85,123 research outputs found

    Application of Fuzzy Reasoning for Filtering and Enhancement of Ultrasonic Images

    Get PDF
    This paper presents a new type of an adaptive fuzzy operator for detection of isolated abnormalities, and enhancement of raw ultrasonic images. Fuzzy sets used in decision rules are defined for each image based on empirical statistics of the color intensities. Examples of the method are also presented in the paper

    Video enhancement using adaptive spatio-temporal connective filter and piecewise mapping

    Get PDF
    This paper presents a novel video enhancement system based on an adaptive spatio-temporal connective (ASTC) noise filter and an adaptive piecewise mapping function (APMF). For ill-exposed videos or those with much noise, we first introduce a novel local image statistic to identify impulse noise pixels, and then incorporate it into the classical bilateral filter to form ASTC, aiming to reduce the mixture of the most two common types of noises - Gaussian and impulse noises in spatial and temporal directions. After noise removal, we enhance the video contrast with APMF based on the statistical information of frame segmentation results. The experiment results demonstrate that, for diverse low-quality videos corrupted by mixed noise, underexposure, overexposure, or any mixture of the above, the proposed system can automatically produce satisfactory results

    Contrast Enhancement of Brightness-Distorted Images by Improved Adaptive Gamma Correction

    Full text link
    As an efficient image contrast enhancement (CE) tool, adaptive gamma correction (AGC) was previously proposed by relating gamma parameter with cumulative distribution function (CDF) of the pixel gray levels within an image. ACG deals well with most dimmed images, but fails for globally bright images and the dimmed images with local bright regions. Such two categories of brightness-distorted images are universal in real scenarios, such as improper exposure and white object regions. In order to attenuate such deficiencies, here we propose an improved AGC algorithm. The novel strategy of negative images is used to realize CE of the bright images, and the gamma correction modulated by truncated CDF is employed to enhance the dimmed ones. As such, local over-enhancement and structure distortion can be alleviated. Both qualitative and quantitative experimental results show that our proposed method yields consistently good CE results

    Real-time Model-based Image Color Correction for Underwater Robots

    Full text link
    Recently, a new underwater imaging formation model presented that the coefficients related to the direct and backscatter transmission signals are dependent on the type of water, camera specifications, water depth, and imaging range. This paper proposes an underwater color correction method that integrates this new model on an underwater robot, using information from a pressure depth sensor for water depth and a visual odometry system for estimating scene distance. Experiments were performed with and without a color chart over coral reefs and a shipwreck in the Caribbean. We demonstrate the performance of our proposed method by comparing it with other statistic-, physic-, and learning-based color correction methods. Applications for our proposed method include improved 3D reconstruction and more robust underwater robot navigation.Comment: Accepted at the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS

    Assessment of a photogrammetric approach for urban DSM extraction from tri-stereoscopic satellite imagery

    Get PDF
    Built-up environments are extremely complex for 3D surface modelling purposes. The main distortions that hamper 3D reconstruction from 2D imagery are image dissimilarities, concealed areas, shadows, height discontinuities and discrepancies between smooth terrain and man-made features. A methodology is proposed to improve automatic photogrammetric extraction of an urban surface model from high resolution satellite imagery with the emphasis on strategies to reduce the effects of the cited distortions and to make image matching more robust. Instead of a standard stereoscopic approach, a digital surface model is derived from tri-stereoscopic satellite imagery. This is based on an extensive multi-image matching strategy that fully benefits from the geometric and radiometric information contained in the three images. The bundled triplet consists of an IKONOS along-track pair and an additional near-nadir IKONOS image. For the tri-stereoscopic study a densely built-up area, extending from the centre of Istanbul to the urban fringe, is selected. The accuracy of the model extracted from the IKONOS triplet, as well as the model extracted from only the along-track stereopair, are assessed by comparison with 3D check points and 3D building vector data
    • …
    corecore