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Abstract

A considerable volume of research has recently blossomed in the literature on autono-
mous underwater vehicles accepting recent developments in mathematical modeling and
system identification; pitch control; information filtering and active sensing, including
inductive sensors of ELF emissions and also optical sensor arrays for position, velocity,
and orientation detection; grid navigation algorithms; and dynamic obstacle avoidance
among others. In light of these modern developments, this article develops and compares
integrative guidance, navigation, and control methodologies for the Naval Postgraduate
School’s Phoenix, a submerged autonomous vehicle. The measure of merit reveals how
well each of several methodologies cope with known and unknown disturbance currents
that can be constant or harmonic while maintaining safe passage distance from underwa-
ter obstacles, in this case submerged mines.

Keywords: submersible vehicles, ocean research, obstacle avoidance, guidance,
navigation, and control, linear quadratic optimal control, approximated optimal control,
reduced-order observers, MIMO, SIMO

1. Introduction

The Naval Postgraduate School’s consortium for robotics and unmanned systems education

and research (CRUSER) uses three autonomous underwater vehicles, the Remus, Aries [1], and

Phoenix [2] vehicles to enhance education and research. The oldest vehicle, Phoenix [3] is

used in this study to investigate integrated methodologies [4] for vehicle guidance, navigation,
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and control through a field of obstacles amidst unknown ocean currents that can be approxi-

mated by steady state, fixed disturbance ocean velocities, and can also be represented by

harmonically oscillating velocities. This integrated approach is a natural extension of the recent

innovations. The Phoenix vehicle’s nominal mathematical modeling was articulated in the

1988 article [5] using surge motion to perform system identification. Recent innovations

[6–10] have extended and improved the nominal system identification resulting in high-

confidence mathematically modeling in computer simulations. Such simulations permitted

Wu et al. [11] to redesign the L1 adaptive control architecture for pitch-control with anti-

windup compensation based on solutions to the Riccati equation to guarantee robust and fast

adaption of the underwater vehicle with input saturation and coupling disturbances and the

approach was applied to the pitch channel alone. Stability was emphasized in the single-

channel approach to emphasize dynamic nonlinearities and measurement errors. The Riccati

equation is also utilized in this research and proves effective when applied to all six degrees of

freedom per [4], where the approach is applied to instances of disturbances that are constant

with simultaneous harmonic disturbances simulating unknown ocean currents and waves. In

addition to these recent achievements in control, improvements have also been made to

guidance and navigation. In recent years, Bo He et al. [12] demonstrated in simulations and

open water experiments, the ability to overcome weak data links and sparse navigation data

using a technique called extended information filter (EIF) applied to simultaneous localization

and mapping (i.e. “SLAM”) that proved computationally easier to implement than traditional

extended Kalman filter (EKF) SLAM. Low computational cost is emphasized here to keep the

vehicle size low, but also to exaggerate the laudable goal of achieving optimal or near optimal

results with methods that are simple. Such is an overt goal of the new research presented here.

Just last year, Yan et al. [13] integrated the navigation system using a modified fuzzy adaptive

Kalman filter (MFAKF) to combine traditional strap-down inertial navigation with OCTANS

and Doppler velocity log (DVL) to navigate the challenging polar regions where rapidly

converging earth meridians and challenging ocean environments filled with submersed obsta-

cles. This benchmark achievement requires the research here to utilize similar challenging

ocean conditions, and provide the motivation for selection of simultaneous steady-state ocean

currents together with sinusoidal varying unknown wave conditions amidst an ocean filled

with obstacles (where here the non-polar ocean is used, so mines are added to fulfill the role of

malignant submersed obstacles). Furthermore, simplified waypoint guidance is derived, based

on the onboard-calculated distance from the vehicle to a submerged obstacle. The simplified

waypoint guidance is proven effective, and should be considered in situations where onboard

operation of a modified fuzzy adaptive Kalman filter proves to be computationally prohibitive.

The distance to an underwater obstacle was measured byWang et al. [14] with a novel method:

measuring extremely low frequency (ELF) emissions with onboard inductive sensors. Such

emissions are produced by ship hulls with relatively pronounced amplitudes compared to

small subsurface obstacles, but the harmonic line spectra and fundamental signal frequency

relate directly to the closing speed of approach to the obstacle. Experiments proved that even

such small signals were detectable at long range with high sensitivity and low-noise sensors of
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the current state of the art, thus closing distance to obstacles may now be presumed to be

known passively, permitting the simplified waypoint guidance proposed in this manuscript.

Particularly after ELF queuing, position, orientation, and velocity of obstacles may be moni-

tored optically as developed by Eren et al. [15], and these states may be used as feedback

signals together with the waypoint guidance (desired trajectory) permitting augmentation

with linear quadratic Gaussian techniques, as done in this manuscript where full-order state

observers are together optimized with attitude controller gains, followed by demonstration

that reduced-order observers may also be optimized allowing vehicle operators to compensate

for individually failed or degraded sensors, or instances where optimally estimated signals are

superior to sensor signals in an individual or multiple channel.

Integrating these latest technological developments was demonstrated last year by Wei et al.

