81 research outputs found

    Self-powered and Self-configurable Active Rectifier Using Low Voltage Controller for Wide Output Range Energy Harvesters

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordData availability: All data are provided in full in the results section of this paper.This paper presents a self-configurable and selfpowered active rectifier that operates from 0.25–20 V for energy harvesting applications. The proposed circuit self-startups from a low voltage using a charge pump and amplifies the voltage with a voltage doubler (VD) topology to provide succeeding circuits such as boost converters with a higher voltage. When the voltage of the energy harvester reaches a high threshold, the circuit switches its topology to a full-wave rectifier (FR) that does not amplify the voltage. The start-up circuit can limit its voltage intake to prevent boosting the high voltage, which may damage the whole circuit. Comparators with a maximum operating voltage of 5.5 V used in the implementation of the rectifier are protected by a diode and resistor based circuit. A piezoelectric energy harvester (PEH) that has a wide open-circuit voltage of 0.4–15 V under the acceleration of 0.04–0.3 g was used to test the circuit. The experiment results showed the rectifier can startup from 0.25 V and switch its topology according to the PEH voltage. The voltage and power conversion efficiencies are over 90% in most cases.Engineering and Physical Sciences Research Council (EPSRC)Royal Societ

    Piezoelectric energy harvesting solutions

    Get PDF
    This paper reviews the state of the art in piezoelectric energy harvesting. It presents the basics of piezoelectricity and discusses materials choice. The work places emphasis on material operating modes and device configurations, from resonant to non-resonant devices and also to rotational solutions. The reviewed literature is compared based on power density and bandwidth. Lastly, the question of power conversion is addressed by reviewing various circuit solutions

    Energy Harvesting Powered Wireless Sensor Nodes With Energy Efficient Network Joining Strategies

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordThis paper presents strategies for batteryless energy harvesting powered wireless sensor nodes based on IEEE 802.15.4e standard to join the network successfully with minimal attempts, which minimizes energy wastage. This includes using a well-sized capacitor and different duty cycles for the network joining. Experimental results showed a wireless sensor node that uses a 100 mF energy storage capacitor can usually join the network in one attempt but multiple attempts may be needed if it uses smaller capacitances especially when the harvested power is low. With a duty-cycled network joining, the time required to form a network is shorter, which reduces the overall energy usage of the nodes in joining the network. An energy harvesting powered wireless sensor network (WSN) was successfully formed in one attempt by using the proposed methods.Engineering and Physical Sciences Research Council (EPSRC

    A Comprehensive Survey on RF Energy Harvesting: Applications and Performance Determinants

    Get PDF
    \ua9 2022 by the authors. Licensee MDPI, Basel, Switzerland.There has been an explosion in research focused on Internet of Things (IoT) devices in recent years, with a broad range of use cases in different domains ranging from industrial automation to business analytics. Being battery-powered, these small devices are expected to last for extended periods (i.e., in some instances up to tens of years) to ensure network longevity and data streams with the required temporal and spatial granularity. It becomes even more critical when IoT devices are installed within a harsh environment where battery replacement/charging is both costly and labour intensive. Recent developments in the energy harvesting paradigm have significantly contributed towards mitigating this critical energy issue by incorporating the renewable energy potentially available within any environment in which a sensor network is deployed. Radio Frequency (RF) energy harvesting is one of the promising approaches being investigated in the research community to address this challenge, conducted by harvesting energy from the incident radio waves from both ambient and dedicated radio sources. A limited number of studies are available covering the state of the art related to specific research topics in this space, but there is a gap in the consolidation of domain knowledge associated with the factors influencing the performance of RF power harvesting systems. Moreover, a number of topics and research challenges affecting the performance of RF harvesting systems are still unreported, which deserve special attention. To this end, this article starts by providing an overview of the different application domains of RF power harvesting outlining their performance requirements and summarizing the RF power harvesting techniques with their associated power densities. It then comprehensively surveys the available literature on the horizons that affect the performance of RF energy harvesting, taking into account the evaluation metrics, power propagation models, rectenna architectures, and MAC protocols for RF energy harvesting. Finally, it summarizes the available literature associated with RF powered networks and highlights the limitations, challenges, and future research directions by synthesizing the research efforts in the field of RF energy harvesting to progress research in this area

    Design and Development of a Self-contained and Non-Invasive Integrated System for Electricity Monitoring Applications

    Get PDF
    Growing interest in improving the energy consumption efficiency in residential and commercial buildings has led to the emergence of intelligent energy management systems. This growing technology allows the transformation of the outdated electric distribution network within buildings to a smart and intelligent system. A major challenge in the development of such infrastructure is the need for low cost, integrated, self-contained, and non-invasive wireless sensor nodes. While an electric meter provides the utility company with information regarding the total energy consumption, no information is provided to the consumers regarding the energy consumed by individual appliances. Such visibility can provide consumers with the ability to better control and manage their energy usage leading to a reduced overall energy consumption. This work explores the design and development of a self-contained and non-invasive integrated system intended for real-time electricity monitoring within residential and commercial buildings. The proposed system includes an Energy Harvester, an electric current sensor, a Micro-controller Unit, and a wireless communication device. The proposed system is self-powered and non-invasive, which offers a promising solution in providing real time information regarding the energy distribution within buildings. The design featured in this work provides an innovative approach in the development of a customized interface circuitry that is designed to collect and regulate the energy from the Energy Harvester. The entire sensor node will operate under a power budget in the range of microwatts collected by the Energy Harvester. A Wireless MCU is programmed to acquire, process, and transmit the data from the sensor to the central hub via Bluetooth Low Energy connectivity. The real-time data transmitted to the central hub provides detailed information regarding the energy consumed by individual appliances within the building

