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Summary

Many wireless communication systems make use of the diversity technique: a

well-known concept to combat the effects of multipath fading. Diversity reception

consists of receiving redundantly the same information-bearing signal over multiple

fading channels, (then combining them at the receiver so as to increase the received

signal-to-noise ratio (SNR).)

One way by which these multiple replicas can be obtained is using multiple

antennas in multiple-input-multiple-output (MIMO) systems for achieving space

diversity. The ergodic capacity is a key performance parameter of a MIMO fading

channel. We obtain tight bounds on the ergodic capacity over an identical MIMO

fading channel, which show explicitly the dependency of the ergodic capacity on

the SNR and the number of transmit and receive antennas. The results enable us to

determine the optimal number of transmit antennas to be used for a given SNR and a

given total number of antennas. Recently, MIMO systems over a non-identical fading

channel have attracted great attention because of their applications in cooperative

communications and distributed antenna systems. We derive explicit and closed-form

expressions of the ergodic mutual information (MI) and the information outage

probability. Two simple and near-optimal power-allocation schemes are then proposed

for maximizing the ergodic MI and minimizing the information outage, respectively.

Another approach to obtain multiple replicas of the same information-bearing

signal is by using multiple time slots separated by at least the coherence time of

vii



Summary

the channel in automatic-repeat-request (ARQ) systems, leading to the exploitation

of time diversity. With imperfect channel state information at the receiver (CSIR),

the performance parameters of ARQ systems are evaluated as a function of the

accuracy of the channel estimation. A link between data-link-layer performances

and physical-layer parameters is therefore established. An attempt is made to study

the inter-relationships among the various relevant system performance parameters

and the dependency of these relationships on the CSIR accuracy. For enhancing

the throughput, adaptive transmission strategies have been adopted to match the

transmission rate to time-varying channel conditions for achieving higher spectral

efficiency. Therefore, with regard to maximizing the throughput, in addition to

providing a more reliable transmission, ARQ schemes with adaptive transmissions

are extensively adopted. Considering a practical case with the imperfect channel

state information at the transmitter (CSIT) and the imperfect CSIR, an optimal

continuous-rate adaptation scheme is studied so as to achieve a maximum goodput.
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Chapter 1

Introduction

1.1 Introduction to Diversity Wireless Systems

Many of the current and emerging wireless communication systems make use in one

form or another of diversity: a classic and well-known concept [1–4] that has been

used since the early 1950’s to combat the effects of multipath fading. Diversity

combining consists of receiving redundantly the same information-bearing signal over

two or more fading channels, then combining these multiple replicas at the receiver

(in order to increase the overall received signal-to-noise-ratio (SNR)). It offers one of

the greatest potentials for radio link performance improvement to many of the current

and future wireless technologies. The intuition behind this concept is to exploit the

low probability of concurrence of deep fades in all the diversity channels to lower the

probability of error and of outage. Depending on the domain where replicas of the

same information-bearing signal are obtained, diversity techniques can be categorized

into three types: time diversity, frequency diversity and space diversity. In this thesis,

we will focus on space diversity and time diversity. The space diversity can be achieved

by using multiple antennas in MIMO systems while the time diversity can be achieved

by using multiple time slots separated by at least the coherence time of the channel in

1



1.1 Introduction to Diversity Wireless Systems

ARQ systems.

1.1.1 MIMO Systems

A conventional approach to achieving space diversity is to employ multiple transmit

and/or multiple receive antennas. If the antennas are placed sufficiently far apart, the

channel gains between different antenna pairs are independent. For a mobile terminal,

a half to one carrier wavelength separation among antennas is sufficient to guarantee

that the channel gains are independent. Through transmitting the replicas of the signal

through different antennas, and/or combining the different replicas together at the

receiver, space diversity can be achieved. Traditionally, space diversity is achieved

by employing multiple receive antennas at the receiver in single-input-multiple-output

(SIMO) systems, where combining, selection or switching of the received signals is

performed. This is so-called receive diversity. By deploying multiple transmit antennas

at the transmitter in multiple-input-single-output (MISO) systems, transmit diversity

techniques shift the complexity associated with realizing diversity to the transmitter. A

multiple-input-multiple-output (MIMO) communication system with multiple transmit

and receive antennas provides even greater potential. In addition to the aforementioned

diversity benefits, the spectral efficiency is possibly enhanced by spatial multiplexing.

The maximum spatial multiplexing order is determined by the minimum of the number

of transmit and receive antennas. Therefore, the advantage of an MIMO system can be

utilized not only to increase the diversity of the system leading to an improved error

performance [5, 6] but also to increase the number of transmitted symbols leading to a

high spectral efficiency [7–9].

2



1.1 Introduction to Diversity Wireless Systems

1.1.2 ARQ/HARQ Systems

As another type of diversity techniques, time diversity can be obtained in

automatic-repeat-request (ARQ) systems by combining packets transmitted in different

time slots. The idea is that the packets that cause retransmission in the current

slot can be stored and later combined with additional copies of the same packet

transmitted in the successive time slots. The separation between successive time

slots equals or exceeds the coherence time of the channel. Therefore, combining the

multiple copies of a packet creates a single packet whose constituent symbols are more

reliable than those of any of the individual copies. Classified by the mechanisms of

transmissions and/or retransmissions, there are three basic types of ARQ schemes: the

selective-repeat ARQ, the stop-and-wait ARQ, and the go-back N ARQ [10, 11]. All

three basic ARQ schemes achieve the same reliability; however, they have different

throughputs. Taking into account of both the reliability and the throughput, the

goodput [12, 13], which shows the proportion of the throughput consisting of correct

packets, is more meaningful. For further improving the throughput and the system

reliability, it is preferred to combine ARQ with a forward-error-control (FEC) system

to reduce the frequency of retransmissions. The FEC scheme can be incorporated

into any of the three basic ARQ schemes. Such a combination of the ARQ and

the FEC is referred to as a hybrid ARQ (HARQ). In the Type-I HARQ scheme, the

same coded packet is retransmitted and these multiple packets can be combined in two

distinct ways. In the code combining scheme, these repeated packets are concatenated

to form a single packet at a lower code rate, which is often referred to as Chase

combining [14–16]. In the diversity combining scheme, these repeated packets are

combined into a single packet at the same rate with more reliable constituent symbols

by using symbol voting schemes [17] or by using symbol averaging schemes [16]. In

the Type-II HARQ scheme, instead of re-sending the same packet, the transmitter tries

3



1.2 Motivations of the Work

to construct and sends additional parity bits when a negative acknowledgment (NAK)

is received. This is also known as the incremental redundancy (IR) scheme [18].

1.2 Motivations of the Work

1.2.1 MIMO Systems

MIMO systems offer significant increases in data throughput and link reliability

without additional bandwidth or transmit power in wireless communications.

Substantial efforts have been made on characterizing the ultimate information theoretic

limits of the MIMO systems and designing optimal transmission strategies.

Information Theoretic Performance Limits

Before we proceed to discuss the channel capacity in various channel state information

(CSI) scenarios, we shall clarify two important concepts of the capacity for fading

channels. For ergodic channels, when the code is sufficiently long so that it spans an

ergodic fading process, the resulting channel capacity is a nonzero ergodic capacity.

The ergodic capacity refers to the capacity in Shannon’s sense; that is, for any

transmission rate smaller than the ergodic capacity, there exists at least one encoder and

one decoder that achieves arbitrarily small error probability. However, for non-ergodic

channels, there is no significant channel variation across the code. In this circumstance,

the channel capacity is viewed as a random variable as it depends on the instantaneous

channel state realization. Hence, the ergodic capacity in Shannon’s sense of these

channels is zero, meaning that no matter how small the transmission rate is, there is no

guarantee that the transmission will be error-free. Therefore, instead of looking at the

ergodic capacity in Shannon’s sense, it is more meaningful to look at the capacity from

an outage perspective i.e., the outage capacity at a given outage probability. The outage

4



1.2 Motivations of the Work

probability is the cumulative distribution function (CDF) of the mutual information

(MI), and measures the tradeoff between the transmission rate and the reliability. There

has been substantial work on characterizing the ergodic capacity of MIMO systems

under a variety of fading conditions. The ergodic capacity of the MIMO channel

has been developed for several different cases which depend on the availability of the

channel state information at the transmitter (CSIT) and/or the channel state information

at the receiver (CSIR).

Optimal Transmission Strategies

With perfect CSIR, coherent detection can be done, resulting in an enhanced channel

capacity compared to the case without any CSI knowledge. When the transmitter has

perfect CSIT, power allocation (in both the spatial and temporal dimensions) can be

performed at the transmitter which results in an additional enhancement of channel

capacity [19]. However, it is too optimistic in practice to assume the availability of

the instantaneous CSIT since it impose a heavy signalling burden on the feedback

channels. Hence, using partial CSI feedback greatly reduces the signalling burden

compared to using instantaneous CSI feedback. It has been shown that even partial

CSIT can increase the ergodic capacity of a MIMO system [20]. The fading channel,

given the feedback, can be modeled as a complex Gaussian random vector [20, 21].

Two extreme cases are considered: mean feedback and covariance feedback. For

the mean feedback, the partial CSIT resides in the mean of the distribution, with

the covariance modeled as white. For the covariance feedback, the fading channel

is assumed to be varying too rapidly to track its mean, so that the mean is set to

zero, and the partial CSIT regarding the relative geometry of the propagation paths

is captured by a covariance matrix. Therefore, depending on the different levels of the

feedback information available at the transmitter, it is important to investigate different
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transmission strategies that achieve the ergodic capacity in the MIMO systems.

1.2.2 ARQ/HARQ Systems

ARQ/HARQ is an alternative way to mitigate channel fading since the noise burst

may have run its course before the retransmitted packet begins to make its way across

the channel. Substantial efforts have been made on analyzing the performance of

ARQ/HARQ systems and in designing adaptive transmission strategies.

Performance of ARQ/HARQ Schemes

There are two basic parameters by which we can evaluate the performance of an

ARQ/HARQ system: reliability and throughput. The reliability is often expressed

in terms of the accepted packet error rate (APER) [10]. The APER is the percentage

of packets accepted by the receiver that contain one or more bit errors. Throughput

is defined as the ratio of the average number of information bits received per unit of

time to the total number of bits that could be transmitted per unit of time [10]. The

throughput is meaningful only when considered in conjunction with the reliability.

Therefore, the goodput, defined as the ratio of the expected number of information bits

correctly received per unit of time to the total number of bits that can be transmitted

per unit of time, shows the proportion of the throughput consisting of correct packets

[12, 13]. The performance parameters in the data-link layer due to ARQ/HARQ, such

as the APER, throughput, goodput and drop rate depend not only on the medium

access control (MAC) protocol, but also on the physical-layer parameters. Much

work has been done on the performance of ARQ/HARQ schemes over fading channels

[22–25]. Due to the large number and the complexity of the parameters as well as

the protocols across the two layers, in previous works, by and large, perfect CSI in

the physical-layer is assumed and the characterization of channel errors is mostly
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modeled by using a Markov model with a finite number of states [13, 26–28] [].

Nevertheless, the CSI may be outdated or imperfect due to the feedback delays and

the channel estimation errors both at the transmitter and the receiver. Since the CSI

can be used to perform link adaption, transmit diversity selection [29] and relay

selection [30], evaluating the effects of imperfect CSI on the system performance

is important to provide insights on system operation and guidelines for designing

effective system management schemes. Therefore, we focus on providing a systematic

approach whereby the link-layer performance parameters can be evaluated in terms of

the parameters at the lowest physical-layer. More importantly, we study the impact

of imperfect CSIR on ARQ/HARQ schemes and demonstrate that the accuracy of the

CSIR plays a crucial role in determining the performance in the data-link layer.

Adaptive Transmission Strategies

Desire to avoid both low spectral efficiency and unreliable transmissions associated

with the use of a fixed transmission strategy over fading channel has motivated the use

of adaptive transmission strategies. Adaptive transmission strategies have been studied

extensively to match the modulation and coding to time-varying channel conditions for

enhancing the throughput [19, 31–35]. However, in order to achieve high reliability,

one has to reduce the transmission rate using either small constellations, or powerful

but low rate codes. Since ARQ is an alternative way to mitigate channel fading, high

reliable adaptive transmission strategies combined with ARQ techniques has been

known to offer a higher spectral efficiency, in addition to providing a more reliable

transmission [36]. The transmission rates are adapted with respect to the channel

conditions. Therefore, the CSI plays a crucial role in determining the performance

of the systems and it is more important to study the performance of ARQ schemes

with adaptive transmission strategies.
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1.3 Research Objectives and Contributions

For the information theoretic performance limits mentioned in Section 1.2.1, with no

CSIT and perfect CSIR, the ergodic capacity of MIMO fading channels depends on

the joint distribution of the eigenvalues of a Wishart matrix, and is quite complex

in general. Such complicated results do not allow one in general to study explicitly

the dependency of the ergodic capacity on system parameters. In particular, we are

interested in the optimal number of transmit antennas to be used, as a function of the

SNR. In Chapter 3, a new approach based on the trace and determinant of a Wishart

matrix is proposed to derive upper and lower bounds on the ergodic capacity instead

of using the joint distribution of the eigenvalues of a Wishart matrix. Our approach

to the ergodic capacity analysis greatly simplifies the computational procedure, and

provides easy and accurate ways to deal with ergodic capacity related calculations for

MIMO Rayleigh fading channels. The bounds obtained here on the ergodic capacity

are expressed in simple closed forms, and show explicitly the effects of the system

parameters on the ergodic capacity. The bounds are valid for an arbitrary number of

antennas, and they enable us to design an optimal antenna deployment strategy, i.e., to

determine the optimal number of transmit antennas for a given SNR and a given total

number of antennas in the system.

