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Abstract

Objective. We propose an integration scheme for a biomechanical motion model into a deformable
image registration. We demonstrate its accuracy and reproducibility for adaptive radiation therapyin
the head and neck region. Approach. The novel registration scheme for the bony structures in the head
and neck regions is based on a previously developed articulated kinematic skeleton model. The
realized iterative single-bone optimization process directly triggers posture changes of the articulated
skeleton, exchanging the transformation model within the deformable image registration process.
Accuracy in terms of target registration errors in the bones is evaluated for 18 vector fields of three
patients between each planning CT and six fraction CT scans distributed along the treatment course.
Main results. The median of target registration error distribution of the landmark pairsis 1.4 £ 0.3
mm. This is sufficient accuracy for adaptive radiation therapy. The registration performs equally well
for all three patients and no degradation of the registration accuracy can be observed throughout the
treatment. Significance. Deformable image registration, despite its known residual uncertainties, is
until now the tool of choice towards online re-planning automation. By introducing a biofidelic
motion model into the optimization, we provide a viable way towards an in-build quality assurance.

1. Introduction

Image registration is a fundamental part of image-guided and adaptive radiation therapy for cancer. As
deformations during treatment are present in nearly every body region, deformable image registration (DIR) has
superseded the application of rigid-body methods.

Commonly used intensity-based DIR techniques can be a computationally fast and simple way to
approximate anatomical deformations. They are however susceptible to artifacts in the image due to their
reliance on voxel intensities. Moreover, homogenous regions missing high-contrast features can cause
misregistrations (Kirby e al 2011). In general, these approaches consider changes in the intensity distribution
without concern for the biomechanical properties of the tissues. This can lead to unrealistic deformations.

Utilizing biomechanical models enables the incorporation of the available knowledge of anatomy and
physiology into the registration process as a biofidelic transformation model.
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Finite element methods are assumed to provide high accuracy and are of interest when complex and
independent organ motion is considered (Brock et al 2005). They suffer however from long computation times
limiting their practical use in adaptive radiation therapy.

Simplified approaches utilize the rigidity of independent individual bones and can be used to evaluate
skeletal motion. However, they do not incorporate any motion propagation of soft tissue and ignore the
biomechanical constraints given by the joints that are essential in skeletal motion (Yip et al 2014).

To enforce rigidity of bones in image registration, intensity-based DIR algorithms were previously enhanced
with arigidity constraint (Reaungamornrat et al 2014, Konig et al 2016). These approaches consider the motion
in each rigid structure independently rather than incorporating the articulated nature of the skeleton.

For an articulated skeleton-based registration, the head and neck area is of special interest. Due to the close
proximity of tumors to organs at risk, the utilized image registration has to be very accurate and robust to
facilitate the optimal treatment in the presence of steep dose gradients. Furthermore, the head and neck region is
governed by skeletal motion between the fractions influencing soft tissue deformations. This means soft tissue
deformation can be modeled based on the skeletal motion.

In this study, we firstly propose the novel integration concept of the articulated kinematic skeleton model
introduced by Teske et al (2017a) in a fully automated registration process by wrapping the articulated skeleton
as the transformation model within the optimization process of the registration. Secondly, we quantify the
accuracy of this model to represent imaged postures in the range of anatomical deformations present in typical
inter-fractional radiotherapy treatment courses of the head and neck region. Additionally, we also test the
interdependency between the targeted postures by the registration optimizer and the achievable restricted
postures of the kinematic model, showing that a high accuracy and robustness of the registration of the skeleton
is achievable.

2. Materials and methods

2.1. Articulated biomechanical model
The model construction was previously published by Teske et al (2017a) and will be briefly summarized in the
following, highlighting the newly introduced improvements.

The biomechanical transformation model is composed of two different parts, a kinematics-based model for
the description of transformations induced in the skeleton and a chainmail-based model subsequently
deforming the adjacent soft tissue. In this study, the registration process was performed on the skeleton model,
while soft tissue extrapolation was utilized to resample the deformed image after the registration.

