56,668 research outputs found

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    Educational Implications Following Idiopathic Encephalopathy and Prolonged Coma: A Longitudinal Case Study

    Full text link
    This paper explores standard considerations of accommodations for paediatric acquired brain injury (ABI) survivors as illustrated through an intensive case study. Specifically, we explore methods by which school systems can enhance a middle school student’s learning environment after losing 30 points in his intellectual functioning (IQ) following a rare coma recovery. For the purpose of this paper, coma is defined as a period following neurological injury or illness during which an individual does not open his/her eyes and does not have sleep–wake cycles. This case emphasises the use of current behavioural evidence-based treatments in young ABI patients. Multiple comparisons are especially beneficial in delineating the strength of intervention modalities and specific challenges unique to this population. Current data are of particular interest because measures of both pre- and post-morbid functioning are available, because of earlier school testing for a pre-existing learning disability. Finally, implications for prognosis and treatment of young ABI patients are discussed

    Logic, self-awareness and self-improvement: The metacognitive loop and the problem of brittleness

    Get PDF
    This essay describes a general approach to building perturbation-tolerant autonomous systems, based on the conviction that artificial agents should be able notice when something is amiss, assess the anomaly, and guide a solution into place. We call this basic strategy of self-guided learning the metacognitive loop; it involves the system monitoring, reasoning about, and, when necessary, altering its own decision-making components. In this essay, we (a) argue that equipping agents with a metacognitive loop can help to overcome the brittleness problem, (b) detail the metacognitive loop and its relation to our ongoing work on time-sensitive commonsense reasoning, (c) describe specific, implemented systems whose perturbation tolerance was improved by adding a metacognitive loop, and (d) outline both short-term and long-term research agendas

    The effects of context processing on social cognition impairments in adults with Aspergers syndrome

    Get PDF
    Social cognition—the basis of all communicative and otherwise interpersonal relationships—is embedded in specific contextual circumstances which shape intrinsic meanings. This domain is compromised in the autism spectrum disorders (ASDs), including Asperger’s syndrome (AS) (DSM-V). However, the few available reports of social cognition skills in adults with AS have largely neglected the effects of contextual factors. Moreover, previous studies on this population have also failed to simultaneously (a) assess multiple social cognition domains, (b) examine executive functions, (c) follow strict sample selection criteria, and (d) acknowledge the cognitive heterogeneity typical of the disorder. The study presently reviewed (Baez et al., 2012), addressed all these aspects in order to establish the basis of social cognition deficits in adult AS patients. Specifically, we assessed the performance of AS adults in multiple social cognition tasks with different context-processing requirements. The results suggest that social cognition deficits in AS imply a reduced ability to implicitly encode and integrate contextual cues needed to access social meaning. Nevertheless, the patients’ performance was normal when explicit social information was presented or when the situation could be navigated with abstract rules. Here, we review the results of our study and other relevant data, and discuss their implications for the diagnosis and treatment of AS and other neuropsychiatric conditions (e.g., schizophrenia, bipolar disorder, frontotemporal dementia). Finally, we analyze previous results in the light of a current neurocognitive model of social-context processing.Fil: Báez Buitrago, Sandra Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva. Fundación Favaloro. Instituto de Neurociencia Cognitiva; Argentina. Universidad Diego Portales; ChileFil: Ibanez Barassi, Agustin Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva. Fundación Favaloro. Instituto de Neurociencia Cognitiva; Argentina. Universidad Diego Portales; Chile. Universidad Autónoma del Caribe; Colombia. Australian Research Council; Australi

    Practopoiesis: Or how life fosters a mind

    Get PDF
    The mind is a biological phenomenon. Thus, biological principles of organization should also be the principles underlying mental operations. Practopoiesis states that the key for achieving intelligence through adaptation is an arrangement in which mechanisms laying a lower level of organization, by their operations and interaction with the environment, enable creation of mechanisms lying at a higher level of organization. When such an organizational advance of a system occurs, it is called a traverse. A case of traverse is when plasticity mechanisms (at a lower level of organization), by their operations, create a neural network anatomy (at a higher level of organization). Another case is the actual production of behavior by that network, whereby the mechanisms of neuronal activity operate to create motor actions. Practopoietic theory explains why the adaptability of a system increases with each increase in the number of traverses. With a larger number of traverses, a system can be relatively small and yet, produce a higher degree of adaptive/intelligent behavior than a system with a lower number of traverses. The present analyses indicate that the two well-known traverses-neural plasticity and neural activity-are not sufficient to explain human mental capabilities. At least one additional traverse is needed, which is named anapoiesis for its contribution in reconstructing knowledge e.g., from long-term memory into working memory. The conclusions bear implications for brain theory, the mind-body explanatory gap, and developments of artificial intelligence technologies.Comment: Revised version in response to reviewer comment
    • …
    corecore