
Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 352-356

About Models of security protocols
(abstract)

Hubert Comon-Lundh
ENS Cachan and Research Center for Information Security

Advanced Industrial Science and Technology (AIST), Tokyo
h.comon-lundh@aist.go.jp

Framework

It is clear for everybody that security protocols need to be proven. Indeed, a security breach
in one of these distributed programs, may have a dramatic impact. A typical example are
the (electronic) voting protocols, which we fear will be soon widely used.

But what does “proven” mean? A formal proof requires a formal model, both for the
protocol executions and for the security properties. There are however several such mod-
els and it may happen that a protocol is secure in one model and insecure in the other.
Furthermore, there is no clear hierarchy in such models as the most accurate ones are not
well-suited for formal proofs, because they require much too complicated proof steps, that
are always performed in a very sketchy way.

There are two main classes of security models: the first one, later named symbolic, has
been developed over years by the community of automated theorem proving and concur-
rency theory [22, 19, 3, 14, 2, 21]. The second one, later named computational, is more recent;
it is an extension to protocols of the well-developed area of “provable security”[10, 7, 20, 17].
Symbolic models are much simpler, as an attacker is only given a fixed finite set of function-
alities and there is no probabilistic choices or complexity issues. They are therefore better
suited for (automated) formal proofs. However, because they are simpler, they might miss
some attacks that rely on other attacker’s capibilities, which are only considered in the com-
putational model.

The relationship between these two classes of protocol models has been investigated in
a series of recent works, starting with M. Abadi and Ph. Rogaway [4]. The idea is to ex-
plicit under which computational assumptions the symbolic models are sound; the sound-
ness theorems show that reasoning in the symbolic model is sufficient: the extra attacker’s
capabilities are useless for mounting attacks.

Soundness results were first proven in the passive attacker case: such an attacker is not
allowed to forge messages nor to send fake messages. Depending on the security primitives
and the computational assumptions, there are several soundness results such as [4, 1, 9].

For protocol verification, it is however more relevant to consider an active attacker,
who may control the communications. There is then a series of results showing a trace
mapping property [18, 13, 15]. Roughly speaking, they show that a sequence of events in the
computational model is, with overwhelming probability, also represented by a sequence of
events in the symbolic model. Such trace mappings are showed for particular primitives
and particular symbolic and computational models and assume computational properties

c© Hubert Comon-Lundh; licensed under Creative Commons License-NC-ND

FSTTCS 2008
IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1766

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913761?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

HUBERT COMON-LUNDH FSTTCS 2008 353

of the security primitives. Furthermore, on the security properties side, these results show
that we may reason at the symbolic level, but only for some specific security properties,
typically “trace properties”.

Another series of soundness results are obtained in a series of papers on simulatability
[7, 6, 8]. Simulatability implies trace mapping, as pointed out in [5], but the converse might
not be true. Roughly speaking, what is missing in trace mapping is the adaptative soundness
[16].

Finally, an even stronger result (which might be equivalent to simulatability) is the
soundness of observational equivalence [11]: for a given set of cryptographic primitives, the
authors show that trace mapping together with tree soundness implies that computational
indistinguishability can be soundly abstracted as observational equivalence. This shows in
particular, though in a different setting, what is missing in [5], in order to get a converse
implication.

A few remarks on the state of the art

In all these works, the computational attacker is a polynomial time randomized interactive
Turing machine. However, as discussed in [8, 17], there are several possible complexity
notions for such machines. Also, using a Turing machine model yields often quite sketchy
proofs, as the machines (in particular the simulators) are never constructed explicitly. Fi-
nally, there is no evidence that worst case polynomial time is an adequate complexity class,
though it is convenient because of composition properties. It is actually not clear that Turing
machines are an appropriate model. As a conclusion: we would like to abstract from this
particular computation model.

On the formal model side, there are many schools, each promoting its own process
calculus. There are also issues concerning the expressivity: are the result still valid if we
consider protocols with branching tests? recursive protocols? We would like to avoid com-
mitting to a particular process calculus, while keeping the features that are essential for
security definitions.

Concerning the relationships between the models, is there a general way of defining
relationships between models? Is it possible to state something useful, independently of
the models considered? Is there a methodology to decompose the tasks when proving a
mapping property between two models?