2.1.1. Set-up of patient specific model geometry

The construction of the model requires input segmentation of individual skeleton bones. In this study, we used
manual bone delineations on the planning CT. Skull bones are delineated as one connected structure excluding
the brain and nasal cavities, ribs were delineated including the costal cartilages. Care was taken that contours of
different bones do not overlap despite 3 mm slice thickness of the planning CT.

2.1.2. Joint positioning and parametrization

Alljoints are modeled as 3 degree-of-freedom ball-and-socket joints without mobility restrictions. Their
position is either calculated as the nearest distance between a pair of connecting bones (Teske et al 2017a), or
determined according to joint-specific rules (Teske et al 2017b). The newly positioned joints are shown in
figure 1.

Atlanto-occipital joint located between the skull and the atlas is positioned on the curve, approximating the
spinal curvature on a level with the points of contact of atlas and skull.

Atlanto-axial joint located between the atlas and axis (2nd cervical vertebra) is positioned within the
odontoid process of the axis (dens). Its eigenvector with the smallest eigenvalue represents the direction vector of
the dens. After projection of all vertebra voxels onto this eigenvector axis, the mean positions of 1% of the voxels
each from both ends of the scale are used to calculate dens axis position. The joint is approximated to be in the
middle of the line connecting both positions.

Intervertebral joint located between two adjacent vertebrae is positioned in the center of the line connecting
the two body centroids to locate it centrally within the intervertebral disk.

Costovertebral joint located between each rib and adjacent vertebral body is positioned in the center of the
shortest line connecting the center of the vertebral body and the medial axis of the rib.

Acromioclavicular joint located between the scapula and the clavicle is positioned in the center of the
nearest distance between the medial axis transforms of both bones.
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Figure 1. Visualization of joint positions in the head and neck skeleton. Newly proposed joint positions (green points) vs. the
previously applied nearest-neighbour method (red points) of the articulated skeleton model proposed by Teske et al (2017b).

Glenohumeral joint located between humerus and scapula is positioned in the center of the humeral head
(Veeger 2000). The latter is determined as the voxel with the largest distance to the humerus surface.

2.1.3. Kinematic tree and inverse kinematics solver
The described prototype is based on the open-source Simbody toolkit (Seth et al 2010, Sherman et al 2011),
which is used for the construction of the kinematic model and for solving the inverse kinematic equations. The
chosen solver is based on the L-BFGS optimization approach (Liu and Nocedal 1989). Three points with fixed
positions relative to each other characterize the position of each bone. The posture of the skeleton is modified by
moving these points according to the shift and rotation parameters chosen by the optimizer of the registration
process.

Figure 2 shows the schematic construction of the kinematic tree and the connections from the root element (
i.e. the skull). To avoid loops in the kinematic tree, the mandible and sternum are split during optimization and
kept rigidly connected using a weld constraint. This constraint is included into the cost function of the optimizer
to assure biofidelity.

2.2.Image data sets

The accuracy of the proposed non-rigid image registration approach incorporating an articulated kinematic
skeleton model is retrospectively evaluated using imaging scans of three head and neck cancer patients. All
patients have undergone postoperative fractionated radiation therapy using an integrated boost concept in 33
fractions. They were randomly selected from a patient cohort described previously including utilized fixation
(Giske eral2011) and planning dose prescription (Schwarz et al 2012). Written informed consent to use their
data was obtained from all patients.

Besides the planning CT scans, daily kV-control-CT scans were available, showing typical inter-fractional
anatomical deformations in the range from 0 to 9 mm after a rigid offset correction (Giske et al 2011). Patient 1
and 2 received multiple control-CT scans in some fractions, where image inspection uncovered re-positioning
necessity. For patient 1 and 3, some of the fraction scans were absent due to the unavailability of the scanner on
some treatment days.

