219 research outputs found

    Adaptive fault-tolerant attitude tracking control for hypersonic vehicle with unknown inertial matrix and states constraints

    Get PDF
    This paper proposes an adaptive fault-tolerant control (FTC) method for hypersonic vehicle (HSV) with unexpected centroid shift, actuator fault, time-varying full state constraints, and input saturation. The occurrence of unexpected centroid shift has three main effects on the HSV system, which are system uncertainties, eccentric moments, and variation of input matrix. In order to ensure the time-varying state constraints, a novel attitude state constraint control strategy, to keep the safe flight of HSV, is technically proposed by a time-varying state constraint function (TVSCF). A unified controller is designed to handle the time-varying state constraints according to the proposed TVSCF. Then, the constrained HSV system can be transformed into a novel free-constrained system based on the TVSCF. For the variation of system input matrix, input saturation and actuator fault, a special Nussbaum-type function is designed to compensate for those time-varying nonlinear terms. Additionally, the auxiliary systems is designed to compensate the constraint of system control inputs. Then, it is proved that the proposed control scheme can guarantee the boundedness of all closed-loop signals based on the Lyapunov stability theory. At last, the simulation results are provided to demonstrate the effectiveness of the proposed fault-tolerant control scheme.</p

    Incremental twisting fault tolerant control for hypersonic vehicles with partial model knowledge

    Get PDF
    A passive fault tolerant control scheme is proposed for the full reentry trajectory tracking of a hypersonic vehicle in the presence of modelling uncertainties, external disturbances, and actuator faults. To achieve this goal, the attitude error dynamics with relative degree two is formulated first by ignoring the nonlinearities induced by the translational motions. Then, a multivariable twisting controller is developed as a benchmark to ensure the precise tracking task. Theoretical analysis with the Lyapunov method proves that the attitude tracking error and its first-order derivative can simultaneously converge to the origin exponentially. To depend less on the model knowledge and reduce the system uncertainties, an incremental twisting fault tolerant controller is derived based on the incremental nonlinear dynamic inversion control and the predesigned twisting controller. Notably, the proposed controller is user friendly in that only fixed gains and partial model knowledge are required

    Finite-time control for uncertain systems and application to flight control

    Get PDF
    In this paper, the finite-time control design problem for a class of nonlinear systems with matched and mismatched uncertainty is addressed. The finite-time control scheme is designed by integrating multi power reaching (MPR) law and finite-time disturbance observer (FTDO) into integral sliding mode control, where a novel sliding surface is designed, and the FTDO is applied to estimate the uncertainty. Then the fixed-time reachability of the MPR law is analyzed, and the finite-time stability of the closed-loop system is proven in the framework of Lyapunov stability theory. Finally, numerical simulation and the application to the flight control of hypersonic vehicle (HSV) are provided to show the effectiveness of the designed controller

    Disturbance observer-based robust guidance for Mars atmospheric entry with input saturation

    Get PDF
    AbstractWith low-lifting capability taken into account, a robust guidance law for Mars entry vehicles with low lift-to-drag ratios, such as Mars Science Laboratory (MSL), is presented. Consider the nonlinear term in the drag dynamic equation and bounded disturbances as a lumped disturbance, and design a linear disturbance observer (DOB) to estimate it. With the consideration of the control input saturation, an innovative sliding surface and a virtual system are introduced to design the guidance law. Analyses of disturbance observer performance and Lyapunov-based transient performance are also presented. It is shown that the drag tracking error can be adjustable by explicit choices of design parameters. Simulation results confirm the effectiveness of the proposed guidance law

    Guidance Law Design for Terminal Area Energy Management of Reusable Launch Vehicle by Energy-to-Range Ratio

    Get PDF
    A new guidance scheme that utilizes a trajectory planning algorithm by energy-to-range ratio has been developed under the circumstance of surplus energy for the terminal area energy management phase of a reusable launch vehicle. The trajectory planning scheme estimates the reference flight profile by piecing together several flight phases that are defined by a set of geometric parameters. Guidance commands are readily available once the best reference trajectory is determined. The trajectory planning algorithm based on energy-to-range ratio is able to quickly generate new reference profiles for testing cases with large variations in initial vehicle condition and energy. The designed flight track has only one turn heading, which simplifies the trajectory planning algorithm. The effectiveness of the trajectory planning algorithm is demonstrated by simulations, which shows that the guided vehicle is able to successfully dissipate energy and reach the desired approach and landing glideslope target with small tracking errors

