2,752 research outputs found

    Multi-party Quantum Computation

    Get PDF
    We investigate definitions of and protocols for multi-party quantum computing in the scenario where the secret data are quantum systems. We work in the quantum information-theoretic model, where no assumptions are made on the computational power of the adversary. For the slightly weaker task of verifiable quantum secret sharing, we give a protocol which tolerates any t < n/4 cheating parties (out of n). This is shown to be optimal. We use this new tool to establish that any multi-party quantum computation can be securely performed as long as the number of dishonest players is less than n/6.Comment: Masters Thesis. Based on Joint work with Claude Crepeau and Daniel Gottesman. Full version is in preparatio

    A Survey of Symbolic Methods in Computational Analysis of Cryptographic Systems

    Get PDF
    Since the 1980s, two approaches have been developed for analyzing security protocols. One of the approaches relies on a computational model that considers issues of complexity and probability. This approach captures a strong notion of security, guaranteed against all probabilistic polynomial-time attacks. The other approach relies on a symbolic model of protocol executions in which cryptographic primitives are treated as black boxes. Since the seminal work of Dolev and Yao, it has been realized that this latter approach enables significantly simpler and often automated proofs. However, the guarantees that it offers have been quite unclear. For more than twenty years the two approaches have coexisted but evolved mostly independently. Recently, significant research efforts attempt to develop paradigms for cryptographic systems analysis that combines the best of both worlds. There are two broad directions that have been followed. {\em Computational soundness} aims to establish sufficient conditions under which results obtained using symbolic models imply security under computational models. The {\em direct approach} aims to apply the principles and the techniques developed in the context of symbolic models directly to computational ones. In this paper we survey existing results along both of these directions. Our goal is to provide a rather complete summary that could act as a quick reference for researchers who want to contribute to the field, want to make use of existing results, or just want to get a better picture of what results already exist

    Classical Cryptographic Protocols in a Quantum World

    Get PDF
    Cryptographic protocols, such as protocols for secure function evaluation (SFE), have played a crucial role in the development of modern cryptography. The extensive theory of these protocols, however, deals almost exclusively with classical attackers. If we accept that quantum information processing is the most realistic model of physically feasible computation, then we must ask: what classical protocols remain secure against quantum attackers? Our main contribution is showing the existence of classical two-party protocols for the secure evaluation of any polynomial-time function under reasonable computational assumptions (for example, it suffices that the learning with errors problem be hard for quantum polynomial time). Our result shows that the basic two-party feasibility picture from classical cryptography remains unchanged in a quantum world.Comment: Full version of an old paper in Crypto'11. Invited to IJQI. This is authors' copy with different formattin

    About models of security protocols

    Get PDF
    In this paper, mostly consisting of definitions, we revisit the models of security protocols: we show that the symbolic and the computational models (as well as others) are instances of a same generic model. Our definitions are also parametrized by the security primitives, the notion of attacker and, to some extent, the process calculus

    On-stack replacement, distilled

    Get PDF
    On-stack replacement (OSR) is essential technology for adaptive optimization, allowing changes to code actively executing in a managed runtime. The engineering aspects of OSR are well-known among VM architects, with several implementations available to date. However, OSR is yet to be explored as a general means to transfer execution between related program versions, which can pave the road to unprecedented applications that stretch beyond VMs. We aim at filling this gap with a constructive and provably correct OSR framework, allowing a class of general-purpose transformation functions to yield a special-purpose replacement. We describe and evaluate an implementation of our technique in LLVM. As a novel application of OSR, we present a feasibility study on debugging of optimized code, showing how our techniques can be used to fix variables holding incorrect values at breakpoints due to optimizations
    • …
    corecore