[16], who integrated the Doppler velocity methods for obstacle monitoring into a dynamic

obstacle avoidance scheme for collision avoidance. Following data fusion, a collision risk

assessment model is used to avoid collisions, and claims to be effective in unknown dynamic

environments, although the experiments did not go so far as to stipulate near-constant ocean

currents in addition to harmonic wave actions. These challenging dynamic environments are

addressed in this manuscript as a natural extension of the current state of the art.

Autonomous vehicle angular momentum control of rotational mechanics may be achieved

using control moment gyroscopes, one potential momentum exchange actuator with a long,

historic legacy actuating space vehicles, where mathematical singularities have just recently

been overcome [17–23], permitting use of the actuator for underwater vehicles as done recently

achieved by Thorton et al. [24, 25] including combined attitude and energy storage control.

These developments suffice to reveal that attitude control is not controversial, and thus the

remainder of this manuscript focuses on guidance and navigation with a residual necessity to

implement nominal, effective pitch and yaw control.

2. Materials and methods

Submersible vehicles require control systems to guide the vehicle around obstacles that can

present dangers to vehicle health and safety in the presence of ocean currents. The challenge

addressed here is to navigate the Naval Postgraduate School’s Phoenix submersible vehicle

(Figure 1) through a minefield whose dimensions are 200 m � 5100 m in the presence of 0.5 m/s

ocean currents. The field will contain at least 30 mines placed at locations using a random

number generator. The resulting controller structure has an inner-outer loop structure, and

several technologies will be described including pole-placement designs, linear-optimal (qua-

dratic) Gaussian techniques, full and partial order observers for online disturbance identifica-

tion for ocean currents (both constant lateral underwater ocean currents and also sinusoidal

varying currents), tracking systems and feedforward control designed to counter open ocean

currents, in addition to integral control. The outer loop controller uses Line-of-Site (LOS)

Autonomous Underwater Vehicle Guidance, Navigation, and Control 3



guidance to provide a heading command to the inner loop. The inner loop controller uses

output heading feedback to track heading commands. The vehicle is simulated to traverse the

minefield and successfully travels no closer than 5 m from any mine and arrive within one half

meter from the commanded destination autonomously.

2.1. System dynamics

The equations of motion used to simulate the dynamic behavior of the autonomous submers-

ible vehicle in a horizontal plane are listed in Eqs. (1)–(4). All variables in these equations are

assumed to be in nondimensional form with respect to the vehicle length (7.30) and constant

forward speed (�3 ft./s). The vehicle weighs 435 lbs. and is neutrally buoyant. Time is

nondimensionalized such that 1 s represents the time it takes to travel one vehicle length

(Figure 2).

Figure 1. Submersible vehicle sample and notional minefield [1]: (a) field of randomly placed submersed mines to be

avoided by autonomous vehicle and (b) Aries submersible in open ocean.

Figure 2. Vehicle geometry and reference axes: (a) Phoenix in open ocean [1] and (b) vehicle geometry and reference axis.
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m� Y�νð Þ�ν � Y�r �mxGð Þ�r ¼ Y�rνþ Yr �mð Þrþ Yδsδs þ Yδbδb (1)

mxG �N�νð Þ�ν � N�r � Izð Þ�r ¼ Nvνþ Nr �mxGð ÞrþNδsδs þNδbδb (2)

�ψ ¼ r (3)

�y ¼ sinψþ νcosψ (4)

In addition to the following dependent equation �x ¼ cosψ� νsinψ (5)

where

The variable are The constants are Yδs = 0.01241.

ν lateral (sway) velocity m = 0.0358 Yδb = 0.01241

r turning rate (yaw) Iz = 0.0022 N�r = � 0.00047

ψ heading angle (degrees) xG = 0.0014 N�ν = � 0.00178

y lateral deviation (cross-track error) Y�r = � 0.00178 Nr = � 0.00390

δs stern rudder deflection Y�v = � 0.03430 Nv = � 0.00769

δb bow rudder deflection Yr = 0.01187 Nδs = � 0.0047

Yv = � 0.10700 Nδb = 0.0035

The constant definitions in the mass m, mass moment of inertia with respect to a vertical axis

that passes through the vehicle’s geometric center (amidships) Iz, position of the vehicle’s

center of gravity (measured positive forward of amidships) xG, with the remaining terms

referred to as the hydrodynamic coefficients. These constants are all presented in non-

dimensional form.

Defining the state vector xf g � ν r ψ yf gT and the control uf g � δs δbf gT and assum-

ing small angles, the dynamics expressed in Eqs. (1)–(4) may be expressed in state space form

as �xg ¼ A½ � xf g þ B½ � u½ �f where

A½ � ¼

�1:4776 �0:3083 0 0

�1:8673 �1:2682 0 0

0

1

1

0

0 0

1 0

2

6

6

6

4

3

7

7

7

5

B½ � ¼

0:2271 0:1454

�1:9159 1:2112
0

0

0

0

2

6

6

6

4

3

7

7

7

5

(6)

The system may also be expressed in a transfer function ratio of outputs divided by inputs in

Laplace form using Eq. (7) where observer matrix [C] is merely a proper identity matrix to this

point of the manuscript. Eq. (7) yields two transfer function relationships between each of the

two possible rudder inputs as seen in Eqs. (8) and (9). Notice that both transfer functions have

poles and zeros at the origin, while pole-zero cancelation is possible in the case of the stern

rudder. On the other hand, even after pole-zero cancelation in the bow rudder Eq. (9), there

remains an open loop pole at the origin that must be dealt with during control design, since it

represents a potentially unstable element (at the very least, in the instance where the estimated

constants are exactly correct, and these equations of motion exactly describe the system, an
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oscillatory element exists that will not decay). Nonetheless, the dynamics accord to nature.