In total 18 (6 per patient) fraction scans were utilized in this retrospective study. All image scans share a pixel
spacing 0f 0.98 x 0.98 mm with a slice thickness of 3, 3, and 2 mm for patients 1, 2, and 3, respectively. Planning
CT scans were acquired by a Toshiba Aquilon scanner (Toshiba, Otawara, Japan), and the fraction CT scans by a
Siemens Primatom in-room single-slice spiral scanner (Siemens OCS, Malvern, PA). In all fraction CT scans, a
stereotactic frame registration was applied to establish their spatial alignment with the planning CT scans
utilizing a stereotactic frame described earlier (Giske et al 2011).

The imaging quality including the manual segmentation on the planning CT is shown in figure 3.

2.3.Reference annotation data
To evaluate the accuracy and robustness of the proposed registration, two quantification approaches were
chosen alongside the visual assessment by image fusion.

3
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Figure 2. Articulated kinematic model build-up. (a) Scheme of the implemented dependency graph representing the human skeleton
articulation. (b) Resulting rigid body separation (blue) to resolve kinematic loops. All resulting rigid bodies are connected via a unique
joint (red points) to their predecessor and are welded together using a rigid constraint.

Figure 3. Image quality of CT slices for patient 1. (a) A sagittal and transversal slice of the planning CT indicating the measured field-
of-view. Red line indicates the position of the transversal slice. (b) The stereotactically aligned corresponding slice of a fraction CT
(F01). The chosen fraction scan is representative for the imaging quality of all fraction scans, facilitating meaningful accuracy of
manually identified correspondence points.

First, visibly identifiable points (landmarks) were manually localized on the planning CT and six fraction
scans distributed along the treatment course of all patients. At least three landmarks on each bone were marked.
For the landmarks, a combination of anatomical feature points and visually dominant intensity shifts (e.g. small
fissures) were chosen to improve the detection on several image data sets. Outlier detection and a rigidity
condition (<3 mm violation) were applied. For patient 1, we positioned at least 161 corresponding landmark
pairs per fraction scan (see figure 4).

The inter-observer variability of the landmark identification was assessed on two out of six fractions for
patient 1 by four independent observers and ranged from 0.1-2.9 mm.

Secondly, for patient 2 and 3, 63-70 corresponding landmark pairs were identified on 6 fraction scans to
evaluate the robustness of the approach over several patients and the full treatment course.
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Figure 4. Manually defined reference data. (a) Overlay of the separate bone delineations of patient 1 with the distribution of manually
localized reference points on the planning CT. Blue points are anatomical landmarks (N = 125) and red ones are intensity-based
feature points (N = 60). (b) Resulting semi-automatic skeleton segmentation for patient 1 (FO1) after manual corrections to get rid of
included metal artefacts and the pacemaker inserts.

Figure 5. Representation of the present processing pipeline using data of patient 1. (a) Manually delineated separate bones of the
skeleton as input. (b) Build-up of the articulated kinematic model by automatically positioning the involved joints (red points)
following the implemented kinematic tree (green connections) of rigid bodies (blue points mark their center of gravity). (c) The model
motion during the optimization probing the overlap of the optimized bone with the binarized selected fraction CT. (d) Optimized
translation (red arrows, 4x magnified) and rotations of every bone is passed as a posture to the soft tissue interpolation. (e)
Displacement vector field resulting from the anthropomorphic chainmail deformation propagation. (f) Color fusion of the planning
CT with its resulting resampled volume, deformed to the posture measured by the fraction CT.

2.4. Kinematic non-rigid skeleton registration

The registration pipeline established in this section is summarized in figure 5. The model is built-up from bones
and automatic joint positioning. Then the optimizer maximizes the overlap of the model and the bone tissue in
the fraction CT. The optimized motion is propagated through the surrounding soft tissue to generate the
deformation vector field. Finally, the planning CT is deformed to align with the fraction CT.

2.4.1. Similarity metric

Due to similar image quality of the datasets, we utilize the overlap of bone voxels in the model and the target
image as the similarity measure. As an objective function, this is simple and fast. Since bones are delineated in the
planning CT scan for model build-up, we only evaluate voxels within these masks. The fraction CT scans are
binarized to bones and background using a threshold at 120 HU.

