV-7) can be re-expressed in

terms of Fox’s H-function,

fξk
(x) =

δ
xΓ(k)

H1,0
0,1

⎡
⎣Ab1xδ

∣∣∣∣∣∣
−

(k,1)

⎤
⎦ , (A IV-17)

subsequently, using (Mathai & Saxena, 1978, eq. (1.2.2)) of log2(1 + 1
x ) and plugging (A

IV-17), yields

RM
B,k = Eξk

[
log2

(
1+

ηk

ξk

)]

=
δ

Γ(k) ln2

∫ ∞

0
y−1H1,2

2,2

⎡
⎣ y

ηk

∣∣∣∣∣∣
(1,1),(1,1)

(1,1),(0,1)

⎤
⎦H1,0

0,1

⎡
⎣Ab1yδ

∣∣∣∣∣∣
−

(k,1)

⎤
⎦dy,

(A IV-18)

next, using (Prudnikov et al., 1990, eq. (2.25.1.1)) and (Mathai & Saxena, 1978, eq. (1.7.1)),

the proof is achieved.
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1. Abstract

In this paper, we investigate the secrecy performance of the multiple-input multiple-output

(MIMO) wiretap channels in the presence of an active full-duplex eavesdropper with consid-

eration of channel estimation error at the legitimate destination and eavesdropper. For this

purpose, the probability density functions (PDFs) and cumulative density functions (CDFs) of

the receive signal-to-interference-plus-noise ratio (SINR) at the destination and eavesdropper

are given by conducting the singular value decomposition (SVD) on the estimated channel co-

efficient matrices. Consequently, the closed-form expressions for the probability of positive

secrecy capacity and secrecy outage probability over Rayleigh fading channels are derived.

Finally, the Monte-Carlo simulation results are presented to validate the accuracy of our theo-

retical analysis.

Keywords: Physical layer security, channel estimation error, the MIMO full-duplex active

eavesdropper.

2. Introduction

Due to the broadcast nature of wireless channels, security issues are increasingly becoming

one of the top critical concerns of wireless network. Currently, the traditional cryptography



188

technique widely used in the upper-layer of wireless networks faces big challenges because

of the high computational complexity of the communication devices. Fortunately, unlike the

traditional methods, a complement or alternative appealing approach termed as physical layer

security was emerged to achieve secure wireless transmission, which is based on Shannon

theory Shannon (1949) using the physical characteristics (i.e. noise, fading, interference) of

wireless channels. The main philosophy of physical layer security is to achieve perfect se-

crecy capacity from the information-theoretic perspective, which is defined as the maximiza-

tion of wireless transmission rate while achieving perfect secure transmission Bloch & Barros

(2011). In other words, it can be further explained as that eavesdroppers can not do better

than the legitimate destinations Saad, W., Zhou, X., Debbah, M. & Poor, H. (2015). Against

this background, some promising techniques, such as multiple antennas, cooperative jam-

ming/relay Allen, T. & Al-Dhahir, N. (2015); Atallah, M., Kaddoum, G. & Kong, L. (2015);

Bloch & Barros (2011); Saad et al. (2015); Yan, S., Yang, N., Malaney, R. & Yuan, J. (2014),

are exploited to degrade the capability of either active attacker or passive eavesdroppers so as

to ease the information leakage.

Multiple antenna technique, as an effective approach, is widely used toward improving the se-

crecy rate. The literature using MIMO technique in the filed of physical layer security demon-

strated its capability of boosting secrecy performance Ahn, K. S., Choi, S.-W. & Ahn, J.-M.

(2015); Khisti, A. & Wornell, G. W. (2010b); Mukherjee, A. & Swindlehurst, A. (2011); Og-

gier, F. & Hassibi, B. (2015); Shafiee, S., Liu, N. & Ulukus, S. (2009); Yan et al. (2014). In

particular, the secrecy performance of single-input multiple-output (SIMO) Ahn et al. (2015),

multiple-input single-output (MISO) Khisti & Wornell (2010a) and multiple-input multiple-

output (MIMO) Khisti & Wornell (2010b) were widely studied from the information-theoretic

viewpoint. Shafiee. et. al investigated the existence of a computable expression for the secrecy

