5,926 research outputs found

    What season suits you best? Seasonal light changes and cyanobacterial competition

    Get PDF
    Nearly all living organisms, including some bacterial species, exhibit biological processes with a period of about 24 h called circadian (from the Latin circa, about and dies, day) rhythms. These rhythms allow living organisms to anticipate the daily alternation of light and darkness. Experiments carried out in cyanobacteria have shown the adaptive value of circadian clocks. In theseexperiments, a wild type cyanobacterial strain (with a 24 h circadian rhythm) and a mutantstrain (with a longer or shorter period) grow in competition. In different experiments, the external light dark cycle was chosen to match the circadian period of the different strains, revealing that the strain whose circadian period matches the light-dark cycle has a larger fitness. As a consequence, the initial population of one strain grows while the other decays. These experiments were made under fixed light and dark intervals. In Nature, however, this relationship changes according to the season. Therefore, seasonalchanges in light could affect the results of the competition. Using a theoretical model, we analyze how modulation of light can change the survival of the different cyanobacterial strains. Our results show that there is a clear shift in the competition due to the modulation of light, which could be verified experimentally.Fil: Cascallares, Maria Guadalupe. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Gleiser, Pablo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentin

    The influence of biological rhythms on host–parasite interactions

    Get PDF
    Biological rhythms, from circadian control of cellular processes to annual cycles in life history, are a main structural element of biology. Biological rhythms are considered adaptive because they enable organisms to partition activities to cope with, and take advantage of, predictable fluctuations in environmental conditions. A flourishing area of immunology is uncovering rhythms in the immune system of animals, including humans. Given the temporal structure of immunity, and rhythms in parasite activity and disease incidence, we propose that the intersection of chronobiology, disease ecology, and evolutionary biology holds the key to understanding host–parasite interactions. Here, we review host–parasite interactions while explicitly considering biological rhythms, and propose that rhythms: influence within-host infection dynamics and transmission between hosts, might account for diel and annual periodicity in host–parasite systems, and can lead to a host–parasite arms race in the temporal domain

    When the sun never sets: diverse activity rhythms under continuous daylight in free-living arctic-breeding birds

    Get PDF
    Circadian clocks are centrally involved in the regulation of daily behavioural and physiological processes. These clocks are synchronized to the 24-hour day by external cues (Zeitgeber), the most important of which is the light-dark cycle. In polar environments, however, the strength of the Zeitgeber is greatly reduced around the summer and winter solstices (continuous daylight or continuous darkness). How animals time their behaviour under such conditions has rarely been studied in the wild. Using a radio-telemetry-based system, we investigated daily activity rhythms under continuous daylight in Barrow, Alaska, throughout the breeding season in four bird species that differ in mating system and parental behaviour. We find substantial diversity in daily activity rhythms depending on species, sex and breeding stage. Individuals exhibited either robust, entrained 24-hour activity cycles, were continuously active (arrhythmic), or showed “free-running” activity cycles. In semipalmated sandpipers, a shorebird with biparental incubation, we show that the free-running rhythm is synchronized between pair mates. The diversity of diel time-keeping under continuous daylight emphasizes the plasticity of the circadian system and the importance of the social and life-history context. Our results support the idea that circadian behaviour can be adaptively modified to enable species-specific time-keeping under polar conditions

    The arrow of time and the nature of spacetime

    Full text link
    This paper extends the work of a previous paper [arXiv:1208.2611] on the flow of time, to consider the origin of the arrow of time. It proposes that a `past condition' cascades down from cosmological to micro scales, being realized in many microstructures and setting the arrow of time at the quantum level by top-down causation. This physics arrow of time then propagates up, through underlying emergence of higher level structures, to geology, astronomy, engineering, and biology. The appropriate space-time picture to view all this is an emergent block universe (`EBU'), that recognizes the way the present is different from both the past and the future. This essential difference is the ultimate reason the arrow of time has to be the way it is.Comment: 56 pages, 7 figure

    Reconfigurable rateless codes

    No full text
    We propose novel reconfigurable rateless codes, that are capable of not only varying the block length but also adaptively modify their encoding strategy by incrementally adjusting their degree distribution according to the prevalent channel conditions without the availability of the channel state information at the transmitter. In particular, we characterize a reconfigurable ratelesscode designed for the transmission of 9,500 information bits that achieves a performance, which is approximately 1 dB away from the discrete-input continuous-output memoryless channel’s (DCMC) capacity over a diverse range of channel signal-to-noise (SNR) ratios
    corecore