43,839 research outputs found

    LUNES: Agent-based Simulation of P2P Systems (Extended Version)

    Full text link
    We present LUNES, an agent-based Large Unstructured NEtwork Simulator, which allows to simulate complex networks composed of a high number of nodes. LUNES is modular, since it splits the three phases of network topology creation, protocol simulation and performance evaluation. This permits to easily integrate external software tools into the main software architecture. The simulation of the interaction protocols among network nodes is performed via a simulation middleware that supports both the sequential and the parallel/distributed simulation approaches. In the latter case, a specific mechanism for the communication overhead-reduction is used; this guarantees high levels of performance and scalability. To demonstrate the efficiency of LUNES, we test the simulator with gossip protocols executed on top of networks (representing peer-to-peer overlays), generated with different topologies. Results demonstrate the effectiveness of the proposed approach.Comment: Proceedings of the International Workshop on Modeling and Simulation of Peer-to-Peer Architectures and Systems (MOSPAS 2011). As part of the 2011 International Conference on High Performance Computing and Simulation (HPCS 2011

    Adaptive Network Dynamics and Evolution of Leadership in Collective Migration

    Full text link
    The evolution of leadership in migratory populations depends not only on costs and benefits of leadership investments but also on the opportunities for individuals to rely on cues from others through social interactions. We derive an analytically tractable adaptive dynamic network model of collective migration with fast timescale migration dynamics and slow timescale adaptive dynamics of individual leadership investment and social interaction. For large populations, our analysis of bifurcations with respect to investment cost explains the observed hysteretic effect associated with recovery of migration in fragmented environments. Further, we show a minimum connectivity threshold above which there is evolutionary branching into leader and follower populations. For small populations, we show how the topology of the underlying social interaction network influences the emergence and location of leaders in the adaptive system. Our model and analysis can describe other adaptive network dynamics involving collective tracking or collective learning of a noisy, unknown signal, and likewise can inform the design of robotic networks where agents use decentralized strategies that balance direct environmental measurements with agent interactions.Comment: Submitted to Physica D: Nonlinear Phenomen

    The Simulation Model Partitioning Problem: an Adaptive Solution Based on Self-Clustering (Extended Version)

    Full text link
    This paper is about partitioning in parallel and distributed simulation. That means decomposing the simulation model into a numberof components and to properly allocate them on the execution units. An adaptive solution based on self-clustering, that considers both communication reduction and computational load-balancing, is proposed. The implementation of the proposed mechanism is tested using a simulation model that is challenging both in terms of structure and dynamicity. Various configurations of the simulation model and the execution environment have been considered. The obtained performance results are analyzed using a reference cost model. The results demonstrate that the proposed approach is promising and that it can reduce the simulation execution time in both parallel and distributed architectures

    DISCO: Distributed Multi-domain SDN Controllers

    Full text link
    Modern multi-domain networks now span over datacenter networks, enterprise networks, customer sites and mobile entities. Such networks are critical and, thus, must be resilient, scalable and easily extensible. The emergence of Software-Defined Networking (SDN) protocols, which enables to decouple the data plane from the control plane and dynamically program the network, opens up new ways to architect such networks. In this paper, we propose DISCO, an open and extensible DIstributed SDN COntrol plane able to cope with the distributed and heterogeneous nature of modern overlay networks and wide area networks. DISCO controllers manage their own network domain and communicate with each others to provide end-to-end network services. This communication is based on a unique lightweight and highly manageable control channel used by agents to self-adaptively share aggregated network-wide information. We implemented DISCO on top of the Floodlight OpenFlow controller and the AMQP protocol. We demonstrated how DISCO's control plane dynamically adapts to heterogeneous network topologies while being resilient enough to survive to disruptions and attacks and providing classic functionalities such as end-point migration and network-wide traffic engineering. The experimentation results we present are organized around three use cases: inter-domain topology disruption, end-to-end priority service request and virtual machine migration

    Multiscale model for the effects of adaptive immunity suppression on the viral therapy of cancer

    Full text link
    Oncolytic virotherapy - the use of viruses that specifically kill tumor cells - is an innovative and highly promising route for treating cancer. However, its therapeutic outcomes are mainly impaired by the host immune response to the viral infection. In the present work, we propose a multiscale mathematical model to study how the immune response interferes with the viral oncolytic activity. The model assumes that cytotoxic T cells can induce apoptosis in infected cancer cells and that free viruses can be inactivated by neutralizing antibodies or cleared at a constant rate by the innate immune response. Our simulations suggest that reprogramming the immune microenvironment in tumors could substantially enhance the oncolytic virotherapy in immune-competent hosts. Viable routes to such reprogramming are either in situ virus-mediated impairing of CD8+8^+ T cells motility or blockade of B and T lymphocytes recruitment. Our theoretical results can shed light on the design of viral vectors or new protocols with neat potential impacts on the clinical practice.Comment: 14 pages, 4 figure
    corecore