101 research outputs found

    Diversity receiver design and channel statistic estimation in fading channels

    Get PDF
    The main goal of this thesis is to provide an in-depth study of two important techniques that are effective in improving the performance, data rate, or bandwidth-efficiency in wireless communication systems. The two techniques are, first, diversity combining equipped with quadrature amplitude modulation (QAM), and second, the estimation of fading channel statistical properties;To effectively combat the adverse effect of fading and to improve the error rate performance in wireless communications, one of the major approaches is to employ diversity combining techniques. In the first part of this thesis, we focus on the equal gain combining (EGC) and hybrid-selection equal gain combining (HS/EGC) for bandwidth-efficient wireless systems (i.e. QAM systems). For EGC QAM systems, we propose the receiver structure and the corresponding decision variables, and then study the effects of imperfect channel estimation (ICE) and quantify the loss of the signal-to-noise ratio (SNR) gain caused by ICE. For HS/EGC QAM system, we develop a general approach to derive unified error rate and outage probability formulas over various types of fading channels based on the proposed HS/EGC receiver. The main contribution of this work lies in that it provides effective hybrid diversity schemes and new analytical approaches to enable thorough analysis and effective design of bandwidth efficient wireless communication systems which suffer from ICE and operate in realistic multipath channels;Channel statistic information is proven to be critical in determining the systems design, achievable data rate, and achievable performance. In the second part of this thesis, we study the estimation of the fading channel Statistics and Probability; We propose several iterative algorithms to estimate the first- and second-order statistics of general fading or composite fading-shadowing channels and derive the Cramer-Rao bounds (CRBs) for all the cases. We demonstrate that these iterative methods are efficient in the sense that they achieve their corresponding CRBs. The main contribution of this work is that it bridges the gap between the broad utilization of fading channel statistical properties and the lack of systematic study that makes such statistical properties available

    Channel coding for progressive images in a 2-D time-frequency OFDM block with channel estimation errors.

    Get PDF
    Coding and diversity are very effective techniques for improving transmission reliability in a mobile wireless environment. The use of diversity is particularly important for multimedia communications over fading channels. In this work, we study the transmission of progressive image bitstreams using channel coding in a 2-D time-frequency resource block in an OFDM network, employing time and frequency diversities simultaneously. In particular, in the frequency domain, based on the order of diversity and the correlation of individual subcarriers, we construct symmetric n -channel FEC-based multiple descriptions using channel erasure codes combined with embedded image coding. In the time domain, a concatenation of RCPC codes and CRC codes is employed to protect individual descriptions. We consider the physical channel conditions arising from various coherence bandwidths and coherence times, leading to a range of orders of diversities available in the time and frequency domains. We investigate the effects of different error patterns on the delivered image quality due to various fade rates. We also study the tradeoffs and compare the relative effectiveness associated with the use of erasure codes in the frequency domain and convolutional codes in the time domain under different physical environments. Both the effects of intercarrier interference and channel estimation errors are included in our study. Specifically, the effects of channel estimation errors, frequency selectivity and the rate of the channel variations are taken into consideration for the construction of the 2-D time-frequency block. We provide results showing the gain that the proposed model achieves compared to a system without temporal coding. In one example, for a system experiencing flat fading, low Doppler, and imperfect CSI, we find that the increase in PSNR compared to a system without time diversity is as much as 9.4 dB

    Wireless multiuser communication systems: diversity receiver performance analysis, GSMuD design, and fading channel simulator

