323 research outputs found

    Optimal Disturbances Rejection Control for Autonomous Underwater Vehicles in Shallow Water Environment

    Get PDF
    To deal with the disturbances of wave and current in the heading control of Autonomous Underwater Vehicles (AUVs), an optimal disturbances rejection control (ODRC) approach for AUVs in shallow water environment is designed to realize this application. Based on the quadratic optimal control theory, the AUVs heading control problem can be expressed as a coupled two-point boundary value (TPBV) problem. Using a recently developed successive approximation approach, the coupled TPBV problem is transformed into solving a decoupled linear state equation sequence and a linear adjoint equation sequence. By iteratively solving the two equation sequences, the approximate ODRC law is obtained. A Luenberger observer is constructed to estimate wave disturbances. Simulation is provided to demonstrate the effectiveness of the presented approach

    The predictive functional control and the management of constraints in GUANAY II autonomous underwater vehicle actuators

    Get PDF
    Autonomous underwater vehicle control has been a topic of research in the last decades. The challenges addressed vary depending on each research group's interests. In this paper, we focus on the predictive functional control (PFC), which is a control strategy that is easy to understand, install, tune, and optimize. PFC is being developed and applied in industrial applications, such as distillation, reactors, and furnaces. This paper presents the rst application of the PFC in autonomous underwater vehicles, as well as the simulation results of PFC, fuzzy, and gain scheduling controllers. Through simulations and navigation tests at sea, which successfully validate the performance of PFC strategy in motion control of autonomous underwater vehicles, PFC performance is compared with other control techniques such as fuzzy and gain scheduling control. The experimental tests presented here offer effective results concerning control objectives in high and intermediate levels of control. In high-level point, stabilization and path following scenarios are proven. In the intermediate levels, the results show that position and speed behaviors are improved using the PFC controller, which offers the smoothest behavior. The simulation depicting predictive functional control was the most effective regarding constraints management and control rate change in the Guanay II underwater vehicle actuator. The industry has not embraced the development of control theories for industrial systems because of the high investment in experts required to implement each technique successfully. However, this paper on the functional predictive control strategy evidences its easy implementation in several applications, making it a viable option for the industry given the short time needed to learn, implement, and operate, decreasing impact on the business and increasing immediacy.Peer ReviewedPostprint (author's final draft

    Task-space dynamic control of underwater robots

    Get PDF
    This thesis is concerned with the control aspects for underwater tasks performed by marine robots. The mathematical models of an underwater vehicle and an underwater vehicle with an onboard manipulator are discussed together with their associated properties. The task-space regulation problem for an underwater vehicle is addressed where the desired target is commonly specified as a point. A new control technique is proposed where the multiple targets are defined as sub-regions. A fuzzy technique is used to handle these multiple sub-region criteria effectively. Due to the unknown gravitational and buoyancy forces, an adaptive term is adopted in the proposed controller. An extension to a region boundary-based control law is then proposed for an underwater vehicle to illustrate the flexibility of the region reaching concept. In this novel controller, a desired target is defined as a boundary instead of a point or region. For a mapping of the uncertain restoring forces, a least-squares estimation algorithm and the inverse Jacobian matrix are utilised in the adaptive control law. To realise a new tracking control concept for a kinematically redundant robot, subregion tracking control schemes with a sub-tasks objective are developed for a UVMS. In this concept, the desired objective is specified as a moving sub-region instead of a trajectory. In addition, due to the system being kinematically redundant, the controller also enables the use of self-motion of the system to perform sub-tasks (drag minimisation, obstacle avoidance, manipulability and avoidance of mechanical joint limits)

    A Comprehensive Study on Modelling and Control of Autonomous Underwater Vehicle

    Full text link
    Autonomous underwater vehicles (AUV) have become the de facto vehicle for remote operations involving oceanography, inspection, and monitoring tasks. These vehicles operate in different and often challenging environments; hence, the design and development of the AUV involving hydrodynamics and control systems need to be designed in detail. This book chapter presents a study on the modelling and robust control of a research vehicle in the presence of uncertainties. The vehicle's dynamic behaviour is modelled using a 6-degree-of-freedom approach, considering the effect of ocean currents. The level flight requirements for different speeds are derived, and the resulting model is decomposed into horizontal and vertical subsystems for linear analysis. The simulation results presented focus on the efficacy of linear controllers within three key subsystems: depth, yaw, and speed. Moreover, level-flight outcomes are demonstrated for a speed of 4 knots. The nonlinear control strategies employed in this study encompass conventional and sliding-mode control (SMC) methodologies. To ensure accurate tracking performance, the controller design considers the vehicle's dynamics with various uncertainties such as ocean currents, parameter uncertainty, CG (Center of Gravity) deviation and buoyancy variation. Both conventional and nonlinear SMC controllers' outcomes are showcased with a lawn-mowing manoeuvre scenario. A systematic comparison is drawn between the robustness of SMC against disturbances and parameter fluctuations in contrast to conventional controllers. Importantly, these results underscore the trade-off that accompanies SMC's robustness, as it necessitates a higher level of complexity in terms of controller design, intricate implementation intricacies, and the management of chattering phenomena.Comment: Accepted for publication in Assistive Robotics, CRC Press, Taylor & Francis, USA. This is the preprint version of the book chapte

