7 research outputs found

    Adaptive feedback feedforward compensation for disturbance rejection in a one DOF flexible structure: comparative analysis

    Get PDF
    En este artículo se estudia un Control Vibratorio Activo (AVC) para un problema de tres carritos. Se comparan los algoritmos de mínimos cuadrados filtrados (FxLMS) y mínimos cuadrados recurrentes (RLS) en términos de rechazo de perturbaciones, costo computacional y esfuerzo de control cuando se dispone de una medición correlacionada de la perturbación. El compensador RLS propuesto considera un acoplamiento de retroalimentación entre el compensador y la perturbación. La ruta de propagación secundaria de la planta se estimó utilizando el algoritmo LMS normalizado (NLMS). El acoplamiento positivo interno se modela como un filtro FIR estimado por los parámetros reales de la planta. Las simulaciones mostraron un rendimiento superior del algoritmo RLS con un costo informático razonable. El análisis comparativo se realizó comparando la compensación entre el orden del filtro y la magnitud del rechazo. In this paper an Active Vibrational Control (AVC) for a three-cart problem is studied. The Filtered-x Least Mean Square (FxLMS) and Recursive Least Square (RLS) algorithms are compared in terms of disturbance rejection, computational cost and control effort when a correlated measurement of the disturbance is available. The proposed RLS compensator considers a feedback coupling between the compensator and the disturbance. The secondary propagation path of the plant was estimated using normalized LMS (NLMS) algorithm. The internal positive coupling is modeled as a FIR filter estimated by the real plant parameters. Simulations showed a superior performance of RLS algorithm with a reasonable computer cost. The comparative analysis was performed comparing the tradeoff between the filter order and the magnitude of the rejection.&nbsp

    Adaptive feedback feedforward compensation for disturbance rejection in a one DOF flexible structure: comparative analysis

    Get PDF
    En este artículo se estudia un Control Vibratorio Activo (AVC) para un problema de tres carritos. Se comparan los algoritmos de mínimos cuadrados filtrados (FxLMS) y mínimos cuadrados recurrentes (RLS) en términos de rechazo de perturbaciones, costo computacional y esfuerzo de control cuando se dispone de una medición correlacionada de la perturbación. El compensador RLS propuesto considera un acoplamiento de retroalimentación entre el compensador y la perturbación. La ruta de propagación secundaria de la planta se estimó utilizando el algoritmo LMS normalizado (NLMS). El acoplamiento positivo interno se modela como un filtro FIR estimado por los parámetros reales de la planta. Las simulaciones mostraron un rendimiento superior del algoritmo RLS con un costo informático razonable. El análisis comparativo se realizó comparando la compensación entre el orden del filtro y la magnitud del rechazo. In this paper an Active Vibrational Control (AVC) for a three-cart problem is studied. The Filtered-x Least Mean Square (FxLMS) and Recursive Least Square (RLS) algorithms are compared in terms of disturbance rejection, computational cost and control effort when a correlated measurement of the disturbance is available. The proposed RLS compensator considers a feedback coupling between the compensator and the disturbance. The secondary propagation path of the plant was estimated using normalized LMS (NLMS) algorithm. The internal positive coupling is modeled as a FIR filter estimated by the real plant parameters. Simulations showed a superior performance of RLS algorithm with a reasonable computer cost. The comparative analysis was performed comparing the tradeoff between the filter order and the magnitude of the rejection.&nbsp

    Indirect Adaptive Attenuation of Multiple Narrow-Band Disturbances Applied to Active Vibration Control

    Get PDF
    International audienceIn this brief, an indirect adaptive control methodology for attenuation of multiple unknown time varying narrow-band disturbances is proposed. This method is based on the real time estimation of the frequency of narrow-band disturbances using adaptive notch filters followed by the design of a controller using adjustable band-stop filters for the appropriate shaping of the output sensitivity function. A Youla-Kučera parametrization of the controller is used for reducing the computation load. This approach is compared on an active vibration control system with the direct adaptive control scheme based on the internal model principle proposed. Real time experimental results are provided

    Adaptive Attenuation of Unknown and Time Varying Disturbances - Revisited after ECC13, Zurich