2.4.2. Optimization scheme

The presented image registration prototype moves the complete skeleton depending on the kinematic rules. The
optimization, however, considers each bone sequentially following a predefined hierarchical scheme. After each
bone optimization, the respective bone is fixed and can only deviate slightly to conform to the kinematic rules as
enforced during further optimization steps.

We have adopted a Nelder—Mead-Simplex optimization approach (Nelder and Mead 1965) for each rigid-
bone optimization. Each corner of the simplex is either a 3 or a 6 dimensional point, representing a
transformation inducing either only rotations (R) or translations and rotations (R 4 T). Rotations are performed
either relative to the bone’s centroid or relative to the joint position. Bones that only undergo rotations are the
clavicles, sternum, ribs, humeri, and mandible.
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Table 1. Plastimatch parameters used for intensity-based DIR. The default settings yield a fast
registration. To achieve the best possible accuracy a second parameter set of finer grid size

is used.

Default Fine grid
Parameters Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3
Sub-sampling 4,4,2 2,2,1 2,2,1 4,4,2 2,2,1 2,2,1
Grid size (mm) 100 50 50 50 25 5
Max iterations 50 50 50 50 50 150

2.5. Soft tissue deformation propagation
To generate the deformation vector field necessary for image transformation, the optimized skeletal posture is
forwarded to a chainmail-based soft tissue deformation model published by Teske et al (2017b). Each bone voxel
is initialized with the transformation parameters obtained from the registration process. The soft tissue is
parameterized by a material-transfer function, mapping the HU-values of the planning CT scan to model-
specific elasticity parameters. In this way, the skeletal posture is propagated into the surrounding soft tissue
without the need for soft tissue segmentations.

The resulting forward vector field retains the rigidity of the bones and describes a consistent deformation of
soft tissue in the vicinity of the skeletal bones. In order to resample the deformed planning CT scan, a vector field
inversion as proposed by Aguilera et al (2015) is applied to the forward deformation field.

2.6. Comparison to intensity-based DIR

To investigate the performance of KinematicDIR in the context of existing intensity-based DIR approaches, the
registration of patient 1 is also performed using 3-stage multi-resolution registration with Plastimatch (Pinter
etal2012) in the 3DSlicer extension (Fedorov et al 2012). In each stage, the previous result is used as the initial
guess. Since the default parametrization of Plastimatch is optimized for fast registration, a second set of fine grid
parameters is chosen to give the best registration accuracy. Table 1 summarizes the two sets of parameters for
each stage.

3. Results

3.1. Visual evaluation

The visual evaluation of the registration is shown in figure 6. The color fusion indicates that after stereotactic
alignment, there are large deformations between the images. After the kinematic registration, the bones in the
images align well and the residual errors are only present in the soft tissue. In the thoracic area, differences in the
HU are mostly caused by contrast agent that is only present in the planning CT but not in any fraction CT.
Additionally, residuals arise in the soft tissue at distant locations from bones due to the local nature of the
implemented chainmail forward propagation. The blue and orange areas in the transversal and sagittal slice arise
from the limited field of view of the fraction CT and the treatment couch and frame result, respectively.

3.2. Accuracy evaluation

For each fraction, the target registration error (TRE) was calculated for all landmarks. The boxplots in figure 7
show the distribution between the predefined corresponding landmarks after the registration transformation is
applied.

The median TRE for patient 1 was 1.2 £ 0.1 mm with an inter-quartile range (IQR) of 0.9 + 0.2 mm. There is
no observable trend of the TRE within the data during the treatment course and the registration quality was
consistent for all considered fractions.

The inter-observer variability is assessed on two fractions (FO2 and F28) where four independent observers
positioned the same landmarks. Figure 7 shows that after registration, there is no relevant difference in the
distribution of residual errors for all observers. This means the inter-observer variability in the positioning of
landmarks did not contribute to the accuracy evaluation of the proposed kinematic registration. All further
landmarks were positioned by the same observer.

