108 research outputs found

    Technical advances in the design and deployment of future heterogeneous networks

    Get PDF
    The trend in wireless communications systems is the enhancement of the network infrastructure with the introduction of small cells, where a specific geographical area is served by low-range, low-power access points. The result is the creation of a heterogeneous topology where macrocells coexist with a variety of small-cell types. In this editorial article we briefly summarize the recent technical advances in the design and deployment of future heterogeneous networks addressed in the papers that compose this special issue. In particular the following aspects are considered: the design of interference and radio resource management algorithms, the analysis of the energy efficiency and power control issues in heterogeneous networks, the concept of coordination in small cell networks, key backhaul aspects of HetNets, deployment issues and overall management strategies.Peer ReviewedPostprint (published version

    Adaptive Power Control Applying to Femtocell

    Get PDF
    Femtocells are expected to increase network capacity, extend macrocell coverage, and introduce new services. Because Femtocells share the same frequency band with macrocells in many cases, the femtocell base station (BS) must mitigate the interference with macrocells as well as ensure coverage in customer premises. However, conventional femtocell BS transmit power setting have not adequately accounted for the interference with neighbouring macrocell mobile stations (MSs), leading to small femtocell user throughout. In the paper, we describe an adaptive power level setting scheme i.e. Distributed Power Control algorithm to mitigate the interference of MSs in the basis of the received power levels. In DPC, each pair of transmitter (e.g., an MS) and receiver (e.g., the BS) does not need to know the transmit power or channel quality of any other pair. At each time slot, all it needs to know is the actual SIR it currently achieves at the receiver. Then, by taking the ratio between the fixed, target SIR and the variable, actual SIR value measured for this time slot and multiplying the current transmit power by that ratio, we get the transmit power for the next time slot. This update happens simultaneously at each pair of transmitter and receiver. This is how DPC provides adaptive nature to Femtocell

    Interference mitigation in cognitive femtocell networks

    Get PDF
    “A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of Philosophy”.Femtocells have been introduced as a solution to poor indoor coverage in cellular communication which has hugely attracted network operators and stakeholders. However, femtocells are designed to co-exist alongside macrocells providing improved spatial frequency reuse and higher spectrum efficiency to name a few. Therefore, when deployed in the two-tier architecture with macrocells, it is necessary to mitigate the inherent co-tier and cross-tier interference. The integration of cognitive radio (CR) in femtocells introduces the ability of femtocells to dynamically adapt to varying network conditions through learning and reasoning. This research work focuses on the exploitation of cognitive radio in femtocells to mitigate the mutual interference caused in the two-tier architecture. The research work presents original contributions in mitigating interference in femtocells by introducing practical approaches which comprises a power control scheme where femtocells adaptively controls its transmit power levels to reduce the interference it causes in a network. This is especially useful since femtocells are user deployed as this seeks to mitigate interference based on their blind placement in an indoor environment. Hybrid interference mitigation schemes which combine power control and resource/scheduling are also implemented. In a joint threshold power based admittance and contention free resource allocation scheme, the mutual interference between a Femtocell Access Point (FAP) and close-by User Equipments (UE) is mitigated based on admittance. Also, a hybrid scheme where FAPs opportunistically use Resource Blocks (RB) of Macrocell User Equipments (MUE) based on its traffic load use is also employed. Simulation analysis present improvements when these schemes are applied with emphasis in Long Term Evolution (LTE) networks especially in terms of Signal to Interference plus Noise Ratio (SINR)

    Overview of interference management techniques in Femtocell networks : challenges and approach.

    Get PDF
    The most important use of techniques for the new technology network called femtocell, is to improve coverage and enhance capacity in mobile network. However, the deployment of femtocell over macrocell network has a new technology has attracted benefits in telecommunication industry. Several technical challenges toward the mass deployment of these new technology called femtocell have been addressed in industry. Interference mitigation between femtocell and macrocell, and among the neighboring femtocell user, is considered to be one of the major issues in femtocell networks due to sharing the same licensed frequency spectrum with macrocell. In this paper, we provide different techniques schemes for interference mitigation and general view for the efficiency of interference management techniques in femtocell network

    Interference management and system optimisation for Femtocells technology in LTE and future 4G/5G networks