Models of security protocols

In this paper, mostly consisting of definitions, we revisit the models of security protocols:
we show that the symbolic and the computational models (as well as others) are instances
of a same generic model. Our definitions are also parametrized by the security primitives,
the notion of attacker and, to some extent, the process calculus.

We rely on a set of function symbols, predicate symbols and names (representing any
randomized input), which are interpreted in some algebra. This can be a term algebra, or a
computational algebra (as defined in [9]), whose domain is the set of bitstrings (or any other
first-order structure on the given vocabulary).

354 MODELS OF SECURITY PROTOCOLS

A thread (also called a protocol role or a lightweight process) is any sequential pro-
gram, generating data, receiving inputs from an environment and sending messages to the
environment. The operational semantics of threads is defined through predicates that relate
two consecutive states and a message (whether received or emitted). Again, this can be in-
terpreted in a symbolic or computational world, depending on the interpretation structure
that we consider.

Threads can be composed, using parallel composition (they may run concurrently),
replication (a same program may be executed several times), name hiding and external
inputs. This yields protocols.

Next, attackers are simply (deterministic) stateful functions that compute a message
from a sequence of messages. They could be symbolic or computational and we may impose
some restrictions, such as polynomial time computation bounds: this is again a model choice
and we do not commit to any one in particular.

In order to define some asymptotic security notions, we need to include in the model
families of probability distributions for the interpretation of names. In case of symbolic
models, such distributions will be trivial: probabilities of events are either 0 or 1.

Finally, we define indistinguishability, without committing to any particular model: this
yields for instance static equivalence in the case of a symbolic interpretation. This is also
generalized to tree-indistinguishability, for families of term sequences.

Relationships between models

In this general setting, we define trace mapping: this is a relation between any two inter-
pretations, each of which yielding some notion of possible sequences of events. In both
interpretations, the attacker computes fake messages and send them to the network. How-
ever, he does not schedule the events according to his computation results. (The attacker is
not “adaptative”). Among the models, the symbolic one has a universal property: there is
always a trace mapping from the symbolic model to any other model. The converse impli-
cation depends however on the assumptions on the function interpretations.

The tree soundness property also relates two interpretations M1 and M2. This states
that, if two trees, labeled with sequences of terms, are indistinguishable in the model M1,
then they are also indistinguishable in the model M2. For this soundness notion, the at-
tacker is adaptative, but cannot compute his own fake messages: he may only choose among
the available directions.

In the most general case, the attacker is both allowed to compute fake messages and
to schedule adaptatively the events. In that case, two programs (or protocols) are observa-
tionally equivalent if there is no attacker that can distinguish them. We show that relating
observational equivalence in two models can be reduced to trace mapping and tree sound-
ness in that models:

Trace mapping + Tree soundness ⇒ Soundness of observational equivalence
This has been shown in [11], for a particular pair of models and process calculus. In

[11] we further proved the trace mapping and the tree soundness for symmetric encryption,
under some strong security assumptions.

HUBERT COMON-LUNDH FSTTCS 2008 355

Conclusion

We hope that revisiting the definitions will clarify what is relevant. We also believe that
trace mapping and tree soundness are two (independent) relevant properties: this could
be a guideline when trying to reduce security proofs in some model to symbolic security
proofs. As a clue, the computational assumptions are often different for tree soundness and
for trace mapping [12].

The main issue now is to decompose further the trace mapping property and the tree
soundness property into more elementary tasks. Typically, we would like to get composition
results, allowing to merge two sets of function symbols, instead of a having to restart from
scratch each time we add a new primitive (which is the case in all current models).

Acknowledgments

I thank David Nowak for fruitful discussions.

References

[1] M. Abadi, M. Baudet, and B. Warinschi. Guessing attacks and the computational
soundness of static equivalence. In L. Aceto and A. Ingólfsdóttir, editors, FoSSaCS,
volume 3921 of Lecture Notes in Computer Science, pages 398–412. Springer, 2006.

[2] M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In Proceedings of the 28th ACM Symposium on Principles of Programming Languages
(POPL’01), pages 104–115, January 2001.

