5,459 research outputs found

    Adaptive multichannel control of time-varying broadband noise and vibrations

    Get PDF
    This paper presents results obtained from a number of applications in which a recent adaptive algorithm for broadband multichannel active noise control is used. The core of the algorithm uses the inverse of the minimum-phase part of the secondary path for improvement of the speed of convergence. A further improvement of the speed of convergence is obtained by using double control filters for elimination of adaptation loop delay. Regularization was found to be necessary for robust operation. The regularization technique which is used preserves the structure to eliminate the adaptation loop delay. Depending on the application at hand, a number of extensions are used for this algorithm. For an application with rapidly changing disturbance spectra, the core algorithm was extended with an iterative affine projection scheme, leading to improved convergence rates as compared to the standard nomalized lms update rules. In another application, in which the influence of the parametric uncertainties was critical, the core algorithm was extended with low authority control loops operating at high sample rates. In addition, results of other applications are given, such as control of acoustic energy density and control of time-varying periodic and non-periodic vibrations

    Underdetermined-order recursive least-squares adaptive filtering: The concept and algorithms

    No full text
    Published versio

    A Stochastic Majorize-Minimize Subspace Algorithm for Online Penalized Least Squares Estimation

    Full text link
    Stochastic approximation techniques play an important role in solving many problems encountered in machine learning or adaptive signal processing. In these contexts, the statistics of the data are often unknown a priori or their direct computation is too intensive, and they have thus to be estimated online from the observed signals. For batch optimization of an objective function being the sum of a data fidelity term and a penalization (e.g. a sparsity promoting function), Majorize-Minimize (MM) methods have recently attracted much interest since they are fast, highly flexible, and effective in ensuring convergence. The goal of this paper is to show how these methods can be successfully extended to the case when the data fidelity term corresponds to a least squares criterion and the cost function is replaced by a sequence of stochastic approximations of it. In this context, we propose an online version of an MM subspace algorithm and we study its convergence by using suitable probabilistic tools. Simulation results illustrate the good practical performance of the proposed algorithm associated with a memory gradient subspace, when applied to both non-adaptive and adaptive filter identification problems
    corecore