For the optimal transmission strategy with partial CSIT and perfect CSIR

addressed in Section 1.2.1, with covariance feedback of a MISO channel, the optimum

solution consists of independent, complex, circular, Gaussian transmit signals along

the N eigenvectors of the transmit covariance matrix. However, the powers along

the eigenvectors have to be determined through numerical maximization techniques.

It is well known that equal power allocation is optimal for a MIMO channel with

an identity matrix as the covariance feedback [9], which is actually the case of no
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CSIT addressed in [20]. However, it is no longer optimal for the case of covariance

feedback over independent, and non-identically distributed (i.n.d) fading channels. To

the best of our knowledge, no closed-form power control is available in the literature

for the ergodic capacity maximization. The power has to be determined through

numerical maximization techniques [21, 37, 38]. In Chapter 4, we are interested

in the performance limits and associated power allocation problems in a MIMO

system with the covariance feedback of the CSIT and the perfect CSIR [39, 40]. Our

first contribution is therefore to obtain the closed-form optimal power allocation for

maximizing the ergodic capacity over i.n.d fading channels. For outage probability

minimization, the information outage of a MISO system over i.n.d Rayleigh fading

is studied in [41]. Therein, a heuristic power control scheme named equal power

allocation with channel selection is proposed. Generalizing to a MIMO system,

we obtain the closed-form expressions of the outage probability over i.n.d Rayleigh

fading channels and derive the closed-form power allocation scheme for exploiting the

non-identical channel statistics to minimize the outage probability [40].

As addressed in Section 1.2.2, much work has been done on the performance

of ARQ/HARQ schemes over fading channels. Due to the large number and the

complexity of the parameters as well as the protocols across the physical layer and

the data-link layer, in previous works, by and large, perfect CSIR in the physical

layer is assumed. Nevertheless, the CSIR may be imperfect due to the channel

estimation errors. Therefore, in Chapter 5, we study the impact of imperfect CSIR

on ARQ/HARQ schemes and demonstrate that the accuracy of the CSIR plays a

crucial role in determining the performance in the data-link layer. Our aim is on

establishing a link between network-layer and physical layer performance parameters.

We analyze the performance of three basic ARQ schemes as well as three Type-I

HARQ schemes with diversity combining over a block fading channel with imperfect
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CSIR. The imperfect CSIR is acquired via minimum mean square error (MMSE)

channel estimation with the aid of pilot symbols. Three performance parameters:

APER, goodput and drop rate are investigated, respectively. We obtain closed-form

upper and lower bounds on the APER, the goodput as well as the drop rate. Using

numerical results, we compare the impact of the accuracy of the imperfect CSIR on

basic ARQs and on Type-I HARQs. In practice, the number of transmissions is limited

in Type-I HARQ, which can result in a drop rate of data packets without guaranteeing

their error-free delivery. Our work provides a systematic approach whereby the

link-layer performance parameters can be evaluated in terms of the parameters at the

lowest physical-layer. While closed-form expressions of the bounds on the APER,

goodput and drop rate are nonlinear functions of the MMSE, they enable the system

designer to study numerically the dependence of the link-layer performance parameters

on the MMSE and the effective SNR, for any given (n,m) linear block code and any

modulation format for transmitting the code bits. A key physical-layer parameter

that plays an implicit but crucial role in the analysis is the channel bandwidth. The

bandwidth, together with the code rate, determines the allowable number of pilot

symbols per packet, which in turn determines the required SNR for achieving the

desired channel estimation MMSE that leads to the target link-layer performance level.

For the adaptive transmission mentioned in Section 1.2.2, much previous work on

this topic assume perfect CSIT is available. However, it is too optimistic in practice

to assume the availability of perfect CSIT and perfect CSIR. In adaptive transmission,

the CSIT used to perform rate adaptation maybe outdated and/or imperfect due to

the transmission delay and the processing imperfections both at the transmitter and

at the receiver. In Chapter 6, we focus on the imperfect CSIT and imperfect CSIR

due to both the channel estimation errors at the transmitter and the prediction errors

at the receiver. While a strictly causal channel predictor is employed to predict the

10



1.4 Organization of the Thesis

channel state for the transmitter to adapt its transmission rates, a noncausal channel

estimator estimates the channel for the receiver to perform coherent demodulation.

The goodput is used as the performance measure. It is defined as an amount of data

delivered to the receiver correctly per time unit, and it takes into consideration both the

throughput and the reliability. Our objective is to maximize the goodput by using

adaptive transmission strategies. An optimal continuous-rate adaptation scheme is

proposed which takes account of the effect of the imperfect CSIT and imperfect CSIR.

The pilot symbol assisted modulation (PASM) scheme is applied at the transmitter to

facilitate the channel prediction and channel estimation at the receiver. Based on the

predicted channel gain and a utilization factor, the transmitter allocates the optimal

transmission rates which maximize the goodput. The utilization factor, which takes

into account both the estimation and prediction errors, is to be optimized in order to

achieve the maximum goodput.

1.4 Organization of the Thesis

The rest of this dissertation is organized as follows.

In Chapter 2, for both MIMO systems and ARQ/HARQ systems, a comprehensive

literature review is provided on performance analysis and transmission strategies with

the different levels of CSI availability.

In Chapter 3, bounds on the ergodic capacity of the MIMO Rayleigh fading

channel are derived by exploiting the properties and distributions of the trace and the

determinant of a Wishart matrix. Thus, three simple and tight bounds on the ergodic

capacity are obtained, which show explicitly the dependence of the ergodic capacity

on the SNR and the number of transmit and receive antennas. Based on the obtained

tight bounds, an optimal number of transmit antennas used for a given SNR and a given
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total number of antennas is studied for maximizing the ergodic capacity.

In Chapter 4, the performance limits and associated power-allocation problems

in a multiple-antenna diversity system with partial CSIT is investigated. Bounds

on ergodic capacity and information outage are obtained in closed-forms. By

studying both ergodic capacity and information outage, two simple and near-optimal

power-allocation schemes are obtained in closed-form as a function of the partial

CSIT for maximizing the ergodic capacity and minimizing the outage probability,

respectively.

In Chapter 5, with imperfect CSIR, the performance of basic ARQ and HARQ

systems are evaluated as a function of the accuracy of channel estimation. The

performance parameters we study in particular are the goodput, APER and the drop

rate, as a function of the channel estimation mean square error (MSE) and the factors

which affect the MSE. Upper and lower bounds on the APER, the goodput as well as

the drop rate are derived. The precise dependence of the APER and the goodput on the

channel estimation accuracy is quantified.

In Chapter 6, with imperfect CSIT and imperfect CSIR, a rate adaptation

scheme is developed, which takes account of both channel estimation and channel

prediction errors. The adaptive transmission strategy adapts the continuous-rate of the

transmission relative to the predicted channel gain and a utilization factor. In turn, this

utilization factor is optimized as a function of the MSEs of both channel estimation

and channel prediction so as to maximize the goodput of the system.

Finally, Chapter 7 summarizes our work, and points out a number of future

research directions.
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Chapter 2

Literature Review

2.1 MIMO Systems

MIMO systems offer significant increases in data throughput and link reliability

without additional bandwidth or transmit power in wireless communications.

Substantial efforts have been made on characterizing the ultimate information theoretic

limits of the MIMO systems and designing optimal transmission strategies.

2.1.1 Information Theoretic Performance Limits

There has been substantial work on characterizing the ergodic capacity of MIMO

systems under a variety of fading conditions. The ergodic capacity of the MIMO

channel has been developed for several different cases which depend on the availability

of the CSIT and/or the CSIR.

Perfect CSIT and Perfect CSIR

The capacity of a fading channel with perfect CSIT and perfect CSIR is analyzed

in [9, 19, 42]. For achieving the capacity on frequency-selective fading channels, the

transmit signal is circularly symmetric, zero-mean, complex Gaussian distributed and
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the optimal power allocation is a “water-filling” on the eigenvalues of the channel

matrix [9,42]. The capacity of a time-varying channel is achieved when the transmitter

adapts its power, data rate, and coding scheme to the channel variation, and the optimal

power allocation is a “water-filling” in time [19].

No CSIT and Perfect CSIR

For the important case when CSIT is not available but perfect CSIR is known, a lot

of work on the ergodic capacity has been done in [7, 9, 19, 43–46]. For independent

and identically distributed (i.i.d) Rayleigh fading, the ergodic capacity of a MIMO

system is obtained exactly in [9], where the ergodic capacity was expressed in terms of

Laguerre polynomials. A lower bound on the capacity of a MIMO system with N ≤ M

is obtained in an expression of a random variable whose distribution is indicated [7],

where N is the number of the transmit antennas and M is the number of the receive

antennas. Since the exact expression of the ergodic capacity is either complex or is

not given in a closed form, a lower bound is obtained in [47] by applying Minkowski’s

inequality and Jensen’s inequality. By using the expectation of the determinant of a

complex central Wishart matrix, a lower bound is obtained that is only tight at low

SNR [46]. The outage probability is given in a closed integral form [48], which can

only be evaluated numerically.

For i.i.d Rician fading channels, the ergodic capacity has been presented in

[44, 46, 49]. By making use of the joint distribution of the eigenvalues of a noncentral

Wishart matrix, the exact ergodic capacity is obtained in multiple integral forms that

can only be evaluated by numerical integration [49]. By determining the expected

value of the determinant and the log-determinant of a complex noncentral Wishart

matrix, bounds on ergodic capacity are obtained but in a complicated form consisting

of Digamma functions [44]. Following the approach of [47], upper and lower bounds
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are derived in [46], that are tight only at low and high SNR, respectively. Exploiting

the properties and statistical distributions of the determinant and trace of a noncentral,

complex, Wishart matrix, lower and upper bounds on the outage probability are

obtained in closed-forms and can be reduced to the case of Rayleigh fading [50].

Partial CSIT and Perfect CSIR

For mean feedback, the partial CSIT resides in the mean of the distribution, with the

covariance modeled as white. For covariance feedback, the fading channel is assumed

to be varying too rapidly to track its mean, so that the mean is set to zero, and the

partial CSIT regarding the relative geometry of the propagation paths is captured by

a covariance matrix. The covariance matrix is usually assumed to be nontrivial, i.e.,

an nonidentity matrix. The ergodic capacity of a MIMO system with partial CSIT has

been analyzed in [21, 38, 51, 52].

For the case of mean feedback, the ergodic capacity is obtained in a general form

and only solved by a number of numerical algorithms [51]. As an alternative work

to [51], analytical expressions of the ergodic capacity are obtained for two cases of

partial CSIT feedback [21].

For the case of covariance feedback, the ergodic capacity is obtained in a general

form and only solved by a number of numerical algorithms [51]. As an alternative

work to [51], analytical expressions of the ergodic capacity are obtained for the two

cases of partial CSIT feedback [21]. The results in [21, 51] are only valid for a MISO

system. As an extension to [21,51], the ergodic capacity of a two-input-multiple-output

(TIMO) system in terms of a single integral is shown analytically in [38]. By applying a

method from physics, known as the replica approach, the ergodic capacity of a MIMO

system with a large number of antennas, is obtained in a complicated closed-form

expression consisting of the trace of matrices [52]. For the outage probability, an
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upper bound is obtained in [41] for a MISO system.

2.1.2 Optimal Transmission Strategies

With perfect CSIR, channel-matched decoding can be done, resulting in an enhanced

channel capacity compared to the case without any CSI knowledge. When the

transmitter has perfect CSIT, an adaptation (in both the spatial and temporal

dimensions) can be performed at the transmitter which results in an additional

enhancement of channel capacity. However, it is too optimistic in practice to assume

the availability of the instantaneous CSIT since it impose a heavy signalling burden on

feedback channels. Hence, using partial CSI feedback greatly reduces the signalling

burden compared to using the instantaneous CSI feedback. It has been shown

that even partial CSIT can increase the ergodic capacity of a MIMO system [20].

Therefore, depending on the different levels of the feedback information available

at the transmitter, we have different transmission strategies that achieve the ergodic

capacity in the MIMO systems.

Perfect CSIT and Perfect CSTR

For achieving the capacity on frequency-selective fading channels, the transmit signal

is circularly symmetric, zero-mean, complex Gaussian distributed and the optimal

power allocation is a “water-filling” on the eigenvalues of the channel matrix [9, 42].

The capacity of a time-varying channel is achieved when the transmitter adapts its

power, data rate, and coding scheme to the channel variation, and the optimal power

allocation is a “water-filling” in time [19]. For the case of single receive antenna, the

results in [9,19] can be reduced in the rank of a matrix. Hence, the capacity-achieving

transmit covariance matrix has rank one and, therefore, beamforming achieves the

capacity [53].
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No CSIT and Perfect CSIR

For i.i.d Rayleigh fading channels, it has been shown that the capacity of the channel

is achieved when the transmit signal is independently, circularly symmetric complex

Gaussian distributed with mean zero and variance P/N [9, 54], where P is the total

transmit power. Hence, the optimal power allocation scheme is equal power allocation.

For a special case of N = M , there are two conclusions drawn on the ergodic capacity

as follows: the capacity scales with increasing SNR for a large but practical number of

N and the capacity increases linearly by the number of antenna N [7, 8, 46].