Consider trying to steer a row-boat using the rear rudder. It is much more stable than trying to

steer the rowboat using a rudder in the front. This analogy applies to the submersible vehicle

and is verified in these results.

G Sð Þ ¼ C½ � s I½ � � A½ �ð Þ�1
B½ � (7)

G Sð Þj
δs
� Y sð Þ

δs sð Þ ¼
0:2271s3 þ 0:875s2

s4 þ 2:746s3 þ 1:298s2
¼ s2 0:2271sþ 0:875ð Þ

s2 s2 þ 2:746sþ 1:298ð Þ (8)

G Sð Þj
δb
� Y sð Þ

δb sð Þ ¼
1:211s2 þ 1:518s

s4 þ 2:746s3 þ 1:298s2
¼ s 1:211sþ 1:518ð Þ

s2 s2 þ 2:746sþ 1:298ð Þ (9)

In Figure 3, the uncontrolled system is analyzed by merely performing a circular turn with each

(and then both) rudders. The bow and stern rudders alone are each compared to the combined

use of both bow and stern rudders. The bow rudder was deflected +15� for about 21 s, while the

stern rudder was deflected for �15� for about 11 s. When both rudders were deflected the

maneuver was completed in roughly 8 seconds. Two initial conditions for the sway velocity were

investigated (ν 0ð Þ ¼ 0 and then ν 0ð Þ ¼
ffiffiffi

8
p

). In all cases, the bow rudder alone performed the

poorest, with the stern rudder alone performing the turn in a smaller radius and shorter time.

Furthermore, the combined use of both rudders resulting in tightest maneuver.

Two simulation methodologies were used to investigate sensitivities to integration method.

MATLAB was used with Euler integration, while SIMULINK was used with Runge-Kutta

integration with identical timesteps, Δt = 0.1 s. The results were nearly negligible and are

displayed in Table 1, from which insensitivity to integration approach is established.

Figure 3. Analysis of uncontrolled system: comparison of rudder performance: (a) counter-clockwise turn, ν 0ð Þ ¼ 0 and

(b) initial sway velocity ν 0ð Þ ¼
ffiffiffiffi

8:

p
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2.2. Control law design

In the system analysis, the optimal rudder implementation scheme was determined to be the

application of both rudders, where the rudders were slaved to the same maneuver angle

magnitude with the opposite sign, i.e. a “scissored-pair” per Eq. (10). In the case where only

variable y is to be measured, the new state space formulation of the system equation compo-

nents are in Eq. (11). Under the assumption of rudders constrained to behave as a scissored-

pair the transfer function from rudder input to output y is given by Eq. (12) whose poles and

zeros are listed in Eq. (13), with Eq. (14) revealing the system’s eigenvalues, noting the values

are identical to the location of the poles in accordance with theory. The controllability and

observability matrices ([CO] and [OB] respectively) are listed in Eq. (15) (whose matrix product

[OC] is in Eq. (16)) verifying these system equations are both controllable and observable, since

these matrices are full rank, while the determinant of the controllability matrix is 63.1778, a

large value with a small value of the matrix condition number, 13.4513. The nonzero determi-

nant of the controllability matrix proves controllability, but to see how close the system is to

being uncontrollable, the matrix condition number proves more useful. These two figures of

merit indicate the system equations are highly controllable, and accordingly this manuscript

will investigate and compare several options for navigation control: pole placement, linear

quadratic optimal control, linear quadratic Gaussian, and time optimal control. The same

holds true for observability, and thus linear quadratic Gaussian. The matrix product [OC] is

the same for every definition of state variables for the given system.

δb ¼ �δs (10)

A½ � ¼

�1:4776 �0:3083 0 0

�1:8673 �1:2682 0 0

0

1

1

0

0 0

1 0

2

6

6

6

4

3

7

7

7

5

, B½ � ¼

0:0816

�3:1271
0

0

2

6

6

6

4

3

7

7

7

5

,C ¼ 0 0 0 1½ �,D ¼ 0½ � (11)

G Sð Þj
δ
�

Y sð Þ

δ sð Þ
¼

0:08164s2 � 2:06s� 4:773

s4 þ 2:746s3 þ 1:298s2
(12)

polesat : s ¼ 0, 0, � 0:6070, � 2:1388; zerosat : s ¼ �6:1279e13, near� 0, near� 0 (13)

eig Að Þ ¼ λ ¼ 0, 0, � 0:6070, � 2:1388 (14)

Rudder deflected Euler: x-distance Runge-Kutta: x-distance Euler: y-distance Runge-Kutta: y-distance

Bow 6.5471 6.5469 6.8647 6.8646

Stern 3.1665 3.1665 3.5768 3.5768

Both 2.4546 2.4546 2.6567 2.6567

1Distances calculated to traverse one circular path.