The comparison of KinematicDIR with the Plastimatch is shown in figure 8. The median TRE over all
fractions with the Plastimatch default settings is 2.0 & 0.3 mm and hence significantly worse than the
KinematicDIR registration. For patient 1 the tuned fine grid parameters, Plastimatch achieves a median TRE of
1.2 + 0.1 mm indicating comparable registration accuracy as observed for KinematicDIR.

6
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Figure 6. Visual quality assessment of an exemplary registration result. Upper row shows the transversal, frontal and sagittal slice of a
colour fusion of the unregistered data: planning CT (blue) without stereotactic frame and fraction CT (F01, orange). Lower row
displays the registered fusion of the deformed and resampled planning CT (blue) and the fraction CT (F01, orange). Green arrows
indicate areas of good skeleton registration. Red arrows show residual soft tissue deformations.
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Figure 7. Distribution of the target registration error after kinematic registration for six fractions of patient 1. In fractions F02 and F28,
the inter-observer variability was assessed by four observers (Obs1 — Obs4). The TRE after registration is 1.2 £ 0.1 mm with an IQR of
0.9 £ 0.2 mm. The kinematic registration shows accurate performance. The inter-observer variability is below 1 mm for both
considered fractions and all observers.

3.3.Robustness evaluation

The robustness of the proposed registration approach was evaluated using the corresponding landmark pairs on
3 patients and a total of 18 fraction CT scans. Kinematic registration was performed for each fraction. For patient
1, the distribution of the TRE after registration is shown in figure 7. For patient 2 and 3, the distribution of the
TRE per corresponding landmark is shown in figure 9. The median target registration error for patient 2 was 1.6
=+ 0.2 mm with an IQR of 1.3 £ 0.4 mm. For patient 3, the TRE was 1.5 + 0.1 mm with an IQR 0f 1.2 + 0.1 mm.
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Figure 8. Comparison of KinematicDIR and the Plastimatch DIR algorithm. Distribution of the target registration error after
registration for patient 1. For the default parameters, KinematicDIR outperforms Plastimatch, for the custom fine grid parameters,
the registration accuracy is comparable.
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Figure 9. Distribution of the target registration error after kinematic registration for six fractions of patient 2 and 3. The distributions
show a median below 2 mm and do not deteriorate throughout the treatment course. No deterioration during the treatment course is
visible. The kinematic registration performs to similar accuracy for all considered patients.

Of all subjects, patient 1 showed the best results because the large field of view in the fraction CT included a
large part of the sternum. This stabilizes the alignment of the ribcage. However, the quantitative evaluation of the
TRE shows only negligible deviation between different fractions.

Patient 2 showed slightly worse registration results for the last three considered fractions. This coincides with
are-planning after fraction 13 which resulted in a new patient positioning and hence an increased deformation
in the image space between the original planning CT and the fraction CTs.

This led to an increased uncertainty when positioning the landmarks as reported by the observers which
results in a broader distribution of the TRE without necessarily indicating a worse registration.

Opverall, the TRE for all patients and fractions was robust under realistic conditions.

4. Discussion
4.1. Model build-up

The presented articulated biomechanical model is built up from manual segmentations on the planning CT of
each individual patient. This means we proposed a patient-specific model that incorporates the shape and size of
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the bones. More importantly, this also means the joint position in the kinematic tree is specific to the individual
and is therefore an accurate representation of the skeletal system.

This requires human input for the manual segmentation of individual bones, which is expected to be, solved
in the future using convolutional neural networks (Belal et al 2019). In particular with the development of the
TotalSegmentator framework (Wasserthal et al 2022) based on the nnUnet (Isensee et al 2021), an automated
general segmentation of individual bones is published in an open-source format. The impact on the registration
performance of such automated methods should be evaluated in future studies.

Regarding the kinematic model, the use of ball and socket joint, which is known to be approximate for all
human joints, was not detrimental to the registration quality. Anatomically, however, it appears reasonable that
certain joints can be modeled using fewer degrees of freedom (Moore et al 2013). In particular, the motion of the
ribs can be further restricted this way. This specific adaption—as an example—would improve the biofidelity
further and reduce computation time.