Partial CSIT and Perfect CSIR

It has been shown that even partial CSIT can increase the ergodic capacity of a MIMO

system. For any given input covariance matrix, the input distribution that achieve

the capacity is shown to be complex vector Gaussian. This leads to the transmitter

optimization problem, i.e., finding the transmit covariance matrix that achieves the

ergodic capacity subject to a transmit power constraint.

For mean feedback of a MISO channel, the beamforming strategy performs close

to the optimal strategy at high feedback SNR [20, 21, 51, 55] since in that case the

transmitter can take good advantage of the mean feedback. However, at low feedbck

SNR, the optimal strategy is to use N -fold diversity (transmit covariance is full rank),

and the power is distributed according to a “water-filling” strategy among the N

directions [21,51]. In [21], the optimization procedure involves maximizing an integral

over one parameter. For mean feedback of the MIMO channel, results in [56] justify

the observations and numerical results for the MISO channel in [51, 55] valid for the

MIMO channel.

For covariance feedback of a MISO channel, the optimum solution consists of

independent complex circular Gaussian transmit signals along the N eigenvectors
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of the transmit covariance matrix. The power along the eigenvectors need to be

determined through numerical maximization technologies. The solution resembles

“water-filling” principle, i.e., the eigenvectors corresponding to larger eigenvalues

receive more power. The power along some of the eigenvectors may be zero so

that the optimal diversity order may be less than N [20, 51]. When there is a large

enough difference between the two strongest eigenvalues or the amount of water (the

SNR) is small enough, then the “waterfilling” just covers the strongest eigenvalue [20],

i.e., the beamforming strategy along the corresponding eigenvector performs close to

the optimal strategy. This conclusion is also shown in [55] that beamforming in the

direction corresponding to the largest eigenvalue is asymptotically optimum as the

SNR tends to zero. For determining the power along the eigenvectors, [37] provides

an algorithm which computes the optimum power allocation. The maximizing the

capacity reduces to an N -parameter maximization over the eigenvalues of the transmit

covariance matrix, which can be done with numerical effort [21]. For covariance

feedback of a MIMO channel, results in [52,56] justify the observations and numerical

results for the MISO channel in [51, 55] valid for the MIMO channel. For the TIMO

sytem, optimization over the transmit covariance matrix reduces to a trivial numerical

optimization over a single parameter [38].

Substantially different from the results of maximizing the ergodic capacity,

minimizing the outage probability for a two-input-single-output (TISO) system with

the covariance feedback does not favor the beamforming approach especially for a low

number of receive antennas, since the beamforming is highly susceptible to fadings

[38]. A near optimum power allocation named as equal power allocation with channel

selection is derived in [41] for a MISO sytem with the covariance feedback. This

near optimum scheme is to select a certain set of transmit antennas and allocate power

equally among the selected antennas. As the number of receive antennas increases, the
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optimum transmission strategy has a similar trends as that for maximizing the ergodic

capacity [38].

2.2 ARQ/HARQ Systems

ARQ/HARQ is an alternative way to mitigate channel fading since the noise burst

may have run its course before the retransmitted packet begins to make its way across

the channel. In many applications the communication channel is almost error-free

except for occasional bursts of noise of short duration. Such noise bursts may be

caused, for example, by nearby power machinery, electrical storms, and single-event

upsets in digital hardware. In such situations, a simple error detecting ARQ scheme

which detects the error burst, discards or stores the affected packet, and requests a

retransmission can provide a great deal of protection.

2.2.1 Background of ARQ/HARQ Systems

There are three basic types of ARQ schemes: the stop-and-wait ARQ (SW-ARQ), the

go-back-N ARQ (GBN-ARQ), and the selective-repeat ARQ (SR-ARQ) [10, 11]. In

a SW-ARQ system, the transmitter sends a codeword to the receiver and waits for an

acknowledgement from the receiver. A positive acknowledgement (ACK) from the

receiver signals that the codeword has been successfully received, and the transmitter

sends the next codeword. A NAK from the receiver indicates that the received has been

detected in error, and the transmitter re-sends the codeword. Retransmissions continue

until an ACK is received by the transmitter. In a GBN-ARQ system, codewords are

transmitted continuously. The transmitter does not wait for an acknowledgement after

sending a codeword; as soon as it has completed sending one, it begins sending the

next codeword. The acknowledgment for a codeword arrives after a round-trip delay
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which is defined as the time interval between the transmission of a codeword and the

receipt of an acknowledgment for that codeword. During this interval, N − 1 other

codewords have also been transmitted. When a NAK is received, the transmitter backs

up to the codeword that was negatively acknowledged and re-sends that codeword

and N − 1 succeeding codewords that were transmitted during the round-trip delay.

In an SR-ARQ system, codewords are also transmitted continuously; however, the

transmitter re-sends only those codewords that are negatively acknowledged.

There is another technique for controlling transmission errors in packet

transmission systems: the FEC scheme. In an FEC system, an error-correcting code

is used. When the receiver detects the presence of errors in a received vector it

attempts to determine the error locations and then corrects the errors. If the exact

locations of errors are determined, the received vector will be correctly decoded; if

the receiver fails to determine the exact locations of errors, the received vector will be

decoded incorrectly, and erroneous data will be delivered to the user. Systems using

FEC maintain constant throughput regardless of the channel error rate; however, FEC

systems have two drawbacks. First, when a received codeword is detected in error it

must be decoded and the decoded message must be delivered to the user regardless

of whether it is correct or incorrect. Because the probability of a decoding error is

much greater than the probability of an undetected error [10], it is hard to achieve high

system reliability with FEC. Second, to obtain high system reliability, a long powerful

code must be used and a large collection of error patterns must be corrected. This

makes decoding hard to implement and expensive. Comparing the FEC and ARQ

systems, ARQ is simple and provides high system reliability. For these reasons, ARQ

is often preferred than FEC for error control in communication systems. However,

ARQ systems have a severe drawback: their throughput falls rapidly with increasing

channel error rate. A combination of the ARQ and the FEC is referred to as a HARQ
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system, which overcomes the drawbacks in both the ARQ and the FEC. The function of

the FEC subsystem is to reduce the frequency of retransmission by correcting the error

patterns that occur most frequently. This increases the system throughput. When a less

frequent error pattern occurs and is detected , the receiver requests a retransmission

rather than passing the unreliably decoded message to the user. This increases the

system reliability. As a result, a HARQ system provides higher reliability than an FEC

system alone and a higher throughput than the system with ARQ only.

Considering the transmission mechanisms of the parity-check bits for error

correction, the HARQ schemes are classified into Type-I HARQ and Type-II HARQ.

In a Type-I HARQ system [57], each packet is encoded for both error detection and

error correction. For two-code Type-I HARQ systems, the transmitter is assumed

to generate data packets of some fixed length m. The data is first encoded using

a high-rate (n′,m) error detection code C1; cyclic redundancy check (CRC) codes

are frequently used for C1. The encoded data is then encoded once again using an

(n, n′) FEC code C2. When the packet arrives at the receiver, it is first decoded using

the FEC decoder. The resulting n′-bit “message” is then sent to the error detecting

decoder. If errors are detected, an retransmission request is sent back to the transmitter.

Otherwise, the packet is accepted and the m-bit data packet passes along to the data

sink. For single-code Type-I HARQ systems, the FEC decoder is modified to generate

retransmission requests using one or both of the following two approaches. The first

approach is that if the FEC code is not perfect and the decoder is a bounded-distance

decoder, a retransmission request is sent back in the event of a decoder failure. The

second approach is that if the FEC decoder is t-error-correcting, a retransmission

threshold t′ < t is designated such that a retransmission request is generated whenever

the number of errors corrected exceeds t′. The design of single-code Type-I HARQ

typified by the Golay protocol in [11, Example 15-4] has been applied to a number of
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different block and convolutionally encoded FEC systems. Much work has been done

on the development of single-code Type-I HARQ baed on the sequential decoding of

convolutional codes [58], on the Viterbi decoder [16, 59], and on the majority-logic

decoding of both convolutional [17] and cyclic block codes [60]. The most powerful

of the single-code Type-I HARQ systems are those based on Reed-Solomon codes

[61, 62]. In the Type-I HARQ scheme, the same coded packet is retransmitted and

these multiple packets can be combined in two distinct ways. In the code combining

scheme, these repeated packets are concatenated to form a single packet at a lower code

rate, which is often referred to as Chase combining [14–16]. In the diversity combining

scheme, these repeated packets are combined into a single packet at the same rate with

more reliable constituent symbols by using symbol voting schemes [17] or by using

symbol averaging schemes [16].

In a Type-II HARQ scheme [18,63,64], the data is first encoded using a high-rate

error detecting code to form a packet. The packet is then encoded using a systematic

invertible code by adding some parity bits. The additional parity check bits are sent

only when errors are detected in the packet. The receiver appends these bits to the

received packet for increasing the error correction capability. This is also known as the

incremental redundancy scheme [18]. Two separate codes can be used in this scheme:

a high-rate (n,m) error detecting code C1 and a (2n, n) systematic invertible code

C2. An m-bit message is first encoded using C1 to form an n-bit packet P1. Then

P1 is encoded using C2. The n parity bits called P2 from the C2 code word are saved

in a buffer, while the C1 codeword P1 is transmitted. The initial packet is checked

for errors at the receiver. If it is found to contain errors, a retransmission request is

sent back to the transmitter. The transmitter responds by sending P2. Since C2 is

invertible, the n bits used to create the C2 codeword can be obtained by inverting the

packet P2. An inverted version of P2 is created and check for errors. If the inverted
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version contains errors, P2 is appended to P1 to create a noise corrupted C2 codeword.

After FEC decoding, the resulting message is checked once again for errors. If there

are still errors, the process continues, with the transmitter alternating transmission of

P1 and P2 until one of the three error detection decoding operations is successfully

passed. The error detection role can be served by CRC codes while a class of codes

based on shortened cyclic codes is selected for the half-rate systematic invertible code.

2.2.2 Performance of Packet ARQ/HARQ Schemes

Much work has been done on the performance of ARQ/HARQ systems over fading

channels. The performance analysis has been developed for different cases which

depend on the availability of the CSIT and/or the CSIR.

Perfect CSIT and Perfect CSIR

For block fading channels, the goodput performance of the Type-I schemes with

code combining and diversity combining are theoretically analyzed [12, 16, 26]. The

performance derivation is based on the use of the sphere-packing bound. The

bounds on the throughput of Type-II HARQ schemes are obtained by using punctured

convolutional coding in [65, 66] and by using block codes in [67]. For correlated

channels, the throughput performance of the basic ARQ is presented by using a

one-step Markov process [27] and by using finite state channel models in [22].

The throughput performance of the Type-I HARQ scheme with code combining is

theoretically analyzed over by using a two state Markov channel model [28]. The

goodput performance of the Type-II HARQ scheme is theoretically analyzed by

adopting a finite-state Markov chain [12, 26] based on the use of the sphere-packing

bound. Sphere-packing bound can be used to evaluate a reasonably accurate

approximation for the achievable performance. By using punctured convolutional
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coding, the throughput performance is analyzed by adopting a two state Markov

channel model [28] and by adopting a M -state Markov channel model [68].

Imperfect CSIT and Perfect CSIR

For block fading channels, bounds on the throughput as well as the reliability are

derived using random coding techniques in [69]. The random coding bounds reveal

the achievable performance with block codes and maximum-likelihood soft-decision

decoding. For correlated fading channels, the throughput of basic ARQ schemes with

unreliable feedback is analyzed in [70–72]. The fading channel is modeled by a Gilbert

channel model and the patterns of packet and feedback errors follow two independent

first-order Markov models.

Imperfect CSIT and Imperfect CSIR

By considering the burst nature of both forward channel errors and feedback channel

errors modeled by using a joint hidden Markov model with a finite number of states,

the throughput of the GBN-ARQ schemes is analyzed over fading channels in [73].

2.2.3 Adaptive Transmission Strategies

In adaptive transmission, the transmission rates are adapted with respect to the channel

conditions. Therefore, the CSI plays a crucial role in determining the performance of

the systems. Some works on the performance analysis of ARQ schemes with adaptive

transmission strategies have been addressed for different cases which depend on the

availability of the CSIT and/or the CSIR.
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Perfect CSIT and Perfect CSIR

For block fading channels, the general expressions for the throughput of basic ARQ

schemes with adaptive transmissions is provided in [74]. A cross-layer design

which combines adaptive modulation and coding with ARQ is developed in order to

maximize spectral efficiency under prescribed delay and error performance constraints

[75]. The performance of the cross-layer design is analyzed and the throughput is

obtained in closed-form. For correlated fading channels, a generic method to analyze

the goodput performance of an IEEE 802.11a system is presented in [13]. The general

expressions of the goodput as a function of the data payload length, the packet retry

count, the wireless channel condition, and the selected data transmission rate are

obtained by assuming a two-state discrete time Markov chain channel variation mode.

An analytical method that uses a finite-state Markov chain as an error model is used to

analyze the performance of ARQ schemes with adaptive transmissions [76].