Table 1. Comparison of simulation integration methodology.
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CO½ � ¼

0:0816 0:8433 �2:4216 5:5544

�3:1271 3:8132 �6:4105 12:6514

0

0

�3:1271

0:0816

3:8132 �6:4105

�2:2838 1:3916

2

6
6
6
4

3

7
7
7
5
OB½ � ¼

0 0 0 1

1 0 1 0

�1:4776

0:8917

0:6917

�0:4217

0 0

0 0

2

6
6
6
4

3

7
7
7
5

(15)

OC½ � ¼

0 0:0816 �2:838 1:3916

0:0816 �2:2838 1:3916 �0:8561

�2:2838

1:3916

1:3916

�0:8561

�0:8561 0:5441

0:5441 �0:3825

2

6
6
6
4

3

7
7
7
5

(16)

Diagonalizing the original system [A] matrix, the spectral decomposition T½ � Λ½ � ¼ A½ � T½ � ! Λ½ �

¼ T½ ��1 A½ � T½ � in Eq. (17) may be used to verify a diagonal matrix of eigenvalues [Λ], and then

write the system of equations in normal-coordinate form �x0g ¼ A0
� �

x0f g þ B0½ � u½ �; y0f g ¼ C0½ � x0½ �
�

using the following transformation: A0
� �

¼ Λ½ � ¼ T½ ��1 A½ � T½ �, B0½ � ¼ T½ ��1 B½ �, and C0½ � ¼ C½ � T½ �

whose results are in Eq. (18).

Λ½ � ¼

0:4663 �0:1074 0 0

1 0:3033 0 0

�0:4676

0:0006

�0:4996

1

0 0

1 �1

2

6
6
6
4

3

7
7
7
5

�1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T�1

�1:4776 �0:3083 0 0

�1:8673 �1:2682 0 0

0

1

1

0

0 0

1 0

2

6
6
6
4

3

7
7
7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A

0:4663 �0:1074 0 0

1 0:3033 0 0

�0:4676

0:0006

�0:4996

1

0 0

1 �1

2

6
6
6
4

3

7
7
7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

T

(17)

A0
� �

¼

�2:1388 0 0 0

0 �0:6070 0 0

0

0

0

0

0 0

0 0

2

6
6
6
4

3

7
7
7
5
, B0½ � ¼

�1:2502028

�6:1888806
�8:4625e7

�8:4625e7

8

>>><

>>>:

9

>>>=

>>>;

, C0½ � ¼ 0:0006 1 1 �1f g (18)

uf gbaseline ¼ δf g ¼ �Kυυ� Krr� Kψψ� Kyy (19)

For the pole placement proportional-derivative (PD) controller articulated in Eq. (19), the poles

are set to have roughly the same time constant, while avoiding exactly coincident poles. Gains

are iterated for various time constants as displayed in Figure 4, but the following rule of thumb

is asserted as well to quickly achieve performance that closely mimics the performance of

linear-quadratic optimal (LQR) gains where the control effort and tracking error are equally

weighted in the cost function of the optimization.

RULE OF THUMB: Select unity time-constant tc to roughly locate closed-loop poles per Eq. (20). Then

place other poles at slightly different locations (e.g. sp ¼ s1 � 0:01∀p)

Pole : s1 ¼
1

tc
(20)
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The gains achieved using the rule of thumb KR.O.T. = {0.5070 –0.3687 -0.7157 -0.1972} have quite

different values compared to the gains calculated through the matrix Riccati equation in the

linear-quadratic optimization KLQR = {�0.0939 –1.2043 -2.2138 -1}, but nonetheless the

resulting behaviors are indeed very similar.

Next, the initial feedback control design was evaluated in simulations where the ship is initially

located off the desired track by one ship’s length port side with zero heading, and rudder

deflection was limited to 0.4 radians (�23�). Next, another simulation was performed to test an

initial heading angle of 30� starboard where the initial y(0) = 0. The results are displayed in

Figure 5(a) and (b) respectively. All state variations were plotted in Figure 4, highlighting the

fact that y converges to zero along with the other states. Furthermore, the results of rudder-

limited simulations are displayed in Figure 6 and Figure 7 for both scenarios (Table 2).

Figure 4. Gain values for each state iterated for various time constants.

Figure 5. Simulations testing the initial baseline feedback controller in two scenarios: (a) initially one ship’s length port

side and (b) initial heading 30o starboard.

Autonomous Underwater Vehicle Guidance, Navigation, and Control 9



2.3. Observer design

To design a state observer, the system must be observable [4], verifiable through examination

of the observability matrix [OB] per Eq. (21), where [C] = [ν r ψ y] = [0 1 1 1]. The condition of

the observability matrix reveals the degree of observability, and it is defined by the ratio of

maximum to minimal singular values.