    Get PDF
    Femtocells are seen to be the future of Long Term Evaluation (LTE) networks to improve the performance of indoor, outdoor and cell edge User Equipments (UEs). These small cells work efficiently in areas that suffer from high penetration loss and path-loss to improve the coverage area. It is said that 30% of total served UEs in LTE networks are vehicular, which poses challenges in LTE networks due to their high mobility, high vehicular penetration loss (VPL), high path loss and high interference. Therefore, self-optimising and dynamic solutions are required to incorporate more intelligence into the current standard of LTE system. This makes the network more adaptive, able to handle peak data demands and cope with the increasing capacity for vehicular UEs. This research has drawn a performance comparison between vehicular UEs who are served by Mobile-Femto, Fixed-Femto and eNB under different VPL scales that range between highs and lows e.g. 0dB, 25dB and 40dB. Deploying Mobile-Femto under high VPLs has improved the vehicular UE Ergodic capacity by 1% and 5% under 25dB and 40dB VPL respectively as compared to other eNB technologies. A noticeable improvement is also seen in signal strength, throughput and spectral efficiency. Furthermore, this research discusses the co-channel interference between the eNB and the Mobile-Femto as both share the same resources and bandwidth. This has created an interference issue from the downlink signals of each other to their UEs. There were no previous solutions that worked efficiently in cases where UEs and base stations are mobile. Therefore, this research has adapted an efficient frequency reuse scheme that worked dynamically over distance and achieved improved results in the signal strength and throughput of Macro and Mobile-Femto UE as compared to previous interference management schemes e.g. Fractional Frequency Reuse factor1 (NoFFR-3) and Fractional Frequency Reuse factor3 (FFR-3). Also, the achieved results show that implementing the proposed handover scheme together with the Mobile-Femto deployment has reduced the dropped calls probability by 7% and the blocked calls probability by 14% compared to the direct transmission from the eNB. Furthermore, the outage signal probabilities under different VPLs have been reduced by 1.8% and 2% when the VPLs are 25dB and 40dB respectively compared to other eNB technologies

    Hybrid Access Control Mechanism in Two-Tier Femtocell Networks

    Get PDF
    The cellular industry is undergoing a major paradigm shift from voice-centric, structured homogeneous networks to a more data-driven, distributed and heterogeneous architecture. One of the more promising trends emerging from this cellular revolution is femtocells. Femtocells are primarily viewed as a cost-effective way to improve both capacity and indoor coverage, and they enable offloading data-traffic from macrocell network. However, efficient interference management in co-channel deployment of femtocells remains a challenge. Decentralized strategies such as femtocell access control have been identified as an effective means to mitigate cross-tier interference in two-tier networks. Femtocells can be configured to be either open access or closed access. Prior work on access control schemes show that, in the absence of any coordination between the two tiers in terms of power control and user scheduling, closed access is the preferred approach at high user densities. Present methods suggest that in the case of orthogonal multiple access schemes like TDMA/OFDMA, femtocell access control should be adaptive according to the estimated cellular user density. The approach we follow, in this work, is to adopt an open access policy at the femtocell access points with a cap on the maximum number of users allowed on a femtocell. This ensures the femto owner retains a significant portion of the femtocell resources. We design an iterative algorithm for hybrid access control for femtocells that integrates the problems of uplink power control and base station assignment. This algorithm implicitly adapts the femtocell access method to the current user density. The distributed power control algorithm, which is based on Yates' work on standard interference functions, enables users to overcome the interference in the system and satisfy their minimum QoS requirements. The optimal allocation of femtocell resources is incorporated into the access control algorithm through a constrained sum-rate maximization to protect the femto owner from starvation at high user densities. The performance of a two-tier OFDMA femtocell network is then evaluated under the proposed access scheme from a home owner viewpoint, and network operator perspective. System-level simulations show that the proposed access control method can provide a rate gain of nearly 52% for cellular users, compared to closed access, at high user densities and under moderate-to-dense deployment of femtocells. At the same time, the femto owner is prevented from going into outage and only experiences a negligible rate loss. The results obtained establish the quantitative performance advantage of using hybrid access at femtocells with power control at high user densities. The convergence properties of the proposed iterative hybrid access control algorithm are also investigated by varying the user density and the mean number of femto access points in the network. It is shown that for a given system model, the algorithm converges quickly within thirty iterations, provided a feasible solution exists

    Models and optimisation methods for interference coordination in self-organising cellular networks