    No full text
    http://technion.ac.il/~issc/Program/pdf/Landau_slides.pdfInternational audienceIn many classes of applications like active vibration control and active noise control the disturbances can be characterized by their frequencies content and their location in a specific region in the frequency domain. The disturbances can be of narrow band type (simple or multiple) or of broad band type. A model can be associated to these disturbances. The knowledge of this model allows to design an appropriate control system in order to attenuate (or to reject) their effect upon the system to be controlled. The attenuation of disturbances by feedback is limited by the Bode Integral and the "water bed" effect upon the output sensitivity function. In such situations the feedback approach has to be complemented by a "feedforward disturbance compensation" requiring an additional transducer for getting information upon the disturbance. Unfortunately in most of the situations the disturbances are unknown and time-varying and therefore an adaptive approach should be considered. The generic term for adaptive attenuation of unknown and timevarying disturbances is "adaptive regulation" (known plant model, unknown and time-varying disturbance model). The paper reviews a number of recent developments for adaptive feedback compensation of multiple unknown and timevarying narrowband disturbances presented at ECC13, Zurich (benchmark on adaptive regulation). Il also reviews recent developments in adaptive feedforward compensation of broad band disturbances in the presence of the inherent internal positive feedback caused by the coupling between the compensator system and the measurement of the image of the disturbance. Experimental results obtained on a relevant active vibration control system will illustrate the performance of the various algorithms presented. Some open research problems will be mentioned in the conclusion

    Adaptive Suppression of Multiple Time-Varying Unknown Vibrations Using an Inertial Actuator

    No full text
    International audienceAn active vibration control system using an inertial actuator for suppression of multiple unknown and/or time-varying vibrations will be presented. The objective is to minimize the residual force by applying an appropriate control effort through the inertial actuator. The system does not use any additional transducer for getting in real-time information upon the disturbances. A direct feedback adaptive regulation scheme for the suppression of multiple unknown and/or time-varying vibrations will be used and evaluated in real time. It uses the internal model principle and the Youla-Kucera parametrization. In the Appendix, a comparison with an alternative indirect adaptive regulation scheme is presented

    From Fixed-Order Gain-Scheduling to Fixed-Structure LPV Controller Design

    Get PDF
    This thesis focuses on the development of some fixed-order controller design methods in the gain-scheduling/Linear Parameter Varying (LPV) framework. Gain-scheduled controllers designed using frequency-domain Single Input Single Output (SISO) models are considered first, followed by LPV controller design in the SISO transfer function setting and, finally, by Multiple Input Multiple Output (MIMO) LPV controller design in the state-space setting. In addition to the guarantee of closed-loop stability, each of the methods optimizes some classical performance measure, such as the H\mathscr{H}_\infty or H2\mathscr{H}_2 performance metrics. In the LPV state-space setting, the practical assumption of bounded scheduling parameter variations is taken into account in order to allow a higher performance level to be achieved. The fixed-order gain-scheduled controller design method is based on frequency-domain models dependent on the scheduling parameters. Based on the linearly parameterized gain-scheduled controllers and desired open-loop transfer functions, the H\mathscr{H}_\infty performance of the weighted closed-loop transfer functions is presented in the Nyquist diagram as a set of convex constraints. No a posteriori interpolation is needed, so the stability and performance level are guaranteed for all values of scheduling parameters considered in the design. Controllers designed with this method are successfully applied to the international benchmark in adaptive regulation. These low-order controllers ensure good rejection of the multisinusoidal disturbance with time-varying frequencies on the active suspension testbed. One issue related to the gain-scheduled controller design using the frequency response model is the computational burden due to the constraint sampling in the frequency domain. The other is a guarantee of stability and performance for all the values of scheduling parameters, not just those treated in design. To overcome these issues, a method for the design of fixed-order LPV controllers with the transfer function representation is proposed. The LPV controller parameterization considered in this approach leads to design variables in both the numerator and denominator of the controller. Stability and H\mathscr{H}_\infty performance conditions for all fixed values of scheduling parameters are presented in terms of Linear Matrix Inequalities (LMIs). With a problem of rejection of a multisinusoidal disturbance with time-varying frequencies in mind, LPV controller is designed for an LTI plant with a transfer function model. The extension of these methods from SISO to MIMO systems is far from trivial. The state-space setting is used for this reason, as there the transition from SISO to MIMO systems is natural. A method for fixed-order output-feedback LPV controller design for continuous-time state-space LPV plants with affine dependence on scheduling parameters is proposed. Bounds on the scheduling parameters and their variation rates are exploited in design through the use of affine Parameter Dependent Lyapunov Functions (PDLFs). The exponential decay rate, induced L2\mathscr{L}_2-norm and H2\mathscr{H}_2 performance constraints are expressed through a set of LMIs. The proposed method is applied to the 2DOF gyroscope experimental setup. In practice control is performed using digital computers, so some effort needs to be put into the LPV controller discretization. If the discrete-time LPV model of the system is available [...