OB½ � ¼

C

CA

CA2

⋮

CAn�1

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

(21)

2.3.1. Full-order observer design

�̂x
n o

¼ A½ � x̂f g þ B½ � u½ � þ L½ � yf g � C½ � x̂f gð Þ (22)

�xg � �̂x
n o

¼ A½ � xf g � A½ � x̂f g � L½ � C½ � xf g � C½ � x̂f gð Þ
n

(23)

Figure 6. State variations for both scenarios simulated using pole-placement gains via rule of thumb: (a) initially one ship’s

length port side and (b) initial heading 30o starboard.

Time constant Kν Kr Kψ Ky

0.5 �1.5135 �1.7005 �5.1508 �3.22524

1 0.5070 �0.3687 �0.7157 �0.1972

2 1.1248 0.2870 �0.0906 �0.0116

LQR �0.0939 �1.2043 �2.2138 �1

1Reminder: state definition xf g � ν r ψ yf gT .

Table 2. Gains for various time constants and also solution to linear quadratic optimization.

Autonomous Vehicles10



�eg � �xg � �̂x
n o

¼ A½ � � L½ � C½ �ð Þ xf g � x̂f gð Þ
nn

(24)

�eg ¼ A½ � � L½ � C½ �ð Þ ef gf (25)

Assuming that only ν measurements are available, a mathematical model of the estimated

system is in Eq. (22) with a full order observer design using the observer error Eq. (23) leading

to the error vector in Eq. (24) allowing the re-expression of Eq. (22) as Eq. (25), where the

dynamic behavior of the error vector is determined by the eigenvalues of matrix A½ � � L½ � C½ �,

where L½ � gains of the observer may be chosen as desired for systems that prove observable,

such that the error vector will converge to zero for any stable A½ � � Ke½ � C½ �. In the following

paragraphs, L½ � is designed by solving the matrix Ricatti equation leading to linear quadratic

optimal gains, and also by solving the rule of thumb relationship between gains and time

constant as done for the controller gains (Table 3).

Figure 8 displays the results of simulations revealing the accuracy of state estimation when L½ �

is calculated by the rule of thumb, where the time constant is chosen to be half (tc = 1/2) the time

constant of the controller (tc = 1) and the simulation is initialized with the heading angle 30� off,

while Figure 9 displays the simulation initialized one boat-length starboard position.

Figure 7. Rudder-limited trajectory track using pole-placement gains via rule of thumb and LQR: (a) initially one ship’s

length port side and (b) initial heading 30o starboard.

Multiple of controller time constant used for observer Observer gain matrix

1
2 tc �0:7464 1:8077 8:8270 5:1942f gT

10tc 103∗ �1:5909 �3:4121 1:5953 �0:0020f gT

1Reminder: 12 tc is used in subsequent simulations.

Table 3. Full-order observer gains designed by rule of thumb for various time constants as multiple of controller time

constant, tc.

Autonomous Underwater Vehicle Guidance, Navigation, and Control 11



2.3.2. Reduced-order observer design

Assuming that some measurements are available from sensors, this paragraph describes the

possible iterations and reveals states that are relatively more important to measure with

sensors. Four possible output matrices are used to investigate observability. Four options for

output matrices C½ �i for i = 1…4 result in four reduced-order observers OB½ �i for i = 1…4 are

detailed in Eqs. (26)–(29). Output matrix C½ �1 produces an observability matrix OB½ �1 with

rank = 4 (observable) and determinant not nearly equal to zero. Output matrix C½ �2 produces

an observability matrix OB½ �2 with rank = 4 (observable) and determinant not nearly equal to

zero. Output matrix C½ �3 produces an observability matrix OB½ �3with rank = 4 (observable) and

determinant nearly equal to zero. The matrix condition number is very high indicating the

system is barely observable. Output matrix C½ �4 produces an observability matrix OB½ �4 with

rank = 3 (not observable) and determinant equal to zero with a matrix condition number equal

to infinity. This means if all other states are measured by sensors, it is not possible to use an

observer (even an optimal observer) to determine lateral deviation (cross-track error), y. It is a

Figure 8. Simulations starting 30� off heading gains via rule of thumb state observer gains, (a) true and estimated sway

velocity, ν(t), (b) true and estimated turning rate, r(t), (c) true and estimated heading angle, ψ(t), (d) true and estimated

cross track, y(t).
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key state to measure with sensors. The sensor combinations that include y are observable.

Using every other sensor, (except y) results in a system that is not observable. Furthermore,

measuring y alone results in a barely observable system.
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Figure 9. Simulations starting 1 boat-length starboard with gains via rule of thumb, (a) true and estimated sway velocity, ν(t),

(b) true and estimated turning rate, r(t), (c) true and estimated heading angle, ψ(t), (d) true and estimated cross track, y(t).
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Assuming y is to be measured by a sensor, Table 4 reveals that measuring ν in addition to y

produces the most observable system, and is recommended for designing reduced-order

observers. The drawback is measuring ν requires a Doppler sonar, which may not always be

available. If all states are measureable except ν the resulting reduced-order observer merely

estimates ν using gains on the measureable states displayed in Table 5. Figure 10 reveals very

good estimation of ν when all other states are sensed, and this estimated value of ν was fed to

the motion controller in addition to the measured states (the poorly estimated states were

neglected instead favoring the more-accurate measurements). State convergence to zero is

achieved in the instance of state initialization 30� off-heading. Figure 11 displays similar

results for the instance of state initialization one boat-length starboard.