capacity of a 2-2-1 MIMO wiretap channel Shafiee et al. (2009). Yan. et. al investigated the

classical three-player MIMO wiretap scenario that Alice firstly selects two strongest transmit-

ter antennas from its multiple antenna set based on the channel gain for the sake of maximizing

the instantaneous signal-to-noise ratio (SNR) and then performs Alamouti coding over the se-
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lected antennas, afterwards, the closed-form expression of secrecy outage probability for the

proposed scheme was derived Yan et al. (2014). In Mukherjee & Swindlehurst (2011), an

optimal jamming policy for a full-duplex active eavesdropper to minimize the secrecy rate of

the Alice-Bob-Eve MIMO wiretap channel was examined. The authors of Ahn et al. (2015)

analyzed the secrecy performance of a SIMO wiretap channel with channel estimation errors

available at the legitimate receiver and eavesdropper, its conclusion suggests that there exists

error floor of secrecy outage probability caused by the imperfect channel estimation.

Motivated by these studies, it is so far that there is no previous work that studied the secrecy

performance of a 2-2-2 MIMO wiretap channel with consideration of channel estimation error

whilst in the presence of an active full-duplex eavesdroppers. To this end, the contribution of

this paper lies in the investigation of the secrecy performance of the 2-2-2 MIMO wiretap chan-

nel, including the probability of positive secrecy capacity and secrecy outage probability, over

Rayleigh fading in the presence of an active full-duplex eavesdropper with channel estimation

errors at the legitimate receiver and eavesdropper side. First, the probability density functions

(PDFs) and cumulative density functions (CDFs) of the signal-to-interference-plus-noise ratios

(SINRs) of Bob’s and Eve’s received signals are given. Second, the closed-form expressions

for the secrecy metrics are derived, and the Monte-Carlo simulation are presented to examine

our theoretical analysis.

The remainder of this paper is organized as follows. System model and problem formulation

are outlined in Section II. In the Section III, secrecy performance, including the probability of

positive secrecy capacity and secrecy outage probability, are derived with closed-form expres-

sions, followed by the comparison of theoretical analysis and numerical simulations given in

Section IV. Finally, concluding remarks are given in Section V.

Notations: In this paper, matrices and vectors are separately presented by boldfaced uppercase

(e.g., X) and lowercase (e.g., x) letters. Moreover, we use XH to denote the Hermitian transpose

of the matrix X, Tr(·) to the trace operator, E(·) to the expectation operator, Im the identity
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matrix of m dimension, y ∼ C N (μ ,σ2I) to denote that y is the complex Gaussian random

variable, having a μ-mean and σ2-variance.

3. System Model and Problem Formulation

3.1 System Model

The Alice-Bob-Eve classic model shown in Fig. V-1 is used here to illustrate a wireless network

with a potential active eavesdropper, where all the users are equipped with 2 antennas. In

such a wiretap channel model, the transmitter Alice (A) wishes to send secret messages to the

intended receiver Bob (B) in the presence of an active eavesdropper Eve (E); the link between

Alice and Bob is called the main channel, whereas the one between Alice and Eve is named

as the wiretap channel, and the one between Eve and Bob is termed as interference channel.

It is assumed that all links are independent and undergoing quasi-static Rayleigh fading. The

fading coefficients of the links i→j are denoted as Hi j, i, j ∈ {A,B,E}. In addition, assuming

Eve operates in the full-duplex mode, it means that she can listen to data transmission of main

channel whilst transmitting jamming signals to Bob. Additionally, it is assumed that Bob and

Eve have imperfect channel state information (CSI) of their links, and Alice and Bob have no

knowledge of the CSI of the wiretap links.

A

Main channel
Wiretap channel

Interference channel

E

B

Figure-A V-1 System model
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Then, the received signal at Bob and Eve can be expressed as

rB = HABxA +HEBxE +nB, (A V-1)

rE = HAExA +HEExE +nE , (A V-2)

where xA and xE are the 2× 1 transmit signal vector from Alice and jamming signal vector

from Eve, respectively. Alice’s transmit power is assumed to be fixed to Tr{E[ xAxH
A ]} = PA.

