431 research outputs found

    Submodular Stochastic Probing on Matroids

    Get PDF
    In a stochastic probing problem we are given a universe EE, where each element eEe \in E is active independently with probability pep_e, and only a probe of e can tell us whether it is active or not. On this universe we execute a process that one by one probes elements --- if a probed element is active, then we have to include it in the solution, which we gradually construct. Throughout the process we need to obey inner constraints on the set of elements taken into the solution, and outer constraints on the set of all probed elements. This abstract model was presented by Gupta and Nagarajan (IPCO '13), and provides a unified view of a number of problems. Thus far, all the results falling under this general framework pertain mainly to the case in which we are maximizing a linear objective function of the successfully probed elements. In this paper we generalize the stochastic probing problem by considering a monotone submodular objective function. We give a (11/e)/(kin+kout+1)(1 - 1/e)/(k_{in} + k_{out}+1)-approximation algorithm for the case in which we are given kink_{in} matroids as inner constraints and koutk_{out} matroids as outer constraints. Additionally, we obtain an improved 1/(kin+kout)1/(k_{in} + k_{out})-approximation algorithm for linear objective functions

    Locally Adaptive Optimization: Adaptive Seeding for Monotone Submodular Functions

    Full text link
    The Adaptive Seeding problem is an algorithmic challenge motivated by influence maximization in social networks: One seeks to select among certain accessible nodes in a network, and then select, adaptively, among neighbors of those nodes as they become accessible in order to maximize a global objective function. More generally, adaptive seeding is a stochastic optimization framework where the choices in the first stage affect the realizations in the second stage, over which we aim to optimize. Our main result is a (11/e)2(1-1/e)^2-approximation for the adaptive seeding problem for any monotone submodular function. While adaptive policies are often approximated via non-adaptive policies, our algorithm is based on a novel method we call \emph{locally-adaptive} policies. These policies combine a non-adaptive global structure, with local adaptive optimizations. This method enables the (11/e)2(1-1/e)^2-approximation for general monotone submodular functions and circumvents some of the impossibilities associated with non-adaptive policies. We also introduce a fundamental problem in submodular optimization that may be of independent interest: given a ground set of elements where every element appears with some small probability, find a set of expected size at most kk that has the highest expected value over the realization of the elements. We show a surprising result: there are classes of monotone submodular functions (including coverage) that can be approximated almost optimally as the probability vanishes. For general monotone submodular functions we show via a reduction from \textsc{Planted-Clique} that approximations for this problem are not likely to be obtainable. This optimization problem is an important tool for adaptive seeding via non-adaptive policies, and its hardness motivates the introduction of \emph{locally-adaptive} policies we use in the main result

    The Price of Information in Combinatorial Optimization

    Full text link
    Consider a network design application where we wish to lay down a minimum-cost spanning tree in a given graph; however, we only have stochastic information about the edge costs. To learn the precise cost of any edge, we have to conduct a study that incurs a price. Our goal is to find a spanning tree while minimizing the disutility, which is the sum of the tree cost and the total price that we spend on the studies. In a different application, each edge gives a stochastic reward value. Our goal is to find a spanning tree while maximizing the utility, which is the tree reward minus the prices that we pay. Situations such as the above two often arise in practice where we wish to find a good solution to an optimization problem, but we start with only some partial knowledge about the parameters of the problem. The missing information can be found only after paying a probing price, which we call the price of information. What strategy should we adopt to optimize our expected utility/disutility? A classical example of the above setting is Weitzman's "Pandora's box" problem where we are given probability distributions on values of nn independent random variables. The goal is to choose a single variable with a large value, but we can find the actual outcomes only after paying a price. Our work is a generalization of this model to other combinatorial optimization problems such as matching, set cover, facility location, and prize-collecting Steiner tree. We give a technique that reduces such problems to their non-price counterparts, and use it to design exact/approximation algorithms to optimize our utility/disutility. Our techniques extend to situations where there are additional constraints on what parameters can be probed or when we can simultaneously probe a subset of the parameters.Comment: SODA 201
    corecore