Sensors used to measure states Observability matrix condition number

y and ν 8.8456

y and r 21.1306

y and ψ 31.2919

1Reminder: high condition number is less observable system.

Table 4. Observability matrix condition number for options to supplement y measurement.

Multiple of controller time constant used for observer Observer gain matrix

1
10 tc �0:2174 0 0:1164f gT

2tc 0:4069 0 �0:2179f gT

10tc 0:5941 0 �0:3182f gT

1Relatively faster 1
10 tc is used in subsequent simulations.

Table 5. Reduced-order observer gains designed by rule of thumb for various time constants as multiple of controller time

constant, tc.
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2.3.3. Gain margin and phase margin

Figure 12 compares the loop gains of the system with and without a compensator via gain

margin and phase margin with full-state feedback, while Figure 13 displays the loop gains

when output-feedback via observers is used. Each has relative strengths. Full state (theoretical)

feedback yields infinite gain margin, yet relatively lower phase margin (usually consider more

important of the two), while output feedback (real-world) yields good (but lesser) gain margin

with increased phase margin.

2.4. Tracking systems and feedforward control in the presence of constant disturbance

currents

This section evolves the earlier developed system equations and performance analysis by

adding non-quiescent conditions, in particular introduction of a lateral underwater ocean

current with an absolute velocity, υ0, requiring a modification of the system equations to add

the lateral current to Eq. (4) resulting in Eq. (30).

�y ¼ sinψþ νcosψþ υ0 (30)

Figure 10. Simulations starting 30� off heading gains via rule of thumb reduced-order state observer gains: (a) true and

estimated sway velocity, ν(t) versus time (seconds), (b) true and estimated turning rate, r(t) versus time (seconds), (c) true

and estimated heading angle, ψ(t) versus time (seconds), (d) true and estimated cross track, y(t) versus time (seconds).
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2.4.1. Analysis of disturbed system in ocean currents via state equations and simulations

Using the controller (Eq. (19)) and the modified system equations where Eq. (4) is replaced by

Eq. (30), and applying the final value theorem: f tð Þt!∞sF sð Þs!0, a steady state value 1/ω + 1 has

some variable quantity added to unity for various υ0. Thus, steady-state errors exist in all caseswith

such disturbances, which are verified by simulations depicted in Figure 14 using gain values from

the rule of thumb (ROT) for unity time constant. The steady-state errors are directly proportional to

the disturbancemagnitude. Figure 15 displaysmax rudder deflection for themaximal lateral ocean

current in the study (to verify the control design continues to remain less than 0.4 radians)wherewe

learned any current greater than 0.4 cannot be eliminated; therefore we next investigate

feedforward control and integral control.

2.4.2. Elimination of steady-state error using feedforward control

Modify the control law to uf gfeedforward ¼ δf g ¼ �K1υ� K2r� K3ψ� K4y� K0 in order to elim-

inate the steady-state error, where K0 is chosen to insure zero steady-state error, where the

feedback gains are chosen by the rule of thumb (Figures 16 and 17).

Figure 11. Simulations starting one boat-length starboard with gains via rule of thumb reduced-order state observer gains:

(a) true and estimated sway velocity, ν(t) versus time (seconds), (b) true and estimated turning rate, r(t) versus time

(seconds), (c) true and estimated heading angle, ψ(t) versus time (seconds), (d) true and estimated cross track, y(t) versus

time (seconds).
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Figure 12. Infinite gain margin and 80.2o phase margin using full state feedback via full-ordered observer with rule of

thumb controller gains: (a) root locus real Axis, (b) bode plot frequency (rad/sec).

Figure 13. 61.4� gain margin and 145� phase margin using reduced-order observer (both rule of thumb gains for half-

controller tc = 0.5, and compensator with rule of thumb gains (tc = 1), (a) root locus, real axis, (b) bode plot, frequency

(rad/sec).
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Figure 14. Steady-state position error for various lateral underwater ocean currents.

Figure 15. Feedback alone unable to counter constant lateral underwater ocean currents, (a) rudder deflection, υ0 ¼ 0:5,

(b) steady state error vs. υ0.

Figure 16. Feedforward element included to counter constant lateral underwater ocean currents, (a) rudder deflection,

υ0 ¼ 0:5, (b) all states when υ0 ¼ 0:5.
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2.5. Disturbance estimation with reduced-order observer and integral control

Section 2.4 demonstrated feedforward control effectively countered the disturbance currents,

but the current was presumed to be known. In to truly be effective, the reduced order observer

is next augmented to include estimation of the unknown disturbance current velocity ν̂c,

where the observer now estimates the disturbance current velocity, the lateral sway velocity,

ν, the lateral deviation (cross-track error), y, and the heading angle ψ. Figure 18a and b display

the estimates of the unknown current for two current velocity conditions: ν̂c1 ¼ νest1 ¼ 0:1and

ν̂c2 ¼ νest2 ¼ 0:5 respectively, while Figure 18c and d display the y and ψ states for each current

velocity conditions. Notice how large rudder deflections modify the heading angle to the

command-tracking value which counters the disturbance current (sometimes referred to as

“crabbing”), and after establishing the crab heading angle, the rudder deflection goes towards

zero, illustrating the effectiveness of command tracking.

