58 research outputs found

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research.Comment: Invited paper for Special Issue "Network and Rateless Coding for Video Streaming" - MDPI Informatio

    Random Linear Fountain Code with Improved Decoding Success Probability

    Full text link
    In this paper we study the problem of increasing the decoding success probability of random linear fountain code over GF(2) for small packet lengths used in delay-intolerant applications such as multimedia streaming. Such code over GF(2) are attractive as they have lower decoding complexity than codes over larger field size, but suffer from high transmission redundancy. In our proposed coding scheme we construct a codeword which is not a linear combination of any codewords previously transmitted to mitigate such transmission redundancy. We then note the observation that the probability of receiving a linearly dependent codeword is highest when the receiver has received k-1 linearly independent codewords. We propose using the BlockACK frame so that the codeword received after k-1 linearly independent codeword is always linearly independent, this reduces the expected redundancy by a factor of three.Comment: This paper appears in: Communications (APCC), 2016 22nd Asia-Pacific Conference o

    Random Linear Network Coding for 5G Mobile Video Delivery

    Get PDF
    An exponential increase in mobile video delivery will continue with the demand for higher resolution, multi-view and large-scale multicast video services. Novel fifth generation (5G) 3GPP New Radio (NR) standard will bring a number of new opportunities for optimizing video delivery across both 5G core and radio access networks. One of the promising approaches for video quality adaptation, throughput enhancement and erasure protection is the use of packet-level random linear network coding (RLNC). In this review paper, we discuss the integration of RLNC into the 5G NR standard, building upon the ideas and opportunities identified in 4G LTE. We explicitly identify and discuss in detail novel 5G NR features that provide support for RLNC-based video delivery in 5G, thus pointing out to the promising avenues for future research

    Datacenter Traffic Control: Understanding Techniques and Trade-offs

    Get PDF
    Datacenters provide cost-effective and flexible access to scalable compute and storage resources necessary for today's cloud computing needs. A typical datacenter is made up of thousands of servers connected with a large network and usually managed by one operator. To provide quality access to the variety of applications and services hosted on datacenters and maximize performance, it deems necessary to use datacenter networks effectively and efficiently. Datacenter traffic is often a mix of several classes with different priorities and requirements. This includes user-generated interactive traffic, traffic with deadlines, and long-running traffic. To this end, custom transport protocols and traffic management techniques have been developed to improve datacenter network performance. In this tutorial paper, we review the general architecture of datacenter networks, various topologies proposed for them, their traffic properties, general traffic control challenges in datacenters and general traffic control objectives. The purpose of this paper is to bring out the important characteristics of traffic control in datacenters and not to survey all existing solutions (as it is virtually impossible due to massive body of existing research). We hope to provide readers with a wide range of options and factors while considering a variety of traffic control mechanisms. We discuss various characteristics of datacenter traffic control including management schemes, transmission control, traffic shaping, prioritization, load balancing, multipathing, and traffic scheduling. Next, we point to several open challenges as well as new and interesting networking paradigms. At the end of this paper, we briefly review inter-datacenter networks that connect geographically dispersed datacenters which have been receiving increasing attention recently and pose interesting and novel research problems.Comment: Accepted for Publication in IEEE Communications Surveys and Tutorial

    Queue stability analysis in network coded wireless multicast.