    Highly Efficient Omnidirectional Integrated Multi-Band Wireless Energy Harvesters for Compact Sensor Nodes of Internet-of-Things

    Get PDF

    Energy autonomous systems : future trends in devices, technology, and systems

    Get PDF
    The rapid evolution of electronic devices since the beginning of the nanoelectronics era has brought about exceptional computational power in an ever shrinking system footprint. This has enabled among others the wealth of nomadic battery powered wireless systems (smart phones, mp3 players, GPS, …) that society currently enjoys. Emerging integration technologies enabling even smaller volumes and the associated increased functional density may bring about a new revolution in systems targeting wearable healthcare, wellness, lifestyle and industrial monitoring applications

    Nano-Power Integrated Circuits for Energy Harvesting

    Get PDF
    The energy harvesting research field has grown considerably in the last decade due to increasing interests in energy autonomous sensing systems, which require smart and efficient interfaces for extracting power from energy source and power management (PM) circuits. This thesis investigates the design trade-offs for minimizing the intrinsic power of PM circuits, in order to allow operation with very weak energy sources. For validation purposes, three different integrated power converter and PM circuits for energy harvesting applications are presented. They have been designed for nano-power operations and single-source converters can operate with input power lower than 1 μW. The first IC is a buck-boost converter for piezoelectric transducers (PZ) implementing Synchronous Electrical Charge Extraction (SECE), a non-linear energy extraction technique. Moreover, Residual Charge Inversion technique is exploited for extracting energy from PZ with weak and irregular excitations (i.e. lower voltage), and the implemented PM policy, named Two-Way Energy Storage, considerably reduces the start-up time of the converter, improving the overall conversion efficiency. The second proposed IC is a general-purpose buck-boost converter for low-voltage DC energy sources, up to 2.5 V. An ultra-low-power MPPT circuit has been designed in order to track variations of source power. Furthermore, a capacitive boost circuit has been included, allowing the converter start-up from a source voltage VDC0 = 223 mV. A nano-power programmable linear regulator is also included in order to provide a stable voltage to the load. The third IC implements an heterogeneous multisource buck-boost converter. It provides up to 9 independent input channels, of which 5 are specific for PZ (with SECE) and 4 for DC energy sources with MPPT. The inductor is shared among channels and an arbiter, designed with asynchronous logic to reduce the energy consumption, avoids simultaneous access to the buck-boost core, with a dynamic schedule based on source priority

    Power Management ICs for Internet of Things, Energy Harvesting and Biomedical Devices

    Get PDF
    This dissertation focuses on the power management unit (PMU) and integrated circuits (ICs) for the internet of things (IoT), energy harvesting and biomedical devices. Three monolithic power harvesting methods are studied for different challenges of smart nodes of IoT networks. Firstly, we propose that an impedance tuning approach is implemented with a capacitor value modulation to eliminate the quiescent power consumption. Secondly, we develop a hill-climbing MPPT mechanism that reuses and processes the information of the hysteresis controller in the time-domain and is free of power hungry analog circuits. Furthermore, the typical power-performance tradeoff of the hysteresis controller is solved by a self-triggered one-shot mechanism. Thus, the output regulation achieves high-performance and yet low-power operations as low as 12 µW. Thirdly, we introduce a reconfigurable charge pump to provide the hybrid conversion ratios (CRs) as 1⅓× up to 8× for minimizing the charge redistribution loss. The reconfigurable feature also dynamically tunes to maximum power point tracking (MPPT) with the frequency modulation, resulting in a two-dimensional MPPT. Therefore, the voltage conversion efficiency (VCE) and the power conversion efficiency (PCE) are enhanced and flattened across a wide harvesting range as 0.45 to 3 V. In a conclusion, we successfully develop an energy harvesting method for the IoT smart nodes with lower cost, smaller size, higher conversion efficiency, and better applicability. For the biomedical devices, this dissertation presents a novel cost-effective automatic resonance tracking method with maximum power transfer (MPT) for piezoelectric transducers (PT). The proposed tracking method is based on a band-pass filter (BPF) oscillator, exploiting the PT’s intrinsic resonance point through a sensing bridge. It guarantees automatic resonance tracking and maximum electrical power converted into mechanical motion regardless of process variations and environmental interferences. Thus, the proposed BPF oscillator-based scheme was designed for an ultrasonic vessel sealing and dissecting (UVSD) system. The sealing and dissecting functions were verified experimentally in chicken tissue and glycerin. Furthermore, a combined sensing scheme circuit allows multiple surgical tissue debulking, vessel sealer and dissector (VSD) technologies to operate from the same sensing scheme board. Its advantage is that a single driver controller could be used for both systems simplifying the complexity and design cost. In a conclusion, we successfully develop an ultrasonic scalpel to replace the other electrosurgical counterparts and the conventional scalpels with lower cost and better functionality
    • …
    corecore