    Commande robuste et calibrage des systèmes de contrôle actif de vibrations

    Get PDF
    Dans cette thèse, nous présentons des solutions pour la conception des systèmes de contrôle actif de vibrations. Dans la première partie, des méthodes de contrôle par action anticipatrice (feedforward) sont développées. Celles-ci sont dédiées à la suppression des perturbations bande large en utilisant une image de la perturbation mesurée par un deuxième capteur, en amont de la variable de performance à minimiser. Les algorithmes présentés dans cette mémoire sont conçus pour réaliser de bonnes performances et maintenir la stabilité du système en présence du couplage positif interne qui apparaît entre le signal de commande et l'image de la perturbation. Les principales contributions de cette partie sont l'assouplissement de la condition de Stricte Positivité Réelle (SPR) par l'utilisation des algorithmes d'adaptation Intégrale + Proportionnelle et le développement de compensateurs à action anticipatrice (feedforward) sur la base de la paramétrisation Youla-Kučera. La deuxième partie de la thèse concerne le rejet des perturbations bande étroite par contre-réaction adaptative (feedback). Une méthode d'adaptation indirecte est proposée pour le rejet de plusieurs perturbations bande étroite en utilisant des filtres Stop-bande et la paramétrisation Youla-Kučera. Cette méthode utilise des Filtres Adaptatifs à Encoche en cascade pour estimer les fréquences de perturbations sinusoïdales puis des Filtres Stop-bande pour introduire des atténuations aux fréquences estimées. Les algorithmes sont vérifiés et validés sur un dispositif expérimental disponible au sein du département Automatique du laboratoire GIPSA-Lab de Grenoble.In this thesis, solutions for the design of robust Active Vibration Control (AVC) systems are presented. The thesis report is composed of two parts. In the first one, feedforward adaptive methods are developed. They are dedicated to the suppression of large band disturbances and use a measurement, correlated with the disturbance, obtained upstream from the performance variable by the use of a second transducer. The algorithms presented in this thesis are designed to achieve good performances and to maintain system stability in the presence of the internal feedback coupling which appears between the control signal and the image of the disturbance. The main contributions in this part are the relaxation of the Strictly Positive Real (SPR) condition appearing in the stability analysis of the algorithms by use of Integral + Proportional adaptation algorithms and the development of feedforward compensators for noise or vibration reduction based on the Youla-Kučera parameterization. The second part of this thesis is concerned with the negative feedback rejection of narrow band disturbances. An indirect adaptation method for the rejection of multiple narrow band disturbances using Band-Stop Filters (BSF) and the Youla-Kučera parameterization is presented. This method uses cascaded Adaptive Notch Filters (ANF) to estimate the frequencies of the disturbances' sinusoids and then, Band-stop Filters are used to shape the output sensitivity function independently, reducing the effect of each narrow band signal in the disturbance. The algorithms are verified and validated on an experimental setup available at the Control Systems Department of GIPSA-Lab, Grenoble, France.SAVOIE-SCD - Bib.électronique (730659901) / SudocGRENOBLE1/INP-Bib.électronique (384210012) / SudocGRENOBLE2/3-Bib.électronique (384219901) / SudocSudocFranceF
    corecore