Likewise, Eve’s jamming power is subject to Tr{E[xExH
E ]} = PE . Each entry of Hi j follows

independent identically distributed (i.i.d.) Gaussian distribution with zero mean and unit vari-

ance, denoted by Hi j(m,n)∼C N (0,1) for m,n∈ {1,2}. nB and nE are the zero mean additive

white Gaussian noise (AWGN) distributed with C N (0,σ2
BI) and C N (0,σ2

EI), respectively.

3.2 Problem Formulation

Due to the characteristic of wireless channel, a practical imperfect channel estimator is fre-

quently exploited at the legitimate receivers. The following model is broadly used throughout

this paper for the estimated channel Ĥi j Ahn et al. (2015),

Hi j =
√

1− ε2
i jĤi j + εi jVi j, (A V-3)

where each entry of Vi j follows C N (0,I), Vi j is independent of Hi j, and εi j ∈ [0,1] is used

to measure the accuracy of the channel estimation.

Setting HB = ĤABĤH
AB, HB can be decomposed as HB = WBΛWH

B by using the singular value

decomposition (SVD), where Λ = diag(λ1,λ2) and λ1 ≥ λ2 ≥ 0. WB is an unitary matrix, i.e.,

WBWH
B = I. Based on the above description, we choose WB as the combiner matrix at user B.

Similarly, WE can be constructed in the same way as WB, and then is used as the combining

matrix at user E.
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Consequently, while taking consideration of channel estimation error, the combined signals at

Bob and Eve are given by

YB = WH
B rB

=
√

1− ε2
ABYH

B ĤABxA + εABWH
B VABxA +WH

B (HBExE +nB) ,
(A V-4)

YE = WH
E rE

=
√

1− ε2
AEWH

E ĤAExA + εAEWH
E VAExA +WH

E (HEExE +nE) .
(A V-5)

Therefore, the average SINR of the combined signal at Bob’s side γB is given by

γB = ΩBTr(WH
B ĤABĤH

ABWB), (A V-6)

where ΩB =
PA(1−ε2

AB)

2ε2
ABPA+σ2

B+2PE
=

ΦB(1−ε2
M)

2ε2
MΦB+1+2ΦJ

. Herein, ΦB = PA/σ2
B, ΦJ = PE/σ2

B. For conve-

nience, ε2
AB = ε2

M.

Obviously, the denominator is constant while the numerator is equal to the sum of the eigen-

values of the Wishart matrix ĤABĤH
AB. Based on the random matrix theory, the joint PDF of

the ordered eigenvalues of HB can be expressed as Telatar, I. E. et al. (1999)

p(λ1,λ2) = (λ2 −λ1)
2e−λ1−λ2 . (A V-7)

Let λ = λ1 +λ2, then γB = ΩBλ . The CDF of γB can be expressed as

FγB(γB) = Pr (ΩB (λ1 +λ2)≤ γB)

=
∫ γB

2ΩB

0

∫ γB
ΩB

−λ2

λ2

p(λ1,λ2)dλ1dλ2

= 1−
[
(

γB

ΩB
)3 +3(

γB

ΩB
)2 +6(

γB

ΩB
)+6

]
e−

γB
ΩB

6
.

(A V-8)
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Differentiating (A V-8) with regard to γB, the PDF of γB is established as follows

fγB(γB) =
dFγB(γB)

dγB
=

γ3
B

6Ω4
B

e−
γB
ΩB . (A V-9)
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Figure-A V-2 The PDFs of γB when ΩB are 5 dB and

10 dB, respectively.

Fig. V-2 shows the PDFs of γB with respect to different values of ΦB.

It is assumed that perfect self-interference cancellation can be performed at the Eve’s side.

Likewise, we have the received average SINR at Eve

γE = ΩETr(WH
E ĤABĤH

ABWE), (A V-10)

where ΩE =
(1−ε2

AE)PA

2ε2
AE PA+σ2

E
=

(1−ε2
W )ΦE

2ε2
W ΦE+1

, ΦE = PA/σ2
E , and ε2

AE = ε2
W .