    Get PDF
    Multipath fading phenomenon is central to the design and analysis of wireless communication systems including multiuser systems. If untreated, the fading will corrupt the transmitted signal and often cause performance degradations such as increased communication error and decreased data rate, as compared to wireline channels with little or no multipath fading. On the other hand, this multipath fading phenomenon, if fully utilized, can actually lead to system designs that provide additional gains in system performance as compared to systems that experience non-fading channels.;The central question this thesis tries to answer is how to design and analyze a wireless multiuser system that takes advantage of the benefits the diversity multipath fading channel provides. Two particular techniques are discussed and analyzed in the first part of the thesis: quadrature amplitude modulation (QAM) and diversity receivers, including maximal ratio combining (MRC) and generalized selection combining (GSC). We consider the practical case of imperfect channel estimation (ICE) and develop a new decision variable (DV) of MRC receiver output for M-QAM. By deriving its moment generating function (MGF), we obtain the exact bit error rate (BER) performance under arbitrary correlated Rayleigh and Rician channels, with ICE. GSC provides a tradeoff between receiver complexity and performance. We study the effect of ICE on the GSC output effective SNR under generalized fading channels and obtain the exact BER results for M-QAM systems. The significance of this part lies in that these results provide system designers means to evaluate how different practical channel estimators and their parameters can affect the system\u27s performance and help them distribute system resources that can most effectively improve performance.;In the second part of the thesis, we look at a new diversity technique unique to multiuser systems under multipath fading channels: the multiuser diversity. We devise a generalized selection multiuser diversity (GSMuD) scheme for the practical CDMA downlink systems, where users are selected for transmission based on their respective channel qualities. We include the effect of ICE in the design and analysis of GSMuD. Based on the marginal distribution of the ranked user signal-noise ratios (SNRs), we develop a practical adaptive modulation and coding (AMC) scheme and equal power allocation scheme and statistical optimal 1-D and 2-D power allocation schemes, to fully exploit the available multiuser diversity. We use the convex optimization procedures to obtain the 1-D and 2-D power allocation algorithms, which distribute the total system power in the waterfilling fashion alone the user (1-D) or both user and time (2-D) for the power-limited and energy-limited system respectively. We also propose a normalized SNR based GSMuD scheme where user access fairness issues are explicitly addressed. We address various fairness-related performance metrics such as the user\u27s average access probability (AAP), average access time (AAT), and average wait time (AWT) in the absolute- and normalized-SNR based GSMuD. These metrics are useful for system designers to determine parameters such as optimal packet size and delay constraints.;We observe that Nakakagami-m fading channel model is widely applied to model the real world multipath fading channels of different severity. In the last part of the thesis, we propose a Nakagami-m channel simulator that can generate accurate channel coefficients that follow the Nakagami-m model, with independent quadrature parts, accurate phase distribution and arbitrary auto-correlation property. We demonstrate that the proposed simulator can be extremely useful in simulations involving Nakagami-m fading channel models, evident from the numerous simulation results obtained in earlier parts of the thesis where the fading channel coefficients are generated using this proposed simulator

    Performance comparison of LS, LMMSE and Adaptive Averaging Channel Estimation (AACE) for DVB-T2

    Get PDF
    © 2015 IEEE. In this paper the performance of the Adaptive Averaging Channel Estimator (AACE-LS) which is a modified Least Square (LS) estimator and the AACE-LMMSE which is a modified Linear Minimum Mean Error (LMMSE) estimator, are compared with respect to the conventional LS and the LMMSE estimators. The AACE is an estimator which is based on the averaging of the last N Scattered Pilots (SP) from the DVB-T2 model carried in the received OFDM symbols. The proposed method could in general be applied to any pilot based estimator. The noise introduced by the channel is considered as Additive White Gaussian Noise (AWGN) with zero mean and thus an averaging process is used to eliminate it. The estimator adaptively follows the fluctuations of the amplitude envelope in the time domain and adapts the size of the buffer N, with respect to the coherence time (Tc). Finally, based on the averaged estimated channel, the LS or the LMMSE equalizer is applied to the received signal in the frequency domain. Simulations clearly show that the performance of the AACE-LS is superior to the conventional LS estimator and is near to the performance of the LMMSE with no need of a prior knowledge of the statistics and the noise of the channel and thus if the channel is unknown to the receiver, the AACE is a good choice

    Performance analysis of diversity wireless systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Resource Allocation and Performance Analysis for Multiuser Video Transmission over Doubly Selective Channels