Imperfect CSIT and Perfect CSIR

For block fading channels, the throughput of the basic ARQ schemes with adaptive

transmissions with imperfect CSIT is expressed in the general form [74] as a function

of the probability that a received packet is error-free. However, the estimation errors of

the imperfect CSIT is generally assumed to be a Gaussian distribution. For correlated

fading channels, both throughput and packet error rate are analyzed for an ARQ

scheme based on a constant-power variable-rate adaptive M -quadrature amplitude

modulation (M -QAM) [29]. The Markovian channel model is used to describe the

time-varying multipath fading behavior. The impact of the imperfect CSIT on the

performance of the system is considered.
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Chapter 3

On the Ergodic Capacity of MIMO

Rayleigh Fading Channels

The ergodic capacity of MIMO fading channels depends on the joint distribution of

the eigenvalues of a Wishart matrix, and is quite complex in general. We obtain here

three simple and tight bounds on the ergodic capacity of the MIMO Rayleigh fading

channel. These simple bounds show explicitly the dependence of the ergodic capacity

on the SNR and the numbers of transmit and receive antennas. They enable us to

determine the optimum number of transmit antennas to be used for a given SNR and a

given total number of antennas in the system.

3.1 Introduction

The information-theoretic analysis of MIMO channels has attracted a lot of research

attention. One focus of such a study is the ergodic capacity, which is defined as the

ensemble average of the mutual information (MI) over the statistical distribution of

the channels. In particular, the ergodic capacity has been investigated in [7, 9, 77–79]

for the Rayleigh fading case. However, the result in [7] is only for the case of a large
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number of antennas, while the results in [9, 77–79] rely on the joint distribution of the

eigenvalues of a Wishart matrix and are quite complex. Such complicated results do

not allow one in general to study explicitly the dependence of the ergodic capacity on

the system parameters. In particular, we are interested here in the optimum number

of transmit antennas to be used, as a function of the SNR. Instead of using the joint

distribution of the eigenvalues of a Wishart matrix, a new approach is proposed in

this paper to derive upper and lower bounds on the ergodic capacity based on the

results we obtained in [50]. Our approach to the ergodic capacity analysis greatly

simplifies the computational procedure, and provides easy and accurate ways to deal

with ergodic capacity-related calculations for MIMO Rayleigh fading channels. The

bounds obtained here on the ergodic capacity are expressed in simple closed forms,

and show explicitly the effects of the system parameters on the ergodic capacity. The

bounds are valid for an arbitrary number of antennas, and they enable us to design

an optimum antenna deployment strategy, i.e., to determine the optimum number of

transmit antennas for a given SNR and a given total number of antennas in the system.

For the Rician fading case, the ergodic capacity is considered in [44, 46, 49, 80, 81].

The results of [80] are based on the Gaussian approximation to the distribution of the

MI, and are accurate only for a large number of antennas. The bounds in [46] are only

tight in the high SNR regime for a large number of antennas. The results in [81] are

only for dual MIMO systems. The bounds in [44,49] involve complicated expressions

that do not reduce to the simple closed forms when specialized to the Rayleigh fading

case.
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3.2 System Description

Consider a single user MIMO system with N transmit and M receive antennas. The

M -dimensional received signal vector is mathematically represented as

y = Hx + n (3.1)

where H is the M × N channel matrix with the mn-th entry, hmn, being the channel

gain between the n-th transmit antenna and the m-th receive antenna. The entries,

hmn, are i.i.d., complex, Gaussian random variables with mean zero and variance σ2,

i.e., hmn ∼ CN (0, σ2). Vector x is an N -dimensional transmitted vector, and n is

AWGN. We assume that E[nnH ] = N0IM and the total transmitted energy is Es, i.e.,

E[xHx] = Es.

We consider the scenario where the receiver has perfect knowledge of the CSI, and

the transmitter has no channel knowledge at all (neither CSI nor fading distribution). In

this case, for any realization of H, the MI, I(x;y|H), is maximized when the transmit

signal is circularly symmetric, zero-mean, complex, Gaussian distributed [9]. Only

the covariance matrix E[xxH ] of the capacity-achieving transmit signal depends on

the fading distributions. For i.i.d Rayleigh fading channels, the capacity-achieving

covariance matrix is E[xxH ] = (Es/N)IN [9, Theorem 1]. Therefore, the MI is given

by [8, eq (2.10)]

I = I(x;y|H) =
1

ln 2
ln det(IN +

Es

NN0

HHH)

=
1

ln 2
ln det(IN + γσ2ZHZ) bps/Hz, (3.2)

where γ = Es/(NN0) is the average SNR at each transmit antenna, Z =
√

1/σ2H

and Z ∼ CNN,M(0, IN ⊗ IM). Without loss of generality, we assume M ≥ N . Let

λn, n = 1, 2, · · · , N be the nonzero eigenvalues of ZHZ. The mutual information in
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(3.2) can be expressed as [9, Sec 3.2]

I = I(x;y|H) =
1

ln 2
ln

(
N∏

n=1

(
1 + γσ2λn

))
. (3.3)

If M < N , all of our results in this chapter remain the same, except for interchanging

M with N .

3.3 Trace Bounds

Since the MI in (3.2) is a random variable, the ergodic capacity depends on the

distribution of the MI. Up till now, the MI distribution is studied using the joint

distribution of the eigenvalues of HHH, and the expressions for the MI distribution

function are quite difficult to evaluate. In this section, we will use some new and

simple approaches to investigate the ergodic capacity based on the distributions of the

trace of the Wishart matrix.

3.3.1 Upper bound

Applying the arithmetic-and-geometric-means inequality: (
∏N

n=1 xn)1/N ≤∑N
n=1 xn/N for all xn > 0, to (3.3), we can upper bound the MI as

I ≤ 1

ln 2
N ln

(
1 +

σ2γ

N

N∑
n=1

λn

)
. (3.4)

Since the trace of a matrix is equal to the sum of its eigenvalues:
∑N

n=1 λn = tr(ZHZ),

therefore, we can rewrite the above upper bound on the MI as

I ≤ 1

ln 2
N ln

(
1 +

σ2γ

N
tr(ZHZ)

)
. (3.5)

By taking the expectation of the upper bound over the distribution of tr(ZHZ), the

ergodic capacity is bounded by

E[I] ≤ E
[

N

ln 2
ln(1 +

γσ2

N
tr(ZHZ))

]
. (3.6)
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Since the trace of ZHZ can be expressed as the sum of the magnitude square of

all the elements of a Gaussian variate matrix, i.e., tr(ZHZ) = (σ2)−1||H||2F =

(σ2)−1
∑M

m=1

∑N
n=1 |hmn|2, it can easily be seen that tr(ZHZ) is central chi-square

distributed with 2NM degrees of freedom. The underlying i.i.d Gaussian random

variables are of mean zero and variance 1/2. Defining Z = tr(ZHZ), the pdf of Z is

given by [6, eq (2.1.110)]

pZ(z) =
1

Γ(NM)
zNM−1e−z, z ≥ 0. (3.7)

Now, evaluating the expectation in (3.6) using the pdf in (3.7), we obtain an upper

bound on the ergodic capacity given by

E[I] ≤ I tr−U , 1

ln 2
NeN/(σ2γ)

×
NM−1∑

j=0

(
N

σ2γ

)NM−1−j

Γ

(
−(NM − 1 − j),

N

σ2γ

)
(3.8)

in which, the term Γ(α, x) is the upper incomplete gamma function, i.e., Γ(α, x) =∫∞
x

tα−1e−tdt. The details of the derivation of (3.8) are shown in Appendix A.

Reference [82] provides an alternative derivation, and [82, eq.(25)] is an

alternative form for the result (3.8). The latter result, however, is computationally

simpler. As will be seen in Section 3.5, this trace upper bound provides a tight bound

with the same trend as the Monte Carlo results as well as the result computed from [9].

We next examine the behavior of (3.8) with respect to N to obtain insights on

the dependence of the ergodic capacity on the antenna deployment. By applying a

high-SNR assumption and using the fact that lim
x→0

Γ(α, x) = −xα/α, (3.8) can be

simplified to

I tr−U : N

ln 2
e

N2N0
Esσ2

[
NM−1∑

k=1

1

k
+ E1

(
N2N0

Esσ2

)]
, (3.9)

where E1(x) is the exponential integral function defined as E1(x) =
∫∞

x
e−t/tdt, x > 0

and the approximation symbol : denotes that the ratio of its two sides converges to
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one as Esσ
2/N0 → ∞. Given N + M = NA, we examine the first derivative of (3.8)

with respect to N at high SNR. Using (3.9), one can show that

lim
Esσ2

N0
→∞

dI tr−U

dN
=

1

ln 2

[
NM−1∑

k=1

1

k
+ E1

(
N2N0

Esσ2

)]

− 1

ln 2

[
2 +

N(M − N)

(NM − 1)2

]
>> 0. (3.10)

Thus, I tr−U increases with increasing N at high SNR, and N should be as large as

possible in order to maximize I tr−U, subject to the constraint that N ≤ M .

For low SNR, by using the fact that lim
x→∞

Γ(α, x) = xα−1e−x, (3.8) can be

simplified to

I tr−U ; N

ln 2

[
Esσ

2(NM − 1)

N0N2
+ e

N2N0
Esσ2 E1

(
N2N0

Esσ2

)]
(3.11)

where the approximation symbol ; denotes that the ratio of its two sides converges to

one as Esσ
2/N0 → 0. The first derivative of (3.8) with respect to N for low SNR can

be shown to be

lim
Esσ2

N0
→0

dI tr−U

dN
=

Esσ
2(1 − N2)

N0N2 ln 2
≤ 0. (3.12)

Thus, I tr−U decreases as N increases at low SNR, and N should be as small as possible

(i.e., N = 1) for maximizing I tr−U. In the derivation of (3.12), we use the fact that

lim
x→∞

exE1(x) = 0 and lim
x→∞

xexE1(x) = 1. A simpler way to arrive at this conclusion

is to note that a simple upper bound can be obtained by applying the inequality: ln x ≤

x − 1, x > 0 to (3.6). This gives

E[I] ≤ Esσ
2(NA − N)

N0 ln 2
. (3.13)

While it is tight only at low SNR, it clearly shows that E[I] is maximized by setting

N = 1 at low SNR.
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3.3.2 Lower bounds

Expanding
∏N

n=1(1 + σ2γλn), we obtain the inequality

N∏
n=1

(
1 + σ2γλn

)
≥ 1 + σ2γ

N∑
n=1

λn +
(
σ2γ
)N N∏

n=1

λn

≥ 1 + σ2γtr(ZHZ). (3.14)

By applying the inequality (3.14) to (3.3), the ergodic capacity can be lower bounded

by

E[I] ≥ E
[

1

ln 2
ln(1 + σ2γtr(ZHZ))

]
. (3.15)

This lower bound is tight only at low SNR, because the inequality (3.14) ignores the

terms containing second and higher powers of the SNR. The expectation in (3.15) can

be evaluated in the same way as that in (3.6), giving

E[I] ≥ I tr−L , 1

ln 2
e1/(σ2γ)

×
NM−1∑

j=0

(
1

σ2γ

)NM−1−j

Γ

(
−(NM − 1 − j),

1

σ2γ

)
(3.16)

Reference [82] provides an alternative derivation, and [82, eq.(26)] is an alternative

form for the result (3.16). However, (3.16) is computationally simpler. The lower

bound is only tight at low SNR whereas the upper bound is tight for all SNR when the

number of antennas is small. However, with an increase in the number of antennas, the

two bounds become looser. This is consistent with the results on the capacity in [45].

3.4 Determinant Bound

In this section, we derive a lower bound on the ergodic capacity in terms of the

distribution of the determinant det(ZHZ). Expanding
∏N

n=1(1 + σ2γλn), we obtain
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the inequality

N∏
n=1

(
1 + σ2γλn

)
≥ 1 + σ2γ

N∑
n=1

λn +
(
σ2γ
)N N∏

n=1

λn

≥ 1 +
(
σ2γ
)N N∏

n=1

λn. (3.17)

Since the determinant of a matrix is equal to the product of its eigenvalues:
∏N

n=1 λn =

det(ZHZ), we can lower bound the MI as

I ≥ 1

ln 2
ln
(
1 + (σ2γ)N det(ZHZ)

)
. (3.18)

The complementary cumulative distribution function (CCDF) of the MI is then lower

bounded as

P (I > R) ≥ P
(
det(ZHZ) > aN(eR ln 2 − 1)

)
, (3.19)

where a = 1/σ2γ. The closed-form lower bound on the CCDF of the MI for N ≥ 2 is

given by [50, eq(25)]

P (I > R) ≥
M−N∑
r=0

(M − 1 − r)!

r!(M − 1)!
arN(eR ln 2 − 1)r

× exp

(
−(M − N − r)!aN(eR ln 2 − 1)

(M − 1 − r)!

)
×

N−1∏
n=2

(M − n − r)!

(M − n)!
. (3.20)

Denoting the PDF of the MI by pI(t), we can compute its expectation as

E[I] =

∫ ∞

0

tpI(t)dt =

∫ ∞

0

∫ t

0

pI(t)dRdt (3.21)

Interchanging the order of integration, we have

E[I] =

∫ ∞

0

∫ ∞

R

pI(t)dtdR =

∫ ∞

0

P (I > R)dR (3.22)
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Applying the lower bound on the CCDF of the MI in (3.20) to (3.22), we can obtain

the determinant lower bound on ergodic capacity as follows. Let

α =
arN

r!

N−1∏
n=1

(M − n − r)!