The CDF and PDF of γE are

FγE (γE) = 1−
[
(

γE

ΩE
)3 +3(

γE

ΩE
)2 +6(

γE

ΩE
)+6

]
e−

γE
ΩE

6
, (A V-11)
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and

fγE (γE) =
γ3

E

6Ω4
E

e−
γE
ΩE , (A V-12)

respectively.

4. Secrecy Performance Analysis

4.1 Probability of Positive Secrecy Capacity

According to Bloch & Barros (2011), the secrecy capacity for the MIMO wiretap channel

over Rayleigh fading is defined as the difference between the main channel capacity CM =

log2(1+ γB) and the wiretap channel capacity CW = log2(1+ γE) as the following form,

Cs =

⎧⎪⎨
⎪⎩

CM −CW , γB > γE

0, otherwise.

(A V-13)

Therefore, the probability of positive secrecy capacity refers to the event that the secrecy ca-

pacity can be achieved, i.e. Pr(Cs > 0), thus with regard to its definition, (A V-13) can be

further rewritten as follows,

Pr(Cs > 0) = Pr(γB > γE)

=
∫ ∞

0

∫ γB

0
fγB(γB) fγE (γE)dγEdγB

=
∫ ∞

0
fγB(γB)FγE (γB)dγB.

(A V-14)

Substituting (A V-9) and (A V-11) into (A V-14), we use the equation (A V-15) (Gradshteyn & Ryzhik,

2014, Eq. (3.351.3)),

∫ ∞

0
xne−μxdx =

⎧⎪⎨
⎪⎩

n!μ−n−1, if n = 0,1,2,· · · , μ > 0,

0, otherwise.

(A V-15)
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then we have the closed-form expression for the probability of positive secrecy capacity in (A

V-16)

Pr(Cs > 0) =1− 1

Ω4
BΩ3

E

[
20(

1

ΩB
+

1

ΩE
)−7 +10ΩE(

1

ΩB
+

1

ΩE
)−6

+Ω2
E(

1

ΩB
+

1

ΩE
)−5 +Ω3

E(
1

ΩB
+

1

ΩE
)−4

]
.

(A V-16)

4.2 Secrecy Outage Probability

The outage probability of the secrecy capacity is defined as the probability that the secrecy

capacity Cs falls below the target secrecy rate Rs, i.e.,

Pout(Rs) = Pr(Cs < Rs). (A V-17)

Secrecy outage probability can be conceptually explained as two cases: (i) Cs < Rs whilst pos-

itive secrecy capacity is guaranteed; (ii) Pout(Rs) definitely happens when the secrecy capacity

is non-positive. (A V-17) can thus be rewritten as follows Ahn et al. (2015)

Pout(Rs) = Pr(Cs < Rs|γB > γE)Pr(γB > γE)+Pr(γB < γE)

=
∫ ∞

0

∫ γ0

γE

fγB(γB) fγE (γE)dγBdγE +
∫ ∞

0

∫ γE

0
fγB(γB) fγE (γE)dγBdγE

=
∫ ∞

0
fγE (γE)

[∫ γ0

0
−
∫ γE

0

]
fγB(γB)dγBdγE +

∫ ∞

0

∫ γE

0
fγB(γB) fγE (γE)dγBdγE

=
∫ ∞

0
FγB(γ0) fγE (γE)dγE ,

(A V-18)

where γ0 = M(1+ γE)−1, M = 2Rs .
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Similarly, substituting (A V-8) and (A V-12) into (A V-18) using (A V-15), the closed-form

expression for secrecy outage probability can be eventually derived as in (A V-19)

Pout(Rs) = 1− exp(1−M
ΩB

)

6Ω3
BΩ4

E

[
120M3(

M
ΩB

+
1

ΩE
)−7 +60M2 (ΩB −1+M)(

M
ΩB

+
1

ΩE
)−6

+ 12M
(
1−2ΩB +2Ω2

B −2M+2ΩBM+M2
)
(

M
ΩB

+
1

ΩE
)−5

+
(−1+6Ω3

B +3ΩB −6Ω2
B +3M−6ΩBM+6Ω2

BM−3M2 +3ΩBM2 +M3
)
(

M
ΩB

+
1

ΩE
)−4

]
.