    Get PDF
    We consider an uplink multicarrier system with multiple video users who want to send compressed video data to the base station. In the time domain, we model the time varying channel using Jakes’ model, and in the frequency domain, each subcarrier is assumed to be independently fading. The video is scalably coded in units of group of pictures (GOP), and users have different video rate distortion (RD) functions. At the beginning of the GOP, the base station collects both the RD information and instantaneous channel state information (CSI) for subcarrier allocation purposes. We design a cross layer resource allocation algorithm to assign subcarriers to the users based on both the demand of the video and the quality of the channel. Once the resource allocation decision is made, the users then periodically adapt the modulation format of the subcarriers allocated according to the evolution of the CSI for the duration of the GOP. We show that our cross layer resource allocation robustly outperforms two baseline algorithms, each of which uses only one layer of information for resource allocation

    Rate and power adaption techniques for wireless communication systems

    Get PDF
    Attaining the most spectrally efficient form of data transmission over a time- varying channel remains as fundamentally important target in wireless systems. Link adaptation (LA) is a promising approach to increase spectral efficiency. In general, the transmitter adjusts its parameter such as rate, power and coding in accordance with the channel state information (CSI) fed back from the receiver. Consequently, the accuracy of the CSI is prevalent in LA design. In this thesis, an investigation of the performance of a variable rate variable power (VRVP) multi-level quadrature amplitude modulation (MQAM) scheme is performed for a single antenna system. Then, a novel VRVP-MQAM system is proposed that employs a rate and power adaptation algorithm based on the statistical characterization of CSI imperfection. Instead of using the conventional signal-to-noise ratio (SNR) estimate as a CSI parameter, the proposed system is based on both an SNR estimate and a bit error rate (BER) estimate, as BER is a more direct representation for quality of service (QoS) of a communication system. The pro posed rate and power adaptation algorithm is then generalized to incorporate a pilot symbol assisted modulation (PSAM) based channel predictor. The BER and SNR estimates are then employed within a code division multiple access (CDMA) based rate and power adaptation system. Finally, the performances of the pro posed systems are shown to achieve higher spectral efficiency when compared to the alternative systems derived based on conventional approach. Another requirement in today's wireless digital communication systems is to provide services for integrated voice and data traffic. The QoS requirement for voice and data can be application specific. For example, real-time traffic is delay-constrained, whereas non-real time traffic has a relaxed requirement on delay but may be capacity-constrained. With this motivation, a rate and power adaptation technique is proposed for a multiple-input multiple-output (MIMO) based integrated voice and data service. On the basis of analytical and simulation results, the performance of the proposed scheme is assessed for a Rayleigh fading environment. Finally, the results demonstrated that the MIMO based system is suitable for integrate voice and data traffic with different requirements and specification

    Channel Coding for Progressive Images in a 2-D Time-Frequency OFDM Block With Channel Estimation Errors

    Get PDF
    Coding and diversity are very effective techniques for improving transmission reliability in a mobile wireless environ- ment. The use of diversity is particularly important for multimedia communications over fading channels. In this work, we study the transmission of progressive image bitstreams using channel coding in a 2-D time-frequency resource block in an OFDM network, em- ploying time and frequency diversities simultaneously. In partic- ular, in the frequency domain, based on the order of diversity and the correlation of individual subcarriers, we construct symmetric -channel FEC-based multiple descriptions using channel erasure codes combined with embedded image coding. In the time domain, a concatenation of RCPC codes and CRC codes is employed to pro- tect individual descriptions. We consider the physical channel con- ditions arising from various coherence bandwidths and coherence times, leading to a range of orders of diversities available in the time and frequency domains. We investigate the effects of different error patterns on the delivered image quality due to various fade rates. We also study the tradeoffs and compare the relative effec- tiveness associated with the use of erasure codes in the frequency domain and convolutional codes in the time domain under different physical environments. Both the effects of intercarrier interference and channel estimation errors are included in our study. Specifi- cally, the effects of channel estimation errors, frequency selectivity and the rate of the channel variations are taken into consideration for the construction of the 2-D time-frequency block. We provide results showing the gain that the proposed model achieves com- pared to a system without temporal coding. In one example, for a system experiencing flat fading, low Doppler, and imperfect CSI, we find that the increase in PSNR compared to a system without time diversity is as much as 9.4 dB
    corecore