(M − n)!
, µ(r) =

(M − N − r)!aN

(M − 1 − r)!
,

and x = exp(R ln 2) − 1. The lower bound on the average MI can be evaluated by

E[I] ≥
M−N∑
r=0

α

ln 2

∫ ∞

0

xr exp (−µ(r)x) (x + 1)−1dx. (3.23)

By applying (A.6) in Appendix A to (3.23), after some manipulations, the above lower

bound can be simplified into

E[I] ≥ Idet ,
M−N∑
r=0

arNeµ(r)Γ(−r, µ(r))

ln 2

N−1∏
n=1

(M − n − r)!

(M − n)!
. (3.24)

An alternative form for the result (3.24) is provided by [82, eq.(29)], but (3.24) is

computationally simpler. Compared with the trace lower bound that is only tight for

low SNRs, the determinant lower bound is only tight for high SNRs.

3.5 Simulation and Numerical Results

We have derived three bounds on the ergodic capacity of MIMO Rayleigh fading

channels. In particular, they are one trace upper bound, one trace lower bound and

one determinant lower bound. In this section, we compare them with the results from

Monte Carlo simulations. Based on the observations concerning the ergodic capacity,

an optimum antenna deployment strategy is further investigated.

3.5.1 Trace bounds and determinant bound

In this subsection, we compare the analytical results for the bounds on the ergodic

capacity with the results obtained from Monte Carlo simulations as well as the result
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Figure 3.1: Bounds on the average MI of MIMO Rayleigh channels with N = 2 and

M = 3.

obtained in [9] which is a function of Laguerre polynomials. The ergodic capacity in

terms of Laguerre polynomials is given by [9, eq (8)]

I =
N−1∑
k=0

k!

(k + M − N)!

×
∞∫

0

log(1 +
Esλ

N
)[LM−N

k (λ)]2λM−Ne−λdλ, (3.25)

where LM−N
k (x) = 1

k!
exxN−M dk

dxk (e−xxM−N+k) is the associated Laguerre polynomial

of order k. It is easy to observe that it is complicated to evaluate (3.25) since the

evaluation involves N(N −1)/2 differential operations and N integrations. Compared

with the results in [9], the evaluation of either the trace upper bound (3.8) or the trace
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Figure 3.2: Bounds on the average MI of MIMO Rayleigh channels with N = 4 and

M = 5.

lower bound (3.16) involves one integration operation. In Fig. 3.1 and Fig. 3.2, our

three bounds and the results from Monte Carlo simulations are plotted. It is observed

that the trace upper bound provides a tight bound with the same trend as the Monte

Carlo results for all SNRs, whereas the trace lower bound is only tight at low SNR.

With an increase in the number of antennas, the two bounds become a little looser. For

the determinant lower bound, in the low SNR regime, it is looser than the trace lower

bound. However, at high SNR, it provides a good prediction for the ergodic capacity.

The tightness is more significant with an increasing number of antennas, which can be

observed by comparing Fig. 3.1 and Fig. 3.2.
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Figure 3.3: Optimum N for achieving the maximum ergodic capacity (N+M=7).

3.5.2 Optimum Antenna Deployment

For a system with a total number of antennas NA i.e., N + M = NA, and total

transmit energy Es, the optimum number of transmit antennas which maximizes the

ergodic capacity will be investigated in this section. Since a simple closed-form

expression for the ergodic capacity is not available, we will make use of the bounds on

ergodic capacity to analyze numerically the relationship between the optimum number

of transmit antennas and the SNR. For a given total transmit SNR and a fixed total

number of antennas, using more transmit antennas will decrease the SNR per transmit

channel. When the total transmit SNR is low, deploying more transmit antennas cannot

help increase the channel capacity since the SNR per transmit-receive link is further
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Figure 3.4: Optimum N for achieving the maximum ergodic capacity (N+M=11).

decreased. When the total transmit SNR is high, providing more transmit-receive links

is beneficial for achieving a higher channel capacity because of the greater spatial

diversity achieved. Therefore, an optimum number of transmit antennas exists, which

depends on the total transmit SNR and the total number of antennas. In Fig. 3.3 and

Fig. 3.4, the optimum number of transmit antennas can be easily observed for different

transmit SNRs. In particular, in Fig. 3.4, at high SNR, i.e., 10dB, the optimum number

of transmit antennas is the maximum possible number of transmit antennas, which is

5 in this case. However, at low SNR, i.e., −2dB, the optimum number of transmit

antennas is only 2. These observations are consistent with the conclusions drawn from

(3.9) and (3.11). In both cases, we can observe that the trace upper bound provides
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good prediction at all SNRs, whereas the trace lower bound and the determinant lower

bound can only work at low SNR and high SNR, respectively.

3.6 Conclusions

In this chapter, we derive bounds on the ergodic capacity of the MIMO Rayleigh

fading channel by exploiting the properties and distributions of the trace and the

determinant of a Wishart matrix. The expressions of the bounds are simple and easy

to compute. The trace upper bound is tight for all SNRs, while the trace lower bound

and the determinant lower bound are tight for low SNR and high SNR, respectively.

Furthermore, for a system with a fixed total number of antennas at a certain SNR,

increasing the number of transmit antennas cannot always guarantee increasing the

ergodic capacity. At high SNR, a larger number of transmit antennas helps increase

the ergodic capacity while at low SNR, a smaller number of transmit antennas works

better.
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Chapter 4

Power Control for MIMO Diversity

Systems with Non-Identical Rayleigh

Fading Channels

MIMO technology offers significant increases in data throughput and link reliability

without additional bandwidth or transmit power in wireless communications. These

advantages are well represented in two forms of gains from the information-theoretic

perspective, namely, diversity and multiplexing. In particular, the diversity advantage

is built upon the transmission of the same message over multiple, independently

faded, spatial branches. It can be accomplished by using space-time block codes

(STBC) or other spreading codes together with appropriate combining at the receiver.

Tremendous amount of work has been done on the design and analysis of space-time

diversity techniques, such as [83–85] and references therein. It is noted that in most

previous works [9, 52, 85, 86], the MIMO channels are assumed to be i.i.d.

Recently, MIMO diversity schemes over i.n.d fading channels have attracted great

attention because of their applications in cooperative communications and distributed

antenna systems. In decode-and-forward (DF) cooperative communications systems
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[87], a transmission from a source to a destination is facilitated with the help of a set

of relays. In the second stage when those relays have decoded the transmitted signal,

the subsequent transmission can be performed by employing space-time coding in a

distributed manner, resulting in a non-identical MISO fading channel. In distributed

antenna systems [88], multiple antennas that are distributed at different radio ports and

connected through coaxial cables work together to simulcast signals. A non-identical

MIMO channel is actually formed, which enhances signal quality, increases system

capacity and improves coverage. In the aforementioned cases, the channels on different

transmit-receive antenna pairs can be modeled as independent but not necessarily

identically distributed fading channels. Most previous works on MIMO systems

assume either perfect CSI [9, 45, 89, 90] or identical channel distribution [9]. The

studies on the effects of i.n.d fading for MIMO diversity systems have focused on

the bit error analysis [91–95]. In this chapter, we are interested in the performance

limits and associated power allocation problems in a MIMO diversity system given

that the non-identical fading statistics are available at the transmitter. It is well known

that equal power allocation is optimal for traditional MIMO channels with identical

fading distribution [9], assuming no instantaneous CSIT. However, it is no longer

optimal for non-identical MIMO channels. In [41], the mutual information outage of

a transmit diversity system with a single receive antenna over non-identical Rayleigh

fading channels is studied. Therein, a heuristic power control scheme named equal

power allocation with channel selection is proposed and is shown to be near optimal

in minimizing the information outage probability.

For ergodic mutual information maximization in a i.n.d MIMO diversity system,

to the best of our knowledge, no closed-form power control is available in the

literature. Our first contribution here is therefore to obtain the optimal power allocation

for achieving the maximum ergodic mutual information. For information outage
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minimization, a water-filling based power allocation is proposed. The derivation is

based on the Chernoff bound and is different from [41]. Moreover, it is generalized to

the case with multiple receive antennas.

4.1 System Model

Consider a narrowband system with N > 1 transmit antennas and M ≥ 1 receive

antenna(s). The channel is Rayleigh fading with additive white Gaussian noise of

double-sided power spectral density N0. The entity hij of channel matrix H is the

channel coefficient between the i-th receive antenna and the j-th transmit antenna,

and {hij}M,N
i=1,j=1 is a set of i.n.d zero-mean complex Gaussian variables, each with

variance σ2
ij . The information is transmitted over the multiple antenna system by using

an orthogonal space-time block codes (OSTBC). The code matrix C can be constructed

by using a generalized complex orthogonal design [8, Chapter 4]. The entries of C are

linear combinations of s1, s2, · · · , sK and their conjugates, where sk for k = 1, · · · , K

are the signals to be transmitted and the energy of each symbol is normalized to be

|sk|2 = 1. The entries cjt, j = 1, · · · , N are transmitted simultaneously from transmit

antennas 1, 2, · · · , N at each time slot t = 1, 2, · · · , T . The received signal can be

mathematically represented in terms of the channel variances, the transmit power, the

transmit signals and the noises

R = HPC + N, (4.1)

where R is the M × T matrix with the it-th entry, rit, being the received signal from

the ith receive antenna at time slot t, N is the M × T noise matrix with the entries nit

being the i.i.d, zero-mean complex Gaussian random variables with variance N0 and

P is a diagonal matrix with √
pj, j = 1, · · · , N as its eigenvalues. The pj denote the

power radiated from the j-th transmit antenna, and let it be subject to a normalized
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total power constraint
∑N

j=1 pj = 1.

To achieve the antenna diversity gain, the transmit information is spread across

all the transmit antennas using the OSTBC while at the receiver, the received signal

is decoded by the maximum-likelihood (ML) decoder and then combined by using a

maximum ratio combiner. With the ML decoder, the different transmit symbols can

be decoded separately [8, Chapter 4]. Define the 1 × T vector ri, i = 1, 2, · · ·M as

the signal vector received at the ith receive antenna. Considering only the ith receive

antenna, for each index k, the transmitted signal sk can be decoded from the vector

product of r
′
i and Ωi, where the 1 × T vector r

′
i and the T × 1 vector Ωi are defined

as follows. For the k-th symbol, the t-th element of the 1 × T vector r
′
i is defined

by [8, eq.(4.138)]

r
′

i(t) =

 r∗i (t), if s∗k or −s∗k exists in the t-th column of C

ri(t), otherwise.
(4.2)

For the k-th symbol, the t-th element of the T×1 vector Ωi is defined by [8, eq.(4.139)]

Ωi(t) =



hij
√

pj, if cjt = sk

h∗
ij
√

pj, if cjt = s∗k

−hij
√

pj, if cjt = −sk

−h∗
ij
√

pj, if cjt = −s∗k.

(4.3)

By using maximum ratio combining, the symbol sk can be detected by

M∑
i=1

r
′

iΩi =
N∑

j=1

M∑
i=1

sk|
√

pjhij|2 +
M∑
i=1

Ni, (4.4)

where Ni is an i.i.d. zero-mean complex Gaussian random variable with variance equal

to N0

∑N
j=1 pj|hij|2. Therefore, the instantaneous post-detection SNR of the diversity

system can then be expressed as

γe =
1

N0

M∑
i=1

N∑
j=1

pj|hij|2. (4.5)
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The conditional mutual information for a given power vector p = (p1, . . . , pN) and

channel realization H = (h1, . . . ,hN) is given by [83]

I(p,H) = log2 (1 + γe). (4.6)

4.2 Ergodic Mutual Information and Power Allocation

4.2.1 Ergodic mutual information analysis

The ergodic mutual information of the considered system is given by

I(p) = E[log2(1 + γe)], (4.7)

where the expectation E[·] is taken over all realizations of H. From (4.5) it is clear

that γe is a weighted sum of NM independent and normalized exponential random

variables with weights given by pjσ
2
ij/N0. Its PDF can thus be expressed as [96, (1)]

p(γe) =
∑

k

−N0e
−x/λk

(−λk)mk

g
(mk−1)
k (0, x)

(mk − 1)!

∣∣∣∣∣
x=N0γe

(4.8)

where {λk}N ′−1
k=0 represent the N ′(≤ NM) distinct values of pjσ

2
ij , each with

multiplicity mk, as a result of reordering and grouping the NM values of pjσ
2
ij; αkl is

defined as αkl = 1 − λl/λk; and g
(mk−1)
k (s, x) denotes the (mk − 1)-th derivative of

gk(s, x) given in (4.9) with respect to s.

gk(s, x) = e−sx
∏
l ̸=k

1

(αkl − λls)ml
. (4.9)

In the case where pjσ
2
ij’s are all distinct (i.e., i.n.d channels), (4.8) can be reduced to

p(γe) = N0

M∑
i=1

N∑
j=1

Bij

pjσ2
ij

exp

(
−N0γe

pjσ2
ij

)
, (4.10)

where

Bij =
∏

{m,n}̸={i,j}

pjσ
2
ij

pjσ2
ij − pnσ2

mn

. (4.11)
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4.2 Ergodic Mutual Information and Power Allocation

Applying (4.10) to (4.7) and using [97, (4.331.2)], we obtain the closed-form

expression of the ergodic mutual information over i.n.d channels as

I(p) =
1

ln 2

M∑
i=1

N∑
j=1

Bij exp

(
N0

pjσ2
ij

)
E1

(
N0

pjσ2
ij

)
, (4.12)

where E1(·) is the exponential integral function defined as E1(x) =
∫∞

x
e−t/tdt, for

x > 0.