Figure 19 displays all the states versus time in seconds and also the trajectory when a worst-

case unknown disturbance current νc ¼ �0:5 is applied and estimated by the reduced-order

observer where the observer gains are solutions to the linear quadratic Gaussian optimization.

Meanwhile Figure 20 displays the results in cases utilizing command tracking with reduced

order observer and with command: ψ = �0.5 and sinusoidal disturbance current υc0 = Asin(0.1 t)

but no disturbance estimation or feedforward, while Figure 21 uses disturbance estimation

and feedforward and rule of thumb gains. Lastly, Figure 22 displays the performance of

reduced-order observers, which is especially useful in instances of limited at-sea computa-

tional capabilities.

2.6. Waypoint guidance

A simple line-of-sight guidance routine was employed based on fixing waypoints through a

minefield in order to navigate to a specified point and safely return home. The coordinates are

Figure 17. Comparison: feedback control with and without feedforward (υ0 ¼ 0:5).
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Figure 18. Reduced-order observer state estimates versus time (seconds) for two disturbance currents υc0 ¼ 0:1 0:5½ �,

where Δ is the rudder deflection using these estimates when the worst-case disturbance current is applied. (a) Sway

velocity, (b) disturbance current, (c) lateral deviation (cross-track error), (d) heading angle.

Figure 19. Performance with disturbance estimation and command tracking using LQR and rule of thumb gains in

reduced order observer, and command tracking to ψ ¼ �0:5 amidst constant disturbance current υc ¼ 0:5., (a) states, (b)

trajectory.
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fed to a logic determining when to turn per Eq. (31), where d is the distance to the waypoint,

and the heading command was autonomously calculated per Eq. (32).

Turnif :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xc � xð Þ2 þ yc � y
� �2

q

≤ d (31)

ψcommand ¼ K tan �1 yc � y

xc � x

	 


(32)

Particular attention is brought to the inverse tangent calculation, since quadrant must be

preserved in the calculation, since the vehicle will navigate in 360�.

Figure 20. Utilization of command tracking with reduced order observer, with command: ψ ¼ �0:5 and sinusoidal

disturbance current νc0 ¼ Asin 0:1tð Þ but no disturbance estimation or feedforward, (a) all states vs. time (seconds), (b)

trajectory.

Figure 21. Utilization of command tracking with reduced order observer, with command: ψ = �0.5 and sinusoidal

disturbance current νc0 ¼ Asin 0:1tð Þ and disturbance estimation and feedforward and rule of thumb gains, (a), (b).
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3. Results

The following paragraphs mirror Section 2. Above to provide a concise and precise description

of the experimental results, their interpretation as well as the experimental conclusions that

can be drawn in each sub-topic introduced and developed so far. Some new development

naturally follows in the paragraphs of results, in response to the lessons learned.

3.1. System dynamics

Some basics lessons come from a brief analysis of the uncontrolled system dynamics. The open

loop plant equations are potentially unstable (at least persistently oscillatory) with respect to

only the bow rudder, while the relationship can be stable with respect to the stern rudder

alone. Can be stable is exaggerated to emphasize the presence of pole-zero cancelation, which is

an unwise practice (especially in this instance with both poles and zeros at the origin on the

stability boundary) unless the estimates for the constants in the system equations are very well

known. The analysis of the dynamics also revealed the bow rudder was least relatively-

effective at maneuvering alone when compared to the stern rudder, however the bow rudder

does enhance vehicle maneuverability when used together with the stern rudder as a

“scissored-pair” where the sign of the maneuver angle is opposite for each rudder. This

“scissored-pair” constraint simplified the MIMO control design, allowing the design engineer

to treat the system as a SISO design, since one rudder’s deflection become a dependent

variable constrained to the other rudder’s deflection.

3.2. Control law design

Baseline proportional-derivative control designs effectively stabilized the dynamics, but were

ineffective in the presence of a constant lateral open ocean current. Gains selected by rule of

Figure 22. Utilization of command tracking with reduced order observer, with command: ψ = �0.5 and sinusoidal

disturbance current νc0 ¼ Asin 0:1tð Þ, (a) with disturbance estimation (and feedforward), reduced order observer, (b) with

integral control but no disturbance estimation or feedforward.
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thumb performed similar to the linear-quadratic optimal control designs, so this underwater

vehicle control could be designed at sea with rudimentary math in instances when higher

level computational abilities are not available. Augmentation of the control in include gains

tuned to reject the constant current proved effective, but required the current to be measure

to permit the control component to be properly tuned. Furthermore, when the lateral distur-

bance current had sinusoidal variation, the controller was rendered ineffective rejecting the

disturbance.

