1,057 research outputs found

    Adaptive segmentation of textured images by using the coupled Markov random field model

    Get PDF
    Author name used in this publication: (David) Dagan FengCentre for Multimedia Signal Processing, Department of Electronic and Information Engineering2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Semantically Informed Multiview Surface Refinement

    Full text link
    We present a method to jointly refine the geometry and semantic segmentation of 3D surface meshes. Our method alternates between updating the shape and the semantic labels. In the geometry refinement step, the mesh is deformed with variational energy minimization, such that it simultaneously maximizes photo-consistency and the compatibility of the semantic segmentations across a set of calibrated images. Label-specific shape priors account for interactions between the geometry and the semantic labels in 3D. In the semantic segmentation step, the labels on the mesh are updated with MRF inference, such that they are compatible with the semantic segmentations in the input images. Also, this step includes prior assumptions about the surface shape of different semantic classes. The priors induce a tight coupling, where semantic information influences the shape update and vice versa. Specifically, we introduce priors that favor (i) adaptive smoothing, depending on the class label; (ii) straightness of class boundaries; and (iii) semantic labels that are consistent with the surface orientation. The novel mesh-based reconstruction is evaluated in a series of experiments with real and synthetic data. We compare both to state-of-the-art, voxel-based semantic 3D reconstruction, and to purely geometric mesh refinement, and demonstrate that the proposed scheme yields improved 3D geometry as well as an improved semantic segmentation

    Multi-View Stereo with Single-View Semantic Mesh Refinement

    Get PDF
    While 3D reconstruction is a well-established and widely explored research topic, semantic 3D reconstruction has only recently witnessed an increasing share of attention from the Computer Vision community. Semantic annotations allow in fact to enforce strong class-dependent priors, as planarity for ground and walls, which can be exploited to refine the reconstruction often resulting in non-trivial performance improvements. State-of-the art methods propose volumetric approaches to fuse RGB image data with semantic labels; even if successful, they do not scale well and fail to output high resolution meshes. In this paper we propose a novel method to refine both the geometry and the semantic labeling of a given mesh. We refine the mesh geometry by applying a variational method that optimizes a composite energy made of a state-of-the-art pairwise photo-metric term and a single-view term that models the semantic consistency between the labels of the 3D mesh and those of the segmented images. We also update the semantic labeling through a novel Markov Random Field (MRF) formulation that, together with the classical data and smoothness terms, takes into account class-specific priors estimated directly from the annotated mesh. This is in contrast to state-of-the-art methods that are typically based on handcrafted or learned priors. We are the first, jointly with the very recent and seminal work of [M. Blaha et al arXiv:1706.08336, 2017], to propose the use of semantics inside a mesh refinement framework. Differently from [M. Blaha et al arXiv:1706.08336, 2017], which adopts a more classical pairwise comparison to estimate the flow of the mesh, we apply a single-view comparison between the semantically annotated image and the current 3D mesh labels; this improves the robustness in case of noisy segmentations.Comment: {\pounds}D Reconstruction Meets Semantic, ICCV worksho

    Simultaneous motion detection and background reconstruction with a conditional mixed-state markov random field

    Get PDF
    In this work we present a new way of simultaneously solving the problems of motion detection and background image reconstruction. An accurate estimation of the background is only possible if we locate the moving objects. Meanwhile, a correct motion detection is achieved if we have a good available background model. The key of our joint approach is to define a single random process that can take two types of values, instead of defining two different processes, one symbolic (motion detection) and one numeric (background intensity estimation). It thus allows to exploit the (spatio-temporal) interaction between a decision (motion detection) and an estimation (intensity reconstruction) problem. Consequently, the meaning of solving both tasks jointly, is to obtain a single optimal estimate of such a process. The intrinsic interaction and simultaneity between both problems is shown to be better modeled within the so-called mixed-state statistical framework, which is extended here to account for symbolic states and conditional random fields. Experiments on real sequences and comparisons with existing motion detection methods support our proposal. Further implications for video sequence inpainting will be also discussed. © 2011 Springer Science+Business Media, LLC.postprin

    Colour, texture, and motion in level set based segmentation and tracking

    Get PDF
    This paper introduces an approach for the extraction and combination of different cues in a level set based image segmentation framework. Apart from the image grey value or colour, we suggest to add its spatial and temporal variations, which may provide important further characteristics. It often turns out that the combination of colour, texture, and motion permits to distinguish object regions that cannot be separated by one cue alone. We propose a two-step approach. In the first stage, the input features are extracted and enhanced by applying coupled nonlinear diffusion. This ensures coherence between the channels and deals with outliers. We use a nonlinear diffusion technique, closely related to total variation flow, but being strictly edge enhancing. The resulting features are then employed for a vector-valued front propagation based on level sets and statistical region models that approximate the distributions of each feature. The application of this approach to two-phase segmentation is followed by an extension to the tracking of multiple objects in image sequences

    Segmentation of dual modality brain PET/CT images using the MAP-MRF model

    Get PDF
    Author name used in this publication: Michael FulhamAuthor name used in this publication: Dagan FengRefereed conference paper2008-2009 > Academic research: refereed > Refereed conference paperVersion of RecordPublishe

    Two and three dimensional segmentation of multimodal imagery

    Get PDF
    The role of segmentation in the realms of image understanding/analysis, computer vision, pattern recognition, remote sensing and medical imaging in recent years has been significantly augmented due to accelerated scientific advances made in the acquisition of image data. This low-level analysis protocol is critical to numerous applications, with the primary goal of expediting and improving the effectiveness of subsequent high-level operations by providing a condensed and pertinent representation of image information. In this research, we propose a novel unsupervised segmentation framework for facilitating meaningful segregation of 2-D/3-D image data across multiple modalities (color, remote-sensing and biomedical imaging) into non-overlapping partitions using several spatial-spectral attributes. Initially, our framework exploits the information obtained from detecting edges inherent in the data. To this effect, by using a vector gradient detection technique, pixels without edges are grouped and individually labeled to partition some initial portion of the input image content. Pixels that contain higher gradient densities are included by the dynamic generation of segments as the algorithm progresses to generate an initial region map. Subsequently, texture modeling is performed and the obtained gradient, texture and intensity information along with the aforementioned initial partition map are used to perform a multivariate refinement procedure, to fuse groups with similar characteristics yielding the final output segmentation. Experimental results obtained in comparison to published/state-of the-art segmentation techniques for color as well as multi/hyperspectral imagery, demonstrate the advantages of the proposed method. Furthermore, for the purpose of achieving improved computational efficiency we propose an extension of the aforestated methodology in a multi-resolution framework, demonstrated on color images. Finally, this research also encompasses a 3-D extension of the aforementioned algorithm demonstrated on medical (Magnetic Resonance Imaging / Computed Tomography) volumes
    corecore