944 research outputs found

    GPU-based ultra-fast direct aperture optimization for online adaptive radiation therapy

    Full text link
    Online adaptive radiation therapy (ART) has great promise to significantly reduce normal tissue toxicity and/or improve tumor control through real-time treatment adaptations based on the current patient anatomy. However, the major technical obstacle for clinical realization of online ART, namely the inability to achieve real-time efficiency in treatment re-planning, has yet to be solved. To overcome this challenge, this paper presents our work on the implementation of an intensity modulated radiation therapy (IMRT) direct aperture optimization (DAO) algorithm on graphics processing unit (GPU) based on our previous work on CPU. We formulate the DAO problem as a large-scale convex programming problem, and use an exact method called column generation approach to deal with its extremely large dimensionality on GPU. Five 9-field prostate and five 5-field head-and-neck IMRT clinical cases with 5\times5 mm2 beamlet size and 2.5\times2.5\times2.5 mm3 voxel size were used to evaluate our algorithm on GPU. It takes only 0.7~2.5 seconds for our implementation to generate optimal treatment plans using 50 MLC apertures on an NVIDIA Tesla C1060 GPU card. Our work has therefore solved a major problem in developing ultra-fast (re-)planning technologies for online ART

    Stereotactic MRI-guided Adaptive Radiation Therapy (SMART) for Locally Advanced Pancreatic Cancer: A Promising Approach.

    Get PDF
    Locally advanced pancreatic cancer (LAPC) is characterized by poor prognosis and low response durability with standard-of-care chemotherapy or chemoradiotherapy treatment. Stereotactic body radiation therapy (SBRT), which has a shorter treatment course than conventionally fractionated radiotherapy and allows for better integration with systemic therapy, may confer a survival benefit but is limited by gastrointestinal toxicity. Stereotactic MRI-guided adaptive radiation therapy (SMART) has recently gained attention for its potential to increase treatment precision and thus minimize this toxicity through continuous real-time soft-tissue imaging during radiotherapy. The case presented here illustrates the promising outcome of a 69-year-old male patient with LAPC treated with SMART with daily adaptive planning and respiratory-gated technique

    Applications of a Biomechanical Patient Model for Adaptive Radiation Therapy

    Get PDF
    Biomechanical patient modeling incorporates physical knowledge of the human anatomy into the image processing that is required for tracking anatomical deformations during adaptive radiation therapy, especially particle therapy. In contrast to standard image registration, this enforces bio-fidelic image transformation. In this thesis, the potential of a kinematic skeleton model and soft tissue motion propagation are investigated for crucial image analysis steps in adaptive radiation therapy. The first application is the integration of the kinematic model in a deformable image registration process (KinematicDIR). For monomodal CT scan pairs, the median target registration error based on skeleton landmarks, is smaller than (1.6 ± 0.2) mm. In addition, the successful transferability of this concept to otherwise challenging multimodal registration between CT and CBCT as well as CT and MRI scan pairs is shown to result in median target registration error in the order of 2 mm. This meets the accuracy requirement for adaptive radiation therapy and is especially interesting for MR-guided approaches. Another aspect, emerging in radiotherapy, is the utilization of deep-learning-based organ segmentation. As radiotherapy-specific labeled data is scarce, the training of such methods relies heavily on augmentation techniques. In this work, the generation of synthetically but realistically deformed scans used as Bionic Augmentation in the training phase improved the predicted segmentations by up to 15% in the Dice similarity coefficient, depending on the training strategy. Finally, it is shown that the biomechanical model can be built-up from automatic segmentations without deterioration of the KinematicDIR application. This is essential for use in a clinical workflow

    Stereotactic Magnetic Resonance-guided Online Adaptive Radiotherapy for Oligometastatic Breast Cancer: A Case Report.

    Get PDF
    We present a case of durable local control achieved in a patient treated with stereotactic magnetic resonance-guided adaptive radiation therapy (SMART) for an abdominal lymph node in the setting of oligometastatic breast cancer. A 50-year-old woman with a history of triple positive metastatic invasive ductal carcinoma of the left breast, stage IV (T3N2M1), underwent neoadjuvant chemotherapy, mastectomy, adjuvant radiotherapy and maintenance hormonal treatment with HER2 targeted therapies. At 20 months after definitive treatment of her primary, imaging showed an isolated progressive enlargement of lymph nodes between hepatic segment V/IVB and the neck of the pancreas. Radiofrequency ablation was considered, however, this approach was decided not to be optimal due to the proximity to stomach, and pancreatic duct. The patient was treated with SMART for 40 Gray in 5 fractions. Two and a half years later, the patient remains without evidence of disease progression. She experienced Grade 2 acute and late toxicity that was successfully managed with medications. This experience shows that SMART is a feasible and effective treatment to control the abdominal oligometastatic disease for breast cancer

    Biofidelic image registration for head and neck region utilizing an in-silico articulated skeleton as a transformation model

    Get PDF
    Objective. We propose an integration scheme for a biomechanical motion model into a deformable image registration. We demonstrate its accuracy and reproducibility for adaptive radiation therapy in the head and neck region. Approach. The novel registration scheme for the bony structures in the head and neck regions is based on a previously developed articulated kinematic skeleton model. The realized iterative single-bone optimization process directly triggers posture changes of the articulated skeleton, exchanging the transformation model within the deformable image registration process. Accuracy in terms of target registration errors in the bones is evaluated for 18 vector fields of three patients between each planning CT and six fraction CT scans distributed along the treatment course. Main results. The median of target registration error distribution of the landmark pairs is 1.4 ± 0.3 mm. This is sufficient accuracy for adaptive radiation therapy. The registration performs equally well for all three patients and no degradation of the registration accuracy can be observed throughout the treatment. Significance. Deformable image registration, despite its known residual uncertainties, is until now the tool of choice towards online re-planning automation. By introducing a biofidelic motion model into the optimization, we provide a viable way towards an in-build quality assurance
    corecore