(A V-19)

5. Numerical Results and discussions
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Figure-A V-3 Probability of positive secrecy capacity

against ΦB for selected values of ΦE for the case of ΦJ = 0

dB and ΦJ = 5 dB whilst ε2
M = 0.01, ε2

W = 0.1

In this section, we perform the Monte-Carlo simulation to validate the accuracy of the closed-

form expressions for probability of positive secrecy capacity and secrecy outage probability. In



197

the following figures, the curves only using markers are the theoretical results, while the ones

in lines are the Monte-Carlo simulation results.
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Figure-A V-4 Probability of positive secrecy capacity

against ε2
W/ε2

M for selected values of ΦB while ε2
M = 0.01, ΦJ

= 5 dB and ΦE = 5 dB

Fig. V-3 shows the simulation and analytic results of the probability of positive secrecy capac-

ity against ΦB for selected values of ΦE when ε2
M = 0.01 and ε2

W = 0.1 for the cases: (i) ΦJ =

0 dB, (ii) ΦJ = 5 dB.

One can observe that the numerical results are in perfect match with our analytical results.

Notably, we can obtain the conclusions below: (i) Pr(Cs > 0) increases with ΦB for a fixed ΦE .

(ii) The higher ΦE , the lower of probability of positive secrecy capacity. (iii) More importantly,

the jamming power ΦJ has a critical role to play in the probability of positive secrecy capacity

for fixed γE . The larger values of ΦJ , the worse of Pr(Cs > 0). (iv) Additionally, there exists

secrecy loss of imperfect CSI compared with the case of perfect channel estimation (ε2
M = 0

and ε2
W = 0) at receiver sides.
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Figure-A V-5 Secrecy outage probability against ΦB for

selected values of ΦE for the case of ΦJ = 0 dB and ΦJ = 5

dB whilst ε2
M = 0.01, ε2

W = 0.1 and Rs = 0.5 [bits/s/Hz]

Fig. V-4 explores the relationship of probability of positive secrecy capacity against the ratio

of ε2
W and ε2

M whilst ε2
M = 0.01, ΦJ = 5 dB and ΦE = 5 dB for selected values of ΦB. It is

saying that the higher the ratio, the much probable the event that the positive secrecy capacity

can be achieved.

Similarly, Fig. V-5 and Fig. V-6 examine the simulation and analysis results of the secrecy

outage probability of physical layer security with regard to two cases: (i) fixed ε2
M and ε2

W

whilst varying ΦB and ΦE ; (ii) changing the ratio of ε2
B and ε2

W while fixing ΦJ = 5 dB and ΦE

= 5 dB for selected values of ΦB, namely, 10 dB, 15 dB and 25 dB. Notably, we can easily draw

the same conclusion about the accuracy of our derived expression with Monte-Carlo simulation

results.

Additionally, as shown in Fig. V-5, the secrecy outage probability degrades with the increase

of ΦB for specific values ΦE and ΦJ .
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Figure-A V-6 Secrecy outage probability against ε2
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selected values of ΦB while ε2
M = 0.01, ΦJ = 5 dB, ΦE = 5

and Rs = 0.5 [bits/s/Hz]

More importantly, there exists an error floor due to the imperfect channel estimation at the

receiver sides in comparison with the case, i.e., ε2
M = 0 and ε2

W = 0. As ΦB is much larger than

ΦJ regarding a fixed ΦE , ΩB converges to the same value for different ΦJ with a limited value,

which consequently makes their secrecy outage probabilities converge to the error floor.

When it comes to Fig. V-6, the secrecy outage probability witnesses a completely opposite

trend compared with that of the probability of positive secrecy capacity, shown in Fig. V-

4. Furthermore, the larger of the gap between ΦB and ΦE , the less likely the secrecy outage

probability.

6. Conclusion

In this paper, we have analyzed secrecy performance of the MIMO wiretap channel with chan-

nel estimation errors at the legitimate destination and eavesdropper’s receivers whilst in the



200

presence of an active eavesdropper. The probability of positive secrecy capacity and secrecy

outage probability were derived with closed-form expressions through the PDFs and CDFs of

the receive SINRs. Finally, the theoretical analysis are confirmed by the Monte-Carlo simula-

tion results by comparing the secrecy performances with different levels of channel estimation

errors, received SINRs and jamming signals.
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