    Get PDF
    In this dissertation queue stability in wireless multicast networks with packet erasure channels is studied. Our focus is on optimizing packet scheduling so as to maximize throughput. Specifically, new queuing strategies consisting of several sub-queues are introduced, where all newly arrived packets are first stored in the main sub-queue on a first-come-first-served basis. Using the receiver feedback, the transmitter combines packets from different sub-queues for transmission. Our objective is to maximize the input rate under the queue stability constraints. Two packet scheduling and encoding algorithms have been developed. First, the optimization problem is formulated as a linear programming (LP) problem, according to which a network coding based optimal packet scheduling scheme is obtained. Second, the Lyapunov optimization model is adopted and decision variables are defined to derive a network coding based packet scheduling algorithm, which has significantly less complexity and smaller queue backlog compared with the LP solution. Further, an extension of the proposed algorithm is derived to meet the requirements of time-critical data transmission, where each packet expires after a predefined deadline and then dropped from the system. To minimize the average transmission power, we further derive a scheduling policy that simultaneously minimizes both power and queue size, where the transmitter may choose to be idle to save energy consumption. Moreover, a redundancy in the schedules is inadvertently revealed by the algorithm. By detecting and removing the redundancy we further reduce the system complexity. Finally, the simulation results verify the effectiveness of our proposed algorithms over existing works

    Ad-hoc Stream Adaptive Protocol

    Get PDF
    With the growing market of smart-phones, sophisticated applications that do extensive computation are common on mobile platform; and with consumers’ high expectation of technologies to stay connected on the go, academic researchers and industries have been making efforts to find ways to stream multimedia contents to mobile devices. However, the restricted wireless channel bandwidth, unstable nature of wireless channels, and unpredictable nature of mobility, has been the major road block for wireless streaming advance forward. In this paper, various recent studies on mobility and P2P system proposal are explained and analyzed, and propose a new design based on existing P2P systems, aimed to solve the wireless and mobility issues

    Instantly Decodable Network Coding: From Point to Multi-Point to Device-to-Device Communications

    Get PDF
    The network coding paradigm enhances transmission efficiency by combining information flows and has drawn significant attention in information theory, networking, communications and data storage. Instantly decodable network coding (IDNC), a subclass of network coding, has demonstrated its ability to improve the quality of service of time critical applications thanks to its attractive properties, namely the throughput enhancement, delay reduction, simple XOR-based encoding and decoding, and small coefficient overhead. Nonetheless, for point to multi-point (PMP) networks, IDNC cannot guarantee the decoding of a specific new packet at individual devices in each transmission. Furthermore, for device-to-device (D2D) networks, the transmitting devices may possess only a subset of packets, which can be used to form coded packets. These challenges require the optimization of IDNC algorithms to be suitable for different application requirements and network configurations. In this thesis, we first study a scalable live video broadcast over a wireless PMP network, where the devices receive video packets from a base station. Such layered live video has a hard deadline and imposes a decoding order on the video layers. We design two prioritized IDNC algorithms that provide a high level of priority to the most important video layer before considering additional video layers in coding decisions. These prioritized algorithms are shown to increase the number of decoded video layers at the devices compared to the existing network coding schemes. We then study video distribution over a partially connected D2D network, where a group of devices cooperate with each other to recover their missing video content. We introduce a cooperation aware IDNC graph that defines all feasible coding and transmission conflictfree decisions. Using this graph, we propose an IDNC solution that avoids coding and transmission conflicts, and meets the hard deadline for high importance video packets. It is demonstrated that the proposed solution delivers an improved video quality to the devices compared to the video and cooperation oblivious coding schemes. We also consider a heterogeneous network wherein devices use two wireless interfaces to receive packets from the base station and another device concurrently. For such network, we are interested in applications with reliable in-order packet delivery requirements. We represent all feasible coding opportunities and conflict-free transmissions using a dual interface IDNC graph. We select a maximal independent set over the graph by considering dual interfaces of individual devices, in-order delivery requirements of packets and lossy channel conditions. This graph based solution is shown to reduce the in-order delivery delay compared to the existing network coding schemes. Finally, we consider a D2D network with a group of devices experiencing heterogeneous channel capacities. For such cooperative scenarios, we address the problem of minimizing the completion time required for recovering all missing packets at the devices using IDNC and physical layer rate adaptation. Our proposed IDNC algorithm balances between the adopted transmission rate and the number of targeted devices that can successfully receive the transmitted packet. We show that the proposed rate aware IDNC algorithm reduces the completion time compared to the rate oblivious coding scheme
    • …
    corecore