In the following, we study the power allocation p that maximizes the ergodic

mutual information I(p). The expression of Bij in (4.11) makes it difficult to

maximize I(p) with respect to p directly. To make the problem more tractable,

we only consider the MISO case where only one receive antenna is used. First, we

consider the simplest case where there are only two transmit antennas (N = 2). After

that, we propose a suboptimal power allocation scheme for N > 2 transmit antennas.

4.2.2 Power Allocation for Two-Transmit One-Receive Antenna

Systems

For the sake of brevity, in the rest of this section, we omit the receive antenna subindex

i in both Bij and σ2
ij as only M = 1 is considered. For a MISO diversity system with

two transmit antennas, the problem of maximizing I(p) is equivalent to maximizing

the following function:

max
p1

{
B1e

N0
p1σ2

1 E1

(
N0

p1σ2
1

)
+ B2e

N0
(1−p1)σ2

2 E1

(
N0

(1 − p1)σ2
2

)}
. (4.13)

Next we prove that the second derivative of the objective function in (4.13) with respect

to p1 is non-positive for 0 ≤ p1 ≤ 1. Our proof shows that the optimization problem

is convex. Hence, the optimization can be solved by letting its first derivative with

respect to p1 be zero.
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4.2 Ergodic Mutual Information and Power Allocation

Proof. We first derive the first derivative of objective function in (4.13) with respect

to p1. After that we show that its second derivative with respect to p1 is non-positive

for 0 ≤ p1 ≤ 1. Based on the identity: E1(x) = −Ei(−x) = −
∫ −x

−∞
et

t
dt, x > 0,

let A = B1 exp(N0/(p1σ
2
1)), B = −Ei(−N0/(p1σ

2
1)), C = B2 exp(N0/((1 − p1)σ

2
2))

and D = −Ei(−N0/((1 − p1)σ
2
2)). Taking the first derivative of A, B, C and D with

respect to p1, respectively, we get

A′ =
−σ2

1σ
2
2e

N0/(p1σ2
1)p1 − N0e

N0/(p1σ2
1)(p1σ

2
1 − (1 − p1)σ

2
2)

p1(p1σ2
1 − (1 − p1)σ2

2)
2

,

B′ = e−N0/(p1σ2
1)/p1,

C ′ =
eN0/((1−p1)σ2

2)((1 − p1)σ
2
1σ

2
2 + N0((1 − p1)σ

2
2 − p1σ

2
1))

((1 − p1)σ2
2 − p1σ2

1)
2(1 − p1)

,

D′ = −e−N0/((1−p1)σ2
2)/(1 − p1).

Note that lim
x→0

−xEi(−x) = 0 and lim
N0→0

E1(N0/(1 − p1)σ
2
2) − E1(N0/p1σ

2
1) =

ln
(1−p1)σ2

2

p1σ2
1

. When assuming the SNR is very large (i.e. N0 → 0), the first derivative of

the objective function in (4.13) (i.e.A′B + AB′ + C ′D + CD′) becomes

σ2
1σ

2
2

(
ln

(1−p1)σ2
2

p1σ2
1

)
((1 − p1)σ2

2 − p1σ2
1)

2
− σ2

1 + σ2
2

(1 − p1)σ2
2 − p1σ2

1

. (4.14)

By letting (4.14) be zero, after simple manipulations, equation (4.20) can be obtained.

Having the first derivative, we can obtain the second derivative as follows.

Differentiating (4.14) with respect to p1, and multiplying the result by a positive term

{[(1 − p1)σ
2
2 − p1σ

2
1]

2p1(1 − p1)}−1, we obtain

y = −σ2
1σ

2
2+

2σ2
1σ

2
2(σ

2
1 + σ2

2)p1(1 − p1)

(1 − p1)σ2
2 − p1σ2

1

ln
(1 − p1)σ

2
2

p1σ2
1

−p1(1−p1)(σ
2
1+σ2

2)
2. (4.15)

Without loss of generality, by assuming ξ = σ2
1/σ

2
2 ≥ 1 and the sum of channel

variances to be Nt (in this case Nt = 2), one has σ2
1 = 2ξ/(ξ + 1) and σ2

2 = 2/(ξ + 1).

Hence, (4.15) can be expressed by a function of ξ and p1 shown as

y =
−4ξ

(1 + ξ)2
+

4 × 2ξp1(1 − p1)

(ξ + 1)(1 − p1 − ξp1)
ln

1 − p1

ξp1

− 4p1(1 − p1). (4.16)
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Now we need to show that y is non-positive for 0 ≤ p1 ≤ 1. In order to do so,

we consider three different cases. First, in the case of x = (1 − p1)/(ξp1) = 1, the

term 1
1−p1−ξp1

ln 1−p1

ξp1
as part of the second term in (4.16) can be rewritten as ln x

ξp1x−ξp1
.

By applying L’Hospital rule, it is easy to show that y = 0. In the second case of

x = (1 − p1)/(ξp1) > 1, we substitute p1 = 1/(xξ + 1) into (4.16) and get

y =
−4ξ

(ξ + 1)2
+

4 × 2ξx ln(x)

(ξ + 1)(x − 1)(ξx + 1)
− 4ξx

(ξx + 1)2
. (4.17)

Since x > 1, multiplying the two sides of (4.17) by a positive term (1+ξ)(ξx+1)(x−

1)/(4ξx), we get

y1 =
−(ξx + 1)(x − 1)

(ξ + 1)x
− (x − 1)(ξ + 1)

ξx + 1
+ 2 ln x. (4.18)

By differentiating (4.18) with respect to x and multiplying the result by positive term

x2(1 + ξ)(ξx + 1)2, y1 comes to

y2 = −(x − 1)2(x2ξ3 + 1). (4.19)

By using the property of the quartic function in (4.19), we can show that y2 ≤ 0 for

ξ ≥ 1. Hence, (4.18) is a monotonic decreasing function of x and y1 = 0 can be shown

to be the global maximum at point x = 1. For the third case of 0 ≤ x < 1, the same

method used here is applicable to show y ≤ 0.

Since the optimization problem has been shown to be convex, the optimization

can be done by letting its first derivative with respect to p1 be zero. Note that when

there does not exist such a p1 ∈ [0, 1] that makes the first derivative zero, the objective

function degenerates to a monotonic function of p1. In other words, one of the two ends

of the range of p1 should be the optimum value. Consequently, one antenna should be

turned off. Hence, two different cases regarding power allocation are analyzed.

In the first case, both antennas are active. Assume that the power on the first

antenna is 0 < p1 < 1, while on the second antenna it is p2 = 1 − p1. Taking the first
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4.2 Ergodic Mutual Information and Power Allocation

derivative of objective function (4.13) with respect to p1 and equating it to zero, after

applying high SNR assumption (N0 → 0), we obtain

ln
(1 − p1)σ

2
2

p1σ2
1

=
(σ2

1 + σ2
2)(σ

2
2 − p1(σ

2
2 + σ2

1))

σ2
1σ

2
2

. (4.20)

Though the solution to (4.20) cannot be obtained in closed form, we can still find the

optimum p1 by finding the intersection point of the two curves specified by the left and

right sides of (4.20), respectively. Next, we prove that there always exists one tangent

point and at most one intersection point for the two curves.

Proof. First we let f1(p1) = ln((1−p1)σ
2
2/p1σ

2
1) and f2(p1) = (σ2

1 +σ2
2)(σ

2
2−p1(σ

2
2 +

σ2
1))/σ

2
1σ

2
2 , respectively. We can show that when p1 > 1/2, the function f1(p1) is

convex while when p1 < 1/2, function f1(p1) is concave. Since f2(p1) is a linear

function, there are at most three values of p1 which can make f1(p1) = f2(p1). Since

there is one tangent point between f1(p1) and f2(p1), two of the three values are always

equal. This tangent point between the two curves lies at p1 = σ2
2/(σ

2
1 + σ2

2) since

f ′
i

(
p1 =

σ2
2

σ2
1 + σ2

2

)
= −(σ2

1 + σ2
2)

2

σ2
1σ

2
2

i = 1, 2, (4.21)

and the equality f1(p1) = f2(p1) holds when the value of p1 satisfies p1 = σ2
2/(σ

2
1+σ2

2).

However, the tangent point p1 = σ2
2/(σ

2
1 + σ2

2) is not the valid solution since the

equation p1σ
2
1 = p2σ

2
2 holds when p1 satisfies p1 = σ2

2/(σ
2
1 +σ2

2), which conflicts with

the assumption made when obtaining (4.10).

Therefore, the tangent point is p1 = σ2
2/(σ

2
1+σ2

2), but it is not the optimal solution,

since it violates the assumption of distinct distribution, i.e., p1σ
2
1 ̸= p2σ

2
2 , made in

(4.10). By inspection, we can see that p1 > 1/2 when σ2
1 > σ2

2 , and p1 increases when

the ratio ξ12 = σ2
1/σ

2
2 increases. When ξ12 is large enough, there does not exist any

intersection point anymore. In other words, a valid solution 0 < p1 < 1 to (4.20) does
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not exist for highly unbalanced channels. This leads to the second case where only one

antenna is active.

When only one antenna is active, the problem of maximizing I(p) is equivalent

to maximizing the function below:

max
j∈{1,2}

{
I(pjσ

2
j ) = e

N0
pjσ2

j E1

(
N0

pjσ2
j

)}
. (4.22)

Using the monotonic increasing property of I(pjσ
2
j ), it is clear that the total power

should be assigned to the antenna with larger channel variance.

Based on the discussion above, the asymptotic power allocation scheme at high

SNR only depends on the channel ratio ξ12 = σ2
1/σ

2
2 . Without loss of generality, we

assume σ2
1 ≥ σ2

2 . In Fig. 4.1, we plot the numerical solution of p1 as a function of ξ12

to (4.20). It is seen that p1 can be well approximated by

p1 = f (ξ12) =

 1 − 1
2
exp (−ξ12 + 1) , 1 ≤ ξ12 ≤ ξT

1, ξ12 > ξT .
(4.23)

where the ratio threshold ξT can be chosen larger than 10.

4.2.3 Power Allocation for Multiple-Transmit One-Receive

Antenna Systems

For general multiple-transmit antenna systems, it is difficult to directly optimize

(4.12) with respect to p. Motivated by the results obtained for two-transmit antenna

systems, we propose a simple power allocation scheme which can provide near-optimal

performance. It is assumed without loss of generality that σ2
1 ≥ σ2

2 · · · ≥ σ2
N . The

power on each antenna is assigned sequentially. In other words, p1 is computed first,

followed by p2, then p3, and so on, until pN . At stage j for computing pj , the other

antennas j + 1, . . . , N that are not assigned powers yet are grouped together as an

antenna subset. Define σ
2(e)
j+1 as the equivalent channel gain of the antenna subset,
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Figure 4.1: Power functions for a diversity system with two transmit antennas and one

receive antenna

whose exact definition in terms of
{
σ2

j+1, · · · , σ2
N

}
is to be given shortly. Using (4.23),

a proposed sub-optimal power allocation scheme is

pj =


(

1 −
j−1∑
k=1

pk

)
f
(
σ2

j /σ
2(e)
j+1

)
, σ2

j ≥ σ
2(e)
j+1(

1 −
j−1∑
k=1

pk

)[
1 − f

(
σ

2(e)
j+1 /σ2

j

)]
, σ

2(e)
j+1 > σ2

j

, (4.24)

for j = 1, · · · , N .

We now propose an efficient method to obtain σ
2(e)
j+1 . First we compare each

channel gain of {σ2
j+1, · · · , σ2

N} with σ2
j and form the set Sj+1 in which each channel

gain is larger than σ2
j /ξT , i.e.,

{
σ2

k ∈ Sj+1

∣∣σ2
j /σ

2
k ≤ ξT , k ∈ [j + 1, N ]

}
. (4.25)
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Assume that there are Kj+1 ∈ [0, N − j] elements in Sj+1. We simply regard those

Kj+1 associated antennas as one single antenna and discard the remaining antennas

whose channel variances are small enough compared with σ2
j . Then, we define the

equivalent channel gain σ
2(e)
j+1 as the norm of the vector [σ2

j+1, σ
2
j+2, · · · , σ2

j+Kj+1
], i.e.

σ
2(e)
j+1 =

√√√√j+Kj+1∑
k=j+1

(σ2
k)

2
. (4.26)

We shall show in Section 4.4 that the proposed equivalent channel gain in (4.26)

together with (4.24) provides a near capacity-achieving performance for both slightly

unbalanced and highly unbalanced channels

4.3 Information Outage Probability and Power

Allocation

Given the instantaneous mutual information I(p,H) defined in (4.6) and an outage

mutual information Iout, the information outage probability is defined as

Pout(p) = P (I(p,H) < Iout) = P (γe < γout), (4.27)

where γout = 2Iout − 1. Hence, the outage probability is the same as the cumulative

distribution function (CDF) of γe, which is expressed as [96, (32)]

Pout(p) = 1 +
∑

k

e−x/λk ĝ
(mk−1)
k (0, x)

(−λk)mk(mk − 1)!

∣∣∣∣∣
x=γout

. (4.28)

Here ĝk(s, x) is given by

ĝk(s, x) = −λke
−sx
∏

l

1

(αkl − λls)mkl
, (4.29)

with αkk , −1, mkl = ml for l ̸= k, and mkk = 1. In the case where pjσ
2
ij’s are all

distinct (i.e., i.n.d channels), the outage probability in (4.28) can be simplified to

Pout(p) =
M∑
i=1

N∑
j=1

Bij

(
1 − exp

(
−N0γout

pjσ2
ij

))
(4.30)
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which is consistent with [41, (2)]. In [98], the authors derived the outage probability

for DF cooperative communications. When assuming the source-relay link to be error

free, we can verify that [98, (10a)] reduces to (4.30) with M = 1.