    Terminal Sliding Mode Control with Unidirectional Auxiliary Surfaces for Hypersonic Vehicles Based on Adaptive Disturbance Observer

    Get PDF
    A novel flight control scheme is proposed using the terminal sliding mode technique, unidirectional auxiliary surfaces and the disturbance observer model. These proposed dynamic attitude control systems can improve control performance of hypersonic vehicles despite uncertainties and external disturbances. The terminal attractor is employed to improve the convergence rate associated with the critical damping characteristics problem noted in short-period motions of hypersonic vehicles. The proposed robust attitude control scheme uses a dynamic terminal sliding mode with unidirectional auxiliary surfaces. The nonlinear disturbance observer is designed to estimate system uncertainties and external disturbances. The output of the disturbance observer aids the robust adaptive control scheme and improves robust attitude control performance. Finally, simulation results are presented to illustrate the effectiveness of the proposed terminal sliding mode with unidirectional auxiliary surfaces

    Nonlinear Disturbance Observer-Based Adaptive Sliding Mode Control for a Generic Hypersonic Vehicle

    Get PDF
    In this paper, a new adaptive sliding mode control method is presented for the longitudinal model of a generic hypersonic vehicle subject to uncertainties and external disturbance. Firstly, an oriented-control model with mismatched uncertainties is built for a generic hypersonic vehicle. Secondly, the back-stepping technique is introduced to design a sliding mode controller with an adaptive law to adapt to the disturbance and uncertainty. Thirdly, a set of nonlinear disturbance observers are designed to estimate the lumped disturbance and compensate the sliding mode controller, and the stability of the proposed controller is analyzed by utilizing Lyapunov stability theory. Finally, simulation results show that the effectiveness of the proposed controller is validated by the nonlinear model and the proposed method exhibits promising robustness to mismatched uncertainties

    Antidisturbance Vibration Suppression of the Aerial Refueling Hose during the Coupling Process

    Get PDF
    In autonomous aerial refueling (AAR), the vibration of the flexible refueling hose caused by the receiver aircraft’s excessive closure speed should be suppressed once it appears. This paper proposed an active control strategy based on the permanent magnet synchronous motor (PMSM) angular control for the timely and accurate vibration suppression of the flexible refueling hose. A nonsingular fast terminal sliding-mode (NFTSM) control scheme with adaptive extended state observer (AESO) is proposed for PMSM take-up system under multiple disturbances. The states and the “total disturbance” of the PMSM system are firstly reconstituted using the AESO under the uncertainties and measurement noise. Then, a faster sliding variable with tracking error exponential term is proposed together with a special designed reaching law to enhance the global convergence speed and precision of the controller. The proposed control scheme provides a more comprehensive solution to rapidly suppress the flexible refueling hose vibration in AAR. Compared to other methods, the scheme can suppress the flexible hose vibration more fleetly and accurately even when the system is exposed to multiple disturbances and measurement noise. Simulation results show that the proposed scheme is competitive in accuracy, global rapidity, and robustness

    Six-DOF spacecraft optimal trajectory planning and real-time attitude control: a deep neural network-based approach

    Get PDF
    This brief presents an integrated trajectory planning and attitude control framework for six-degree-of-freedom (6-DOF) hypersonic vehicle (HV) reentry flight. The proposed framework utilizes a bilevel structure incorporating desensitized trajectory optimization and deep neural network (DNN)-based control. In the upper level, a trajectory data set containing optimal system control and state trajectories is generated, while in the lower level control system, DNNs are constructed and trained using the pregenerated trajectory ensemble in order to represent the functional relationship between the optimized system states and controls. These well-trained networks are then used to produce optimal feedback actions online. A detailed simulation analysis was performed to validate the real-time applicability and the optimality of the designed bilevel framework. Moreover, a comparative analysis was also carried out between the proposed DNN-driven controller and other optimization-based techniques existing in related works. Our results verify the reliability of using the proposed bilevel design for the control of HV reentry flight in real time
    • …
    corecore