[3] M. Abadi and A. Gordon. A calculus for cryptographic protocols: the spi calculus.
Information and Computation, 148(1), 1999.

[4] M. Abadi and P. Rogaway. Reconciling two views of cryptography: the computational
soundness of formal encryption. In Proc. 1rst IFIP International Conference on Theoretical
Computer Science, volume 1872 of Lecture Notes in Computer Science, Sendai, Japan, 2000.

[5] M. Backes, M. Drmuth, and R. Ksters. On simulatability soundness and mapping
soundness of symbolic cryptography. In Proceedings of 27th International Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS), December
2007.

[6] M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable dolev-yao style
cryptographic library. In Proc. IEEE Computer Security Foundations workshop, 2004.

[7] M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with
nested operations. In Proc. 10th ACM Concerence on Computer and Communications Secu-
rity (CCS’03), 2003.

[8] M. Backes, B. Pfitzmann, and M. Waidner. The reactive simulatability (rsim) framework
for asynchronous systems. Information and Computation, 205(12), 2007.

[9] M. Baudet, V. Cortier, and S. Kremer. Computationally sound implementations of
equational theories against passive adversaries. In Proceedings of the 32nd International
Colloquium on Automata, Languages and Programming (ICALP’05), volume 3580 of Lecture
Notes in Computer Science, pages 652–663. Springer, July 2005.

356 MODELS OF SECURITY PROTOCOLS

[10] R. Canetti. Universal composable security: a new paradigm for cryptographic proto-
cols. In Proc. 42nd IEEE Symposium on Foundations of Computer Science, 2001.

[11] H. Comon-Lundh and V. Cortier. Computational soundness of observational equiva-
lence. In Proc. ACM Conf. Computer and Communication Security (CCS), 2008.

[12] H. Comon-Lundh, Y. Kawamoto, and H. Sakurada. Symbolic and computational
anonymity in an unbounded network. Submitted for publication.

[13] V. Cortier and B. Warinschi. Computationally sound, automated proofs for security
protocols. In Proc. 14th European Symposium on Programming (ESOP’05), volume 3444
of Lecture Notes in Computer Science, pages 157–171, 2005.

[14] F. T. Fabrega, J. Herzog, and J. Guttman. Strand spaces: Proving security protocol
correct. Journal of Computer Security, 7:191–230, 1999.

[15] R. Janvier, Y. Lakhnech, and L. Mazaré. Completing the picture: Soundness of for-
mal encryption in the presence of active adversaries. In European Symposium on Pro-
gramming (ESOP’05), volume 3444 of Lecture Notes in Computer Science, pages 172–185.
Springer, 2005.

[16] S. Kremer and L. Mazaré. Adaptive soundness of static equivalence. In J. Biskup and
J. Lopez, editors, Proceedings of the 12th European Symposium on Research in Computer
Security (ESORICS’07), volume 4734 of Lecture Notes in Computer Science, pages 610–
625, Dresden, Germany, Sept. 2007. Springer.

[17] R. Küsters and M. Tuengerthal. Joint state theorems for public-key encryption and dig-
ital signature functionalities with local computations. In Proc. IEEE Computer Security
Foundations (CSF’08), 2008.

[18] D. Micciancio and B. Warinschi. Soundness of formal encryption in presence of an
active attacker. In Proc. Theory of Cryptography Conference (TCC’04), volume 2951 of
LNCS, 2004.

[19] J. Millen and H. Rueß. Protocol independent secrecy. In Proc. IEEE Symposium on
Security and Privacy, 2000.

[20] J. Mitchell, A. Ramanathan, and V. Teague. A probabilistic polynomial-time process
calculus for the analysis of cryptographic protocols. Theoretical Comput. Sci., 353:118–
164, 2006.

[21] A. Roy, A. Datta, A. Derek, J. C. Mitchell, and J.-P. Seifert. Secrecy analysis in protocol
composition logic. In Proc. 11th Asian Computing Science Conference, volume 4435 of
Lecture Notes in Computer Science, Tokyo, Japan, Dec. 2006. Springer-Verlag.

[22] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. The Modelling and Analysis
of Security Protocols. Addison Wesley, 2000.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