In the following, we derive a suboptimal power allocation scheme that can

minimize an upper bound on the outage probability at any given Iout. By applying

the Chernoff bound, the outage probability in (4.27) can be upper-bounded by

Pout(p) ≤ E[eu(γout−γe)] = euγout

M∏
i=1

N∏
j=1

1

1 + upjσ2
ij/N0

, (4.31)

where u is a non-negative constant that can be chosen to optimize the tightness of the

bound. Nevertheless, we choose u = NM/γout, for simplicity. This bound can be

minimized with respect to pj’s by maximizing the objective function

φ(pj) =
M∏
i=1

N∏
j=1

(
1 + upjσ

2
ij/N0

)
. (4.32)

By applying the inequality: (1 + M

√∏M
i=1 xi)

M ≤
∏M

i=1(1 + xi) [99, (25)] to (4.32), it

can be lower-bounded by

φ(pj) ≥
N∏

j=1

1 +
upj

N0

M

√√√√ M∏
i=1

σ2
ij

M

. (4.33)

By taking the logarithm of (4.33), maximizing (4.33) is equivalent to minimizing

min−M
N∑

j=1

log

1 +
upj

N0

M

√√√√ M∏
i=1

σ2
ij


s.t.

N∑
j=1

pj = 1,

pj ≥ 0 (4.34)

Using the Lagrange method, we define the Lagrangian as

L = −M
N∑

j=1

log

1 +
upj

N0

M

√√√√ M∏
i=1

σ2
ij

−
N∑

j=1

pjλj + v

(
N∑

j=1

pj − 1

)
(4.35)
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where λj is the Lagrange multiplier associated with the jth inequality constraint, and v

is the Lagrange multiplier associated with the equality constraint. Since L is a convex

quadratic function of pj , we can obtain the optimal pj by taking the first order derivative

of L with respect to pj and letting it be zero. Hence we obtain the water-filling based

suboptimal power allocation to be:

pj =


1

v
− N0γout

NM M

√
M∏
i=1

σ2
ij



+

, (4.36)

where {a}+ denotes max{0, a}, and v is a constant determined by the constraint∑N
j=1 pj = 1. According to the properties of water-filling, at high transmit SNR,

the power tends to be equally allocated among all transmit antennas, while at low SNR

some of the antennas with the geometric mean of channel variances (i.e., M

√∏M
i=1 σ2

ij)

significantly lower than the others may be turned off. These conclusions with M = 1

are consistent with the heuristic power control scheme for MISO channels in [41].

4.4 Numerical Results

We consider the MIMO diversity systems over i.n.d channels. The i.n.d channels can

be classified into highly or slightly unbalanced channels. As an example of the highly

unbalanced channels, the distributed antenna system mentioned before is considered.

Multiple directional antennas are placed in a distributed manner with sufficiently large

spacing. Therefore, the channels seen by the receiver may experience significantly

different propagation environments. Moreover, take the example of DF cooperative

communications systems which have been given a simple description at the beginning

of this chapter. In this scenario, the relay nodes can be placed in any location between

the source and the destination. For a simply two-relay system, one relay node may
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Figure 4.2: Ergodic mutual information with different power allocations

be close to the source, while the other may be midway between the source and the

destination. Using the well-known path-loss model

PL = 10n log10 d (4.37)

where PL is the path loss in decibels, d is the distance between the transmitter and

the receiver and n is the path loss exponent which is assumed to be 3 in the following

discussion. Hence, the variance differences of the channels from the two relays seen

by the destination is about 9-dB. In such a case, a pair of highly unbalanced channels is

usually encountered. When the two relays are close to each other, the channels seen by

relays are slightly unbalanced, which can be approximated by the i.i.d channel model.

Hence, the i.n.d fading channel attracts greater attention than the i.i.d fading channel
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Figure 4.3: Outage probability with different power allocations.

since it occurs more naturally in practical MIMO systems

We first consider a system with three transmit antennas and one receive antenna.

Both highly and slightly unbalanced channel conditions are discussed. For the highly

unbalanced channel condition (condition 1), the parameters are σ2
11 = 300/111, σ2

12 =

30/111 and σ2
13 = 3/111. The slightly unbalanced channel condition (condition 2) has

parameters σ2
11 = 18/11, σ2

12 = 9/11 and σ2
13 = 6/11. The sum of channel variances

in both cases is equal to N = 3.

In Fig. 4.2, the ergodic mutual information using different power allocations

is illustrated. The result of the optimal power allocation is obtained using

a two-dimensional exhaustive search. It is seen that the proposed suboptimal
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Figure 4.4: Power values using different criteria under channel condition 1.

scheme (4.24) performs almost the same as the optimal one and hence is near

capacity-achieving. Also, 3-dB and 1-dB SNR gains are achieved over equal power

allocation in the two channel conditions, respectively.

The outage probability for a given Iout = 2 bits per channel use is shown in Fig.

4.3. We can see that the proposed power allocation (4.36) provides performance very

close to the optimal scheme (via exhaustive search). The outage probability after using

the proposed power allocation is smaller than that of equal power allocation. This

improvement is more significant for highly unbalanced channels.

Furthermore, we compare in Figs. 4.4 and 4.5 the power values assigned to each

antenna using the different criteria (4.24) and (4.36). It is clear that, for ergodic mutual
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Figure 4.5: Power values using different criteria under channel condition 2.

information maximization, the power allocation is independent of the total transmit

SNR and only depends on the channel variances. In particular, only one antenna

is active in the highly unbalanced channel condition. For the slightly unbalanced

channel condition, all the three antennas are active but more power is given to antennas

with larger channel variances. For outage minimization, it follows the water-filling

principle. When the total transmit SNR is high enough, all the antennas need to be

active and the power tends to be equally allocated.

Next, we consider the outage probability in a system with three transmit antennas

and two receive antennas using the proposed power allocation in (4.36). The channel

variances are assumed to be σ2
11 = 300/111, σ2

12 = 30/111, σ2
13 = 3/111, σ2

21 =

57



4.5 An Application of Our Results

0 2 4 6 8 10 12 14 16
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Total Transmit SNR (dB)

P
ro

ba
bi

lit
y 

P
 (

I <
 I ou

t=
2 

)

 

 
Opt. Power (Simulation)
Sub−opt. Power 
Equal Power

Figure 4.6: Outage probability with different power allocations.

18/11, σ2
22 = 9/11 and σ2

23 = 6/11, which sum to NM = 6. We can see from Fig.

4.6 that the proposed scheme in (4.36) provides a very close performance to optimal

power allocation (obtained via multi-dimensional exhaustive search). It outperforms

equal power allocation in low and moderate SNR regions.

4.5 An Application of Our Results

In this section, we consider an application of our results to the following

communication scenario. For the non-identical fading channels, we consider

distributed antenna deployment whose layout is sketched in Fig. 4.7. Here the three

transmit ports {T1, T2, T3} and receive port R1 are aligned on a straight line spaced
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4.5 An Application of Our Results

Figure 4.7: Wireless cooperative relay diversity system which can represent three

different systems: system 1 (solid line), system 2 (dash line) and system 3 (solid line and

dash line)

with equal distance, while receive port R2 is located at its perpendicular bisector.

Suppose receiver R1 is active and receiver R2 is disabled. This scenario is referred

to as system 1 and indicated by solid lines in the figure. By adopting the well-known

path loss model in (4.37) and assuming the path loss exponent to be equal to 3, the

channel variances can be obtained as σ2
1 = 648/251, σ2

2 = 81/251 and σ2
3 = 24/251.

Alternatively, in system 2, receiver R1 is disabled and receiver R2 is active, as denoted

by dashed lines in Fig. 4.7. In this case, the channel variances become σ2
1 = 117/100,

σ2
2 = 117/100 and σ2

3 = 66/100. The sum of channel variances in both of the above

systems is normalized to satisfy the constraint NM = 3 with M = 1. Either of the

systems may be equivalent to a DF cooperating system with one source (T3), two
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Figure 4.8: Ergodic mutual information using different power allocation in system 1 and

2 with N = 3 and M = 1.

relays (T2 and T1) and one destination (R1 or R2), by assuming error-free decoding

at the relays. When both receivers are active, we obtain system 3, for which the

channel gain parameters are obtained as σ2
11 = 648/251, σ2

12 = 81/251, σ2
13 = 24/251,

σ2
21 = 117/100, σ2

22 = 117/100 and σ2
23 = 66/100, which sum to NM = 6.

To illustrate the results for ergodic mutual information, we consider only the

3-by-1 systems (system 1 and system 2). In Fig. 4.8, the ergodic mutual information

using different power allocations is presented. The result of the optimal power

allocation is obtained by using two-dimensional exhaustive search. It is seen that the

proposed suboptimal scheme (4.24) performs almost the same as the optimal one and

hence is near capacity-achieving. Also, 3-dB and 0.3-dB SNR gains are achieved over
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Figure 4.9: The power values assigned on relay II and source for maximizing the ergodic

mutual information in system 1 and 2 with N = 3 and M = 1.

EPA in the two systems, respectively. Fig. 4.9 compares the power values assigned to

T1 (p1) and T3 (p3) by using the criteria (4.24) (for simplicity p2 is not shown but can

be obtained straightforwardly). Note that the power values are all constant at different

transmit SNR since the power allocation (4.24) only depends on the ratio of channel

variances. The results show that for system 1 in the cooperative transmission scenario,

only relay II is needed for forwarding signals without the cooperation from the source

and relay I. This is expected as the channels are highly unbalanced. On the other hand,

for the slightly unbalanced channels encountered in system 2, the source and the two

relays all need to be active but more power is given to the node with larger channel

gain.
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Figure 4.10: Outage probability with different power allocations in systems 1 and 2 with

N = 3 and M = 1, and system 3 with N = 3 and M = 2.

The outage probability for a given Iout = 2 bits per channel use is shown in Fig.

4.10. It is seen that the proposed power allocation (4.36) provides performance very

close to the optimal scheme (via exhaustive search). The outage probability after using

the proposed power allocation is smaller than that of EPA. This improvement is more

significant in system 1 and system 3 in low and moderate SNR regions. As expected,

the 3-by-2 system (system 3) achieves two times the diversity order of the other two

systems.

In Fig. 4.11, the power values assigned to T1 and T3 by using the water-filling

principle (4.36) are compared. An interesting finding is that for each given transmitter,

the power value assigned to it in system 3 lies between the values assigned to it in
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Figure 4.11: The power values assigned on relay II and source for minimizing the outage

in systems 1 and 2 with N = 3 and M = 1, and system 3 with N = 3 and M = 2.

system 1 and system 2.

4.6 Conclusions

In this chapter, we analyzed the mutual information of MIMO diversity systems with

i.n.d Rayleigh fading. Closed-form expressions for the ergodic mutual information

and the outage probability over i.n.d channels are obtained with an arbitrary

number of transmit and receive antennas. We then derived two near-optimal power

allocation schemes for exploiting the non-identical channel statistics for ergodic

mutual information maximization and information outage minimization, respectively.
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4.6 Conclusions

With a single receive antenna, the power allocation scheme for maximizing the ergodic

mutual information is particularly novel. It assigns more power to antennas with

larger channel variances, and is independent of total transmit SNR. For minimizing the

outage probability, we showed that the power allocation suitable for multiple receive

antennas is dependent on the geometric mean of channel variances and follows the

water-filling principle. Our analysis illustrates that the proposed power controls are

beneficial in non-identical fading channels, especially when the channel variances are

highly unbalanced.
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Chapter 5

Performance of ARQ/HARQ Schemes

With Imperfect CSIR Over Rayleigh

Fading Channels

With imperfect CSI acquired by channel estimation at the receiver, the performance

of basic ARQ and HARQ systems is studied as a function of the accuracy of channel

estimation. The aim is to establish a link between data-link-layer performances and

physical-layer parameters. The performance parameters we study in particular are the

goodput, the APER and the drop rate, as a function of the channel estimation MSE and

the factors which affect the MSE. Upper and lower bounds on the APER, the goodput

as well as the drop rate are derived. These upper and lower bounds are close to one

another, and therefore, enable the behavior of the exact performance parameters to be

investigated. The precise dependence of the APER and the goodput on the channel

estimation accuracy is quantified. The results show that the effect of the MSE on the

system performance is nonlinear. For large MSE, the performance deteriorates very

rapidly while at low values of the MSE, the performance improves gently toward that

of the perfect CSI case. An attempt is made to study the inter-relationships among the
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various relevant system performance parameters and the crucial dependence of these

relationships on the CSI accuracy. The study here shows how accurate the CSI should

be to achieve a specified performance level in ARQ schemes.

Differential BPSK (DBPSK) is a commonly used alternative modulation to BPSK,

because it does not require additional pilot symbols for channel estimation for the

acquisition of CSI. We extends the case of BPSK discussed in Section 5.3 to the case

of DBPSK modulation in Section 5.5. The normalized fading correlation coefficient

between two adjacent symbols is denoted by ρ = R(1)/R(0). It is a measure of the

fluctuation rate of the channel fading process. For the case of a static channel (ρ = 1),

the exact closed-form expression of the performance will be derived. In addition to

the case of a static channel, the effects of fading fluctuations in a time-varying channel

(ρ < 1) on the performance are also examined. However, for the case of a slowly

time-varying channel, the performance can only be studied via simulation in Section

5.5.3.