Currently, the registration optimizer does not have any knowledge of the constraints imposed by the
kinematic tree. Due to this, the optimizer will probe points that violate the model’s constraints. We deal with this
by using the implicit projection provided by the Simbody solver utilizing the closest feasible points, which are
weighted projections onto the constraint surface. We evaluate the objective function at these points instead and
modify our initial simplex to have new positions instead. This can cause problems due to the simplex collapsing
atthe boundary (Le Floc’h 2012), yet in our experiments, we did not encounter those cases.

4.2. Accuracy and robustness evaluation

The accuracy of the presented kinematic registration approach was evaluated on six fractions with more than
160 landmarks to assure that the quality of registration is comparable over the full course of a treatment fraction
and does not deteriorate. The evaluation was limited to six fractions to limit the manual labor necessary to
identify feature points.

The target registration error and its statistical distribution showed two properties: the accuracy of the
skeleton registration is below 1.2 mm, which can be considered sufficient for adaptive workflows. In addition,
there is no significant difference or trend to be observed throughout the treatment fractions. The kinematic
registration approach retains the same level of performance even in the presence of anatomical changes in the
surrounding soft tissue.

In two of the fractions, the inter-observer variability was investigated. The effect this inter-observer-
variability had on the median TRE was below 1 mm and in line with other publications (Sarrut et al 2006).
Therefore, all other landmarks were identified by the same observer.

The comparison of KineamticDIR with the intensity-based Plastimatch DIR algorithm should be seen as a
representative comparison to put KinematicDIR into the context of current intensity-based approaches. With
tuned fine grid parameters, Plastimatch achieved a comparable accuracy as the proposed KinematicDIR.
Therefore, the advancement of the articulated skeleton model was to maintain accuracy in the TRE while
combining rigidity and enforced articulation in the approach as well as the more realistic motion modeling with
explicit joint positioning. In particular, the kinematic skeleton model enforces the realistic motion of the
complete skeleton. In addition, the coupling of the multi-body-physics model helps in prepositioning of the
skeleton after optimizing the second bone, such that compared to multiple independent rigid body registration
the number of evaluation steps is decreased. This helps to position bones in artifact-prone areas, where intensity-
based methods fail frequently.

The robustness and generalizability of the presented approach were investigated using two additional
patients with six fractions distributed along the treatment course in the same way as patient 1.

All patients underwent the same kinematic registration with the only adaptation being the optimization
order for patients without visible sternum.

For patient 2 we identified a broader distribution of the TRE for the last three fractions that can be explained
by a re-planning that occurred after F13. The resulting larger deformations between the original planning CT
and consequent fraction CTs led to larger inaccuracies in the landmark positioning. The fact that the median
TRE remains mostly unchanged indicates that the registration performance was still on a comparable level. This
also indicates that the use of positioning devices remains useful even when using the proposed kinematic
registration. Other than that, the analysis of the TRE showed no deterioration of the registration quality, and all
considered fractions show a similar distribution of the error. This indicates that the proposed method is robust
to be used with different patient anatomies and all fractions during a fractionated radiation treatment.

Atthe current stage of KinematicDIR, the registration is performed exclusively on the skeleton and all soft
tissue is deformed using motion propagation in heterogeneous soft tissue. Ongoing work includes the
incorporation of an optimization step of predefined soft tissue voxels during the soft tissue propagation.

9



10P Publishing

Phys. Med. Biol. 68 (2023) 095006 CJ Bauer et al

5. Conclusion

In this study, for the first time, we have presented the application of an articulated kinematic multi-body
skeleton model including joint positioning in deformable image registration. By incorporating biomechanical
properties into the registration scheme we provide a robust, accurate, and biofidelic image registration.

We could also verify the high accuracy and robustness of the model to fit real patient postures as measured in
CT scans during fractionated radiation therapy. We have shown the potential of kinematic model registration to
be used in adaptive radiation therapy by providing an accurate transformation model for the skeleton in the head
and neck area.
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