3.3. Observer design

The submersible vehicle’s system equations were verified observable by calculation of a full-

ranked observability matrix in Section 2.3. A full sate observer was designed first to permit

vehicle control with “full state feedback”, yet without directly measuring velocity. Observer

gains may be tuned using classical methods in the general spirit of duality between controller

and observers. Their dual nature also permits the matrix Riccati equation to produce optimal

gains for a linear-quadratic cost function that exclusively emphasizes state estimation error,

unlike the controller optimization where the cost function balanced control effort with state

error. State observers permit the vehicle operator to have smooth calculated estimates of all

states at all times, which proves useful in the event of sensor interruptions or failures, and

reduced-ordered observers may be used in instances where computations on-board the vehicle

must be limited, for example to minimize computer size, weight, and/or power.

Especially in light of naturally occurring (roughly) sinusoidal variations in ocean current, the

system equations were augmented to include the presumed-unknown disturbance as a state.

3.4. Tracking systems and feedforward control in the presence of disturbance currents

Simple feedforward control elements proved effective against known or estimated constant

lateral disturbance currents by allowing the vehicle to autonomously perform “set-and-drift”

principles where a highly trained helmsman would turn the bow of a ship into a current, but

the simple feedforward elements were ineffective at countering currents with sinusoidal vari-

ation. In the set and drift principle the heading is de facto non-zero, so the vehicle cannot

simultaneously maintain center-pointing while countering the disturbance. If such a require-

ment were added, designers must decouple the scissored-pair rudder constraint and design

the rudder commands separately to simultaneously counter the disturbance while maintaining

centerline pointing.

3.5. Disturbance estimation and integral control

Full-ordered observers effectively estimated constant and sinusoidal disturbance currents and

proved useful in the control designs for feedforward control, but furthermore reduced-ordered

observer were applied in cases where disturbances were forces and moments and feedforward

control was not used. Integral control was used instead to drive steady-state error to zero

where sufficiently large time-constants were used for the integrator, i.e. the fifth pole in the

pole placement control must be less negative than the other poles.
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3.6. Fully assembled system demonstration

In light of all these results, a fully assembled control system was used to navigate the proper

mathematical models of the Phoenix autonomous submersible vehicle through a simulated

200 m � 500 m minefield in the presence of unknown ocean currents. The field was populated

randomly with 30+ mines, and vehicle successfully traversed the minefield in the presence of

an unknown 0.5 m/s current with a miss distance from the nearest mine not less than 5 m,

navigating from the starting point to pass within 0.5 m of a commanded en route point at sea,

and then return to the start point. The outer loop controller used line-of-sight guidance to

provide heading commands to the inner loop, and the inner loop controller was an output-

feedback heading controller. Two control strategies both proved effective: Linear-quadratic

Gaussian, and approximate optimal pole-placement by rule of thumb. In the linear-quadratic

Gaussian case, both the controller gains and observer gains were selected by optimization of

the respective matrix Riccati equation. Figure 23 displays the completed maneuver where each

dot displays the location of a randomly placed mine. Full state feedback was achieved with

state observers via the certainly equivalence principle and the states were utilized in a

proportional-derivative-integral feedback control architecture. Detailed outputs and figures

of merit are plotted in Figures 24-28 including performance of a second transit of the minefield

for validation purposes.

Figure 23. Navigation through simulated field of 30 randomly placed mines in �0.5 m/s current with linear quadratic

Gaussian PID controller and full-state observer.
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Figure 24. Continuous distance (m) to closest mine with linear quadratic Gaussian optimized PID controller and full-state

observer versus time (s).

Figure 25. Linear quadratic (Gaussian) optimal observer convergence with actual value in light-pink near zero, while

estimates are depicted oscillating in blue, (a) state ν, (b) state r.

Figure 26. Linear quadratic (Gaussian) optimal observer convergence, (a) state ψ, (b) command tracking (radians) versus

time (s).
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4. Discussion

The results of this study establish both classical and modern control paradigms to guide

autonomous submersible vehicles through obstacles in unknown ocean currents. Both elegant

and simplified autonomous controls proved effective, making this technology immediately

assessable to low-end technology implementations. The results are consistent with the signif-

icant body of literature on motion mechanics in the presence of unknown disturbances with

the added complication of restricted path planning due to randomly placed obstacles, where

mines were used in this study driving an additional requirement of minimum safe distance for

obstacle passage. This consistency with the current literature leads to a natural direction for

future research, since recent innovations in nonlinear idealized (and sometimes also adaptive)

methods have recently proven to be natural extensions of technology in these fields.

Figure 28. Validation trajectory through simulated field of 30 randomly placed mines in �0.5 m/s current with linear

quadratic Gaussian optimized PI controller and reduced-ordered observer, (a) second trajectory (results validation), (b)

heading command tracking.

Figure 27. Linear quadratic (Gaussian) optimal observer convergence of y, (c) state y, (d) state.
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A natural sequel to this manuscript would utilize the aforementioned methods ([26–39] in

particular), which comprise nonlinear mathematical amplifications of the linear methods utilized

here. The sequel should include an investigation of idealized nonlinear and adaptive methods

with a direct comparison to the current state-of-the art including time-optimal control methods.
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