    Get PDF
    A thesis submitted for the degree of Doctor of PhilosophyWe are at that moment of network evolution when we have realised that our telecommunication systems should mimic features of human kind, e.g., the ability to understand the medium and take advantage of its changes. Looking towards the future, the mobile industry envisions the use of fully automatised cells able to self-organise all their parameters and procedures. A fully self-organised network is the one that is able to avoid human involvement and react to the fluctuations of network, traffic and channel through the automatic/autonomous nature of its functioning. Nowadays, the mobile community is far from this fully self-organised kind of network, but they are taken the first steps to achieve this target in the near future. This thesis hopes to contribute to the automatisation of cellular networks, providing models and tools to understand the behaviour of these networks, and algorithms and optimisation approaches to enhance their performance. This work focuses on the next generation of cellular networks, in more detail, in the DownLink (DL) of Orthogonal Frequency Division Multiple Access (OFDMA) based networks. Within this type of cellular system, attention is paid to interference mitigation in self-organising macrocell scenarios and femtocell deployments. Moreover, this thesis investigates the interference issues that arise when these two cell types are jointly deployed, complementing each other in what is currently known as a two-tier network. This thesis also provides new practical approaches to the inter-cell interference problem in both macro cell and femtocell OFDMA systems as well as in two-tier networks by means of the design of a novel framework and the use of mathematical optimisation. Special attention is paid to the formulation of optimisation problems and the development of well-performing solving methods (accurate and fast)

    マクロセルにオーバーレイするスモールセルのための層間干渉低減に関する研究

    Get PDF
    The huge number of mobile terminals in use and the radio frequency scarceness are the relevant issues for future wireless communications. Frequency sharing has been considered to solve the problem. Addressing the issues has led to a wide adoption of small cell networks particularly femtocells overlaid onto macrocell or small cells implemented with the support of distributed antenna systems (DASs). Small cell networks improve link quality and frequency reuse. Spectrum sharing improves the usage efficiency of the licensed spectrum. A macrocell underlaid with femtocells constitutes a typical two-tier network for improving spectral efficiency and indoor coverage in a spectrum sharing environment. Considering the end-user access control over the small cell base station (SBS), with shared usage of the macrocell’s spectrum, this dissertation contribution is an investigation of mitigation techniques of crosstier interference. Such cross-tier interference mitigation leads to possible implementation of multi-tier and heterogeneous networks. The above arguments underpin our work which is presented in the hereby dissertation. The contributions in this thesis are three-fold. Our first contribution is an interference cancellation scheme based on the transmitter symbols fed back to the femtocell base station (FBS) undergoing harmful cross-tier interference. We propose a cross-tier interference management between the FBS and the macrocell base station (MBS) in uplink communications. Our proposal uses the network infrastructure for interference cancellation at the FBS. Besides, we profit from terminal discovery to derive the interference level from the femtocell to the macrocell. Thus, additionally, we propose an interference avoidance method based on power control without cooperation from the MBS. In our second contribution, we dismiss the use of the MBS for symbol feedback due to delay issues. In a multi-tier cellular communication system, the interference from one tier to another, denoted as cross-tier interference, is a limiting factor for the system performance. In spectrum-sharing usage, we consider the uplink cross-tier interference management of heterogeneous networks using femtocells overlaid onto the macrocell. We propose a variation of the cellular architecture and introduce a novel femtocell clustering based on interference cancellation to enhance the sum rate capacity. Our proposal is to use a DAS as an interface to mitigate the cross-tier interference between the macrocell and femtocell tiers. In addition, the DAS can forward the recovered data to the macrocell base station (MBS); thus, the macrocell user can reduce its transmit power to reach a remote antenna unit (RAU) located closer than the MBS. By distributing the RAUs within the macrocell coverage, the proposed scheme can mitigate the cross-tier interference at different locations for several femtocell clusters. Finally, we address the issue of cross-tier interference mitigation in heterogeneous cognitive small cell networks comparing equal and unequal signal-to-noise ratio (SNR) branches in multi-input multi-output (MIMO) Alamouti scheme. Small cell networks enhance spectrum efficiency by handling the indoor traffic of mobile networks on a frequency-reuse operation. Because most of the current mobile traffic happens indoor, we introduce a prioritization shift by imposing a threshold on the outage generated by the outdoor mobile system to the indoor small cells. New closed-form expressions are derived to validate the proposed bit error rate (BER) function used in our optimization algorithm. We propose a joint transmit antenna selection and power allocation which minimizes the proposed BER function of the outdoor mobile terminal. The optimization is constrained by the outage at the small cell located near the cooperating transmit relays. Such constraint improves the initialization of the iterative algorithm compared to randomly choosing initial points. The proposed optimization yields a dynamic selection of the relays with power control pertaining to the outdoor mobile terminal performance.電気通信大学201
    corecore