14 research outputs found

    Optimal packetisation of MPEG-4 using RTP over mobile networks

    Get PDF
    The introduction of third-generation wireless networks should result in real-time mobile video communications becoming a reality. Delivery of such video is likely to be facilitated by the realtime transport protocol (RTP). Careful packetisation of the video data is necessary to ensure the optimal trade-off between channel utilisation and error robustness. Theoretical analyses for two basic schemes of MPEG-4 data encapsulation within RTP packets are presented. Simulations over a GPRS (general packet radio service) network are used to validate the analysis of the most efficient scheme. Finally, a motion adaptive system for deriving MPEG-4 video packet sizes is presented. Further simulations demonstrate the benefits of the adaptive system

    Adaptive Live Video Streaming by Priority Drop

    Get PDF
    In this paper we explore the use of Priority-progress streaming (PPS) for video surveillance applications. PPS is an adaptive streaming technique for the delivery of continuous media over variable bit-rate channels. It is based on the simple idea of reordering media components within a time window into priority order before transmission. The main concern when using PPS for live video streaming is the time delay introduced by reordering. In this paper we describe how PPS can be extended to support live streaming and show that the delay inherent in the approach can be tuned to satisfy a wide range of latency constraints while supporting fine-grain adaptation

    Cycle-Based Rate Control for One-Way and Interactive Video Communications Over Wireless Channels

    Full text link

    Mixed streaming of video over wireless networks

    Get PDF
    In recent years, transmission of video over the Internet has become an important application. As wireless networks are becoming increasingly popular, it is expected that video will be an important application over wireless networks as well. Unlike wired networks, wireless networks have high data loss rates. Streaming video in the presence of high data loss can be a challenge because it results in errors in the video.Video applications produce large amounts of data that need to be compressed for efficient storage and transmission. Video encoders compress data into dependent frames and independent frames. During transmission, the compressed video may lose some data. Depending on where the packet loss occurs in the video, the error can propagate for a long time. If the error occurs on a reference frame at the beginning of the video, all the frames that depend on the reference frame will not be decoded successfully. This thesis presents the concept of mixed streaming, which reduces the impact of video propagation errors in error prone networks. Mixed streaming delivers a video file using two levels of reliability; reliable and unreliable. This allows sensitive parts of the video to be delivered reliably while less sensitive areas of the video are transmitted unreliably. Experiments are conducted that study the behavior of mixed streaming over error prone wireless networks. Results show that mixed streaming makes it possible to reduce the impact of errors by making sure that errors on reference frames are corrected. Correcting errors on reference frames limits the time for which errors can propagate, thereby improving the video quality. Results also show that the delay cost associated with the mixed streaming approach is reasonable for fairly high packet loss rates

    Investigation of quality of services (QoS) support for real-time or mission critical services over IEEE 802.11e wireless networks.

    Get PDF
    Multimedia application is currently making much impact in this technological era. It has been thekey driving force behind the convergence of fixed, mobile and IP networks. Furthermore, real-timeapplications are making head way in vehicular networks, mission critical applications which usededicated short range communications (DSRC). 802.l i e standards support quality of services(QoS) guarantees in these applications. This is opposed to the problem with 802.11 legacy whichis based on distributed coordination function (DCF), and its inability to prioritized applications forservice differentiation. Simulation was done on various 802.l i e networks which use enhancedDCF (EDCF). In these simulations, it was observed that controlling low priority applicationsenhances the effectiveness of high priority applications. Different MAC and traffic generationparameters were used in various scenarios. It was actually observed that high priority applicationshave greater impacts on the performance of the network and hence performs better when itcomes to delay and throughput requirements. Even when the number of high priority applicationswere reduced, the results obtained was still able to satisfy QoS requirements for each traffic type.Results for different scenarios were taken and discussed. Also, differentiated values of delay,throughput and packet loss were recorded when same and different values of MAC and trafficgeneration parameters were used. In all results the International Telecommunications Union (ITU-T) values of these metrics parameters were kept low. These make the network design suitable forroad safety application where very low delay is required for emergency messages and tolerabledelay in routine messages. The results obtained show th at, this network can be applicable inroad safety, simply because of the low delay, and low loss which implies , messages to cars canbe successfully delivered and also good throughput. 802.11 legacy standard lacks servicedifferentiation that limits QoS support for real-time applications. These simulations were able tohandle the drawback associated with this standard and prefer a better standard which is 802.l i ethat provides differentiated access to the metrics that was used in analyzing QoS in this research

    Scheduling And Resource Allocation In Wireless Sensor Networks

    Full text link
    In computer science and telecommunications, wireless sensor networks are an active research area. Each sensor in a wireless sensor network has some pre-defined or on demand tasks such as collecting or disseminating data. Network resources, such as broadcast channels, number of sensors, power, battery life, etc., are limited. Hence, a schedule is required to optimally allocate network resources so as to maximize some profit or minimize some cost. This thesis focuses on scheduling problems in the wireless sensor networks environment. In particular, we study three scheduling problems in the wireless sensor networks: broadcast scheduling, sensor scheduling for area monitoring, and content distribution scheduling. For each problem the goal is to find efficient scheduling algorithms that have good approximation guarantees and perform well in practice
    corecore