    Automatic Control and Routing of Marine Vessels

    Get PDF
    Due to the intensive development of the global economy, many problems are constantly emerging connected to the safety of ships’ motion in the context of increasing marine traffic. These problems seem to be especially significant for the further development of marine transportation services, with the need to considerably increase their efficiency and reliability. One of the most commonly used approaches to ensuring safety and efficiency is the wide implementation of various automated systems for guidance and control, including such popular systems as marine autopilots, dynamic positioning systems, speed control systems, automatic routing installations, etc. This Special Issue focuses on various problems related to the analysis, design, modelling, and operation of the aforementioned systems. It covers such actual problems as tracking control, path following control, ship weather routing, course keeping control, control of autonomous underwater vehicles, ship collision avoidance. These problems are investigated using methods such as neural networks, sliding mode control, genetic algorithms, L2-gain approach, optimal damping concept, fuzzy logic and others. This Special Issue is intended to present and discuss significant contemporary problems in the areas of automatic control and the routing of marine vessels

    A robust dynamic region-based control scheme for an autonomous underwater vehicle

    Get PDF
    Intelligent control of an autonomous underwater vehicle (AUV) requires a control scheme which is robust to external perturbations. These perturbations are highly uncertain and can prevent the AUV from accomplishing its mission. A well-known robust control called sliding mode control (SMC) and its development have been introduced. However, it produces a chattering effect which requires more energy. To overcome this problem, this paper presents a novel robust dynamic region-based control scheme. An AUV needs to be able not only to track a moving target as a region but also to position itself inside the region. The proposed controller is developed based on an adaptive sliding mode scheme. An adaptive element is useful for the AUV to attenuate the effect of external disturbances and also the chattering effect. Additionally, the application of the dynamic-region concept can reduce the energy demand. Simulations are performed to illustrate the effectiveness of the proposed controller. Furthermore, a Lyapunov-like function is presented for stability analysis. It is demonstrated that the proposed controller works better then an adaptive sliding mode without the region boundary scheme and a fuzzy sliding mode controller

    Nonlinear Control Methodologies for Tracking Configuration Variables

    Get PDF

    Autonomous Underwater Vehicle Guidance, Navigation, and Control

    Get PDF
    A considerable volume of research has recently blossomed in the literature on autonomous underwater vehicles accepting recent developments in mathematical modeling and system identification; pitch control; information filtering and active sensing, including inductive sensors of ELF emissions and also optical sensor arrays for position, velocity, and orientation detection; grid navigation algorithms; and dynamic obstacle avoidance among others. In light of these modern developments, this article develops and compares integrative guidance, navigation, and control methodologies for the Naval Postgraduate School’s Phoenix, a submerged autonomous vehicle. The measure of merit reveals how well each of several methodologies cope with known and unknown disturbance currents that can be constant or harmonic while maintaining safe passage distance from underwater obstacles, in this case submerged mines

    Development of Modeling and Simulation Platform for Path-Planning and Control of Autonomous Underwater Vehicles in Three-Dimensional Spaces

    Get PDF
    Autonomous underwater vehicles (AUVs) operating in deep sea and littoral environments have diverse applications including marine biology exploration, ocean environment monitoring, search for plane crash sites, inspection of ship-hulls and pipelines, underwater oil rig maintenance, border patrol, etc. Achieving autonomy in underwater vehicles relies on a tight integration between modules of sensing, navigation, decision-making, path-planning, trajectory tracking, and low-level control. This system integration task benefits from testing the related algorithms and techniques in a simulated environment before implementation in a physical test bed. This thesis reports on the development of a modeling and simulation platform that supports the design and testing of path planning and control algorithms in a synthetic AUV, representing a simulated version of a physical AUV. The approach allows integration between path-planners and closed-loop controllers that enable the synthetic AUV to track dynamically feasible trajectories in three-dimensional spaces. The dynamical behavior of the AUV is modeled using the equations of motion that incorporate the effects of external forces (e.g., buoyancy, gravity, hydrodynamic drag, centripetal force, Coriolis force, etc.), thrust forces, and inertial forces acting on the AUV. The equations of motion are translated into a state space formulation and the S-function feature of the Simulink and MATLAB scripts are used to evolve the state trajectories from initial conditions. A three-dimensional visualization of the resulting AUV motion is achieved by feeding the corresponding position and orientation states into an animation code. Experimental validation is carried out by performing integrated waypoint planner (e.g., using the popular A* algorithm) and PD controller implementations that allow the traversal of the synthetic AUV in two-dimensional (XY, XZ, YZ) and three-dimensional spaces. An underwater pipe-line inspection task carried out by the AUV is demonstrated in a simulated environment. The simulation testbed holds a potential to support planner and controller design for implementation in physical AUVs, thereby allowing exploration of various research topics in the field
    corecore