5.1 Introduction

ARQ error control strategies achieve high reliability by using an error-detecting code

coupled with a packet retransmission scheme. There are three basic ARQ protocols:

SW-ARQ, GBN-ARQ, and SR-ARQ [10, 11]. However, their throughputs fall rapidly

with increasing channel error rate. Compared with the ARQ schemes, FEC schemes

maintain a constant, high throughput regardless of the system reliability by using an

error-correcting code. As a result, to achieve a higher reliability than an FEC system

alone and a higher throughput than the system with ARQ only, a proper combination

of FEC and ARQ is commonly used to further improve the robustness of the system.

Such a combination of the two basic control schemes is referred to as a HARQ. In
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the Type-I HARQ scheme, a coded packet is transmitted initially and, if the receiver

fails to accept the packet, a retransmission request in the form of a NAK is fed back to

the transmitter. Upon reception of this NAK, the transmitter re-sends the same coded

packet again. If the receiver is capable of buffering previously received packets, these

multiple packets can be combined to create a single packet till the resulting combined

packet can be reliably decoded. The method of combining these multiple packets can

be separated into two distinct types. In the code combining scheme, these repeated

packets are concatenated to form a single packet at a lower code rate, which is often

referred to as Chase combining [14]. In the diversity combining scheme, these repeated

packets are combined into a single packet with more reliable constituent symbols by

using symbol voting schemes [17] or by using symbol averaging schemes [16]. In the

Type-II HARQ scheme, instead of re-sending the same packet, the transmitter tries to

construct and sends additional parity bits when a NAK is received. This is also known

as the incremental redundancy scheme [18].

In order to provide reliable communications over dynamic wireless channels,

advanced transmission mechanisms based on HARQ are adopted. For example, in

an adaptive modulation system combined with selection transmit diversity, HARQ is

incorporated to provide the feedback channel for packet retransmission, modulation

adaptation and transmit antenna selection [29, 76, 100]. In a cooperative diversity

system, the relay is selected by checking the correctness of a CRC code of a packet,

while at the same time an ARQ protocol is implemented at the destination for packet

retransmissions [30]. In recent years, ARQ has been defined as an option at the medium

access control (MAC) layer in WiMax standards, which has gained significant attention

from both industry and academia. There are several existing research works on the

performance analysis of ARQ-based WiMax networks [13, 101, 102].

The performance parameters in the data-link layer due to HARQ, such as the
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APER, throughput, goodput and drop rate depend not only on the MAC protocol, but

also on the physical-layer parameters. Much work has been done on the performance

of HARQ schemes over fading channels [22–25]. Due to the large number and the

complexity of the parameters as well as the protocols across the two layers, in previous

works, by and large, perfect CSI in the physical-layer at the transmitter is assumed.

Nevertheless, the CSI may be outdated or imperfect due to the feedback delays and the

channel estimation errors both at the transmitter and the receiver. Since the CSI can be

used to perform link adaption, transmit diversity selection [29] and relay selection [30],

evaluating the effects of imperfect CSI on the system performance is important to

provide insights on system operation and guidelines for designing effective system

management schemes. The impact of using outdated CSI on the performance of a

SR-ARQ system is considered in [29].

We will study the impact of imperfect CSIR on ARQ/HARQ schemes and

demonstrate that the accuracy of the CSIR plays a crucial role in determining

the performance in the data-link layer. We focus on establishing a link

between network-layer and physical-layer performance parameters. We analyze the

performance of three basic ARQ schemes as well as three Type-I HARQ schemes with

diversity combining over a block fading channel with imperfect CSIR. The imperfect

CSIR is acquired via MMSE channel estimation with the aid of pilot symbols. Three

performance parameters: APER, goodput, and drop rate are investigated, respectively.

We obtain closed-form upper and lower bounds on the APER, the goodput as well

as the drop rate. Using numerical results, we compare the impact of the accuracy of

the imperfect CSIR on basic ARQs and on Type-I HARQs. In practice, the number

of transmissions is limited in Type-I HARQ, which can result in a drop rate of data

packets without guaranteeing their error-free delivery. Hence, the impact of the

accuracy of the imperfect CSIR on the transmission limits necessary for achieving
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a certain requirement on the drop rate, is further illustrated. The study shows that at

large channel estimation MSE, the performance deteriorates very rapidly while at low

values of the MSE, the performance improves gently toward that of the perfect CSI

case.

Differential phase shift keying (DPSK) is a commonly used alternative

modulation to BPSK, because it does not require channel estimation for the acquisition

of CSI. In ARQ schemes, information bits are grouped into packets for transmission.

Therefore, the packet error probability (PEP) is an important performance measure

of an ARQ scheme. In some works, the PEP is also known as the frame error

probability. We study the PEP of ARQ schemes in Section 5.5 with DBPSK over a

nonselective Rayleigh fading channel. For the case of a static channel, we derive the

exact closed-form expressions as well as tight bounds for the PEP and the goodput. For

the case of a slowly time-varying channel, the performance is studied via simulations.

5.2 System Description

When information is transmitted using an ARQ scheme, each block of m bits of

information is first sent to an encoder. The code can usually correct some error patterns

and simultaneously detect other error patterns. However, it is assumed in this work

that the code is a linear block code, capable of purely detecting any error pattern of

dmin − 1 or fewer errors which will result in a received vector that is not a code

word. The term dmin denotes the minimum distance of a block code. After passing

through a binary (n, m) systematic block encoder and being prefixed by NH pilot

bits, a packet of n + NH bits is produced. Each packet comprises m information bits

for information transmission, (n − m) parity-check bits for error detection, and NH

pilot bits for channel estimation. The rate of the error detecting code is R = m/n.
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The effective rate of each packet is defined as Re = m/(n + NH) which takes into

account the redundancy introduced by the error detecting code and the pilot bits used

for channel estimation. The number of pilot bits NH is usually limited in practice

by the channel bandwidth expansion factor 1/Re. To facilitate performance study at

the data link layer, without channel coding, it is assumed that the NH pilot bits are

transmitted by binary phase shift keying (BPSK) modulation while the n data bits are

modulated by either BPSK or quadrature phase shift keying (QPSK). The energy per

pilot bit is Ep while the energy per information bit is Eb. Hence, at the output of the

error detection encoder, the average energy per data bit is Ea = EbR. The energy per

data symbol is Es = EbR for BPSK, and Es = 2EbR for QPSK.

With L receive antennas and a single transmit antenna, the received pilot and data

signal at the lth receive antenna over the kth symbol interval during the tth transmission

of a packet, is given by

rtl[k] =
√

Epmp[k]htl + Ntl[k], k = 1, · · · , NH , (5.1)

ztl[k] =
√

Esms[k]htl + Ntl[k], k = NH + 1, · · · , NH + n,

where, terms mp[k] and ms[k] are the transmitted pilot and data symbols, respectively.

For a block fading channel, the channel is assumed to be constant over a duration of

NH + n symbols. The term htl is the fading gain experienced by the signal on the tth

transmission of the packet and received on the lth receive antenna. Since the round-trip

delay, which is defined as the time interval between the transmission of a packet and

the receipt of an acknowledgment for that packet, is assumed to be larger than the

coherence time of the channel, the block fading gain experienced by the retransmitted

packet is independent of the gains experienced in previous transmission(s) of the same

packet, and they are identically distributed. Therefore, the channel gains {htl}J,L
t=1,l=1

are i.i.d, complex, Gaussian random variables with E[htl] = 0 and E[|htl|2] = 2σ2,
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where J represents the number of transmissions of a packet. The terms {Ntl}J,L
t=1,l=1

are due to channel additive, white, Gaussian noise, and are i.i.d, complex, Gaussian

random variables with E[Ntl(k)] = 0 and E[|Ntl(k)|2] = N0.

The receiver, using the pilot signals received in each packet from each receive

antenna, measures the CSI of the channel for each receive antenna in order to

implement the optimum detection of data symbols [103]. The NH pilot symbols on

the tth transmission of the packet are used in a Wiener filter for generating the MMSE

estimate ĥtl of the channel gain for the lth receive antenna. Since the channel gain is

complex Gaussian, the MMSE estimate ĥtl is given by [104, eq.(2.1)]

ĥtl =

NH∑
i=1

wtl[i]rtl[i], (5.2)

where wtl[i] = 2σ2
√

Ep(2NHσ2Ep + N0)
−1 is the ith filter coefficient and is the same

for all i, since the channel gain htl is constant for fixed t and l. The coefficient wtl[i]

is also the same for all t and l, since {htl} are i.i.d random variables. The channel

estimator’s MSE is [104, eq.(2.49)]

E
[
|htl − ĥtl|2

]
= 2V 2 =

2σ2

1 + NH
2σ2Ep

N0

. (5.3)

The estimate ĥtl is a complex Gaussian random variable with mean zero and variance

2(σ2 − V 2) [104, eq.(2.18)].

For each received packet, the channel gain is estimated using the pilot symbols.

The signals received over the L receive antennas from the J transmissions are

combined for optimal detection by using the optimum (maximal ratio) combiner

(MRC) [105], which achieves both time diversity combining and spatial diversity

combining. After detection, the received code vector is checked by the error detection

code. When the received code vector has been detected to be in error, the receiver

requests a retransmission. Define ed(J) as the error event that after combining the
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signals received from J transmissions for optimal detection, the packet has been

detected to be in error. The probability P (ed(J)) is the probability of detectable error

or the probability of retransmission which can be obtained by [11, (Example15-1)].

P (ed(J)) = P (ep(J)) − P (eu(J)), (5.4)

where ep(J) is the error event that the received packet, after combining JL received

copies for optimal detection, contains one or more bit errors, and eu(J) represents

the error event that the received packet contains an undetectable error pattern after

combining JL received copies for optimal detection. The packet error probability

P (ep(J)) depends on the channel error statistics, whereas the probability of detectable

error P (ed(J)) and the probability of undetectable error P (eu(J)) depend on both the

channel error statistics and the choice of the (n,m) error detecting code.

There are two basic parameters that determine the performance of an ARQ

protocol: reliability and throughput. In an ARQ scheme, a packet is erroneously

accepted if, on any transmission attempt, it arrives at the receiver containing an

undetectable error pattern. The APER PAE is the percentage of packets accepted by

the receiver that contain one or more bit errors. Clearly, for an ARQ system to be

reliable, PAE should be very small. Therefore, the reliability of an ARQ protocol is

measured by its APER PAE . Another measure of the performance of an ARQ system

is its throughput, which is defined as the ratio of the average number of information

bits successfully accepted by the receiver to the total number of bits that could be

transmitted.
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5.3 Basic ARQ with BPSK/QPSK in SIMO Systems

with Imperfect CSIR

In this section, the three basic ARQ schemes are analyzed in a SIMO system without

packet combining. Whenever a received packet is detected in error, that packet is

discarded and replaced by a retransmitted copy. For the sake of brevity, in the rest

of this section, we omit the transmission subindex t in both htl and ĥtl as well as the

index J in P (ed(J)), P (ep(J)), and P (eu(J)), since the received J th erroneous packet

is discarded without packet combining. All three basic ARQ schemes achieve the same

reliability; however, they have different throughputs. Next, we derive the throughput

of each of the three basic ARQ schemes. For simplicity, we assume that the feedback

channel is noiseless.

5.3.1 Bit Error Probability

Based on the optimal channel estimation receiver structure obtained in [103, eq.(7)],

the conditional bit error probability (BEP) conditioned on the MMSE estimate of the

channel gains {ĥl}L
l=1, is given by [103, Appendix III]

P (eb|{ĥl}) =
1

2
erfc


Es cos2 α

L∑
l=1

|ĥl|2

2EsV 2 + N0


1/2

, (5.5)

where, α = 0 corresponds to the conditional BEP of BPSK modulation while α = π/4

corresponds to that of QPSK. The term eb denotes the event of bit error. Since {hl}

is a set of i.i.d., complex, Gaussian random variables, the estimated channel gains

ĥl are also i.i.d., complex, Gaussian random variables with mean zero and variance

2(σ2 − V 2). Therefore, the sum g =
L∑

l=1

|ĥl|2 is chi-square-distributed with 2L degrees
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of freedom and its PDF is given by [6, eq.(2.1-137)]

p(g) =
gL−1

2L(σ2 − V 2)LΓ(L)
e
− g

2(σ2−V 2) . (5.6)

Averaging the conditional BEP (5.5) over g using the pdf (5.6) gives the average BEP

[103, eq.(8a)]

P (eb) =

(
1 − µ

2

)L L−1∑
l=0

 L − 1 + l

l

(1 + µ

2

)l

, (5.7)

where,

µ =

(
1 +

2EsV
2 + N0

2(σ2 − V 2)Es cos2 α

)−1/2

. (5.8)

It is seen from (5.7) that the BEP depends on both Es and Ep since 2V 2 is a function of

Ep. Taking into account the energy used for channel estimation, we define the effective

energy per data bit as

Eeff
b =

EpNH + Ebm

n
. (5.9)

Therefore, the effect of energy devoted to data delivery on the BEP can be illustrated

as a function of the effective received SNR per data bit γeff
b = 2Eeff

b Lσ2/N0.

5.3.2 Packet Error Probability

Conditioned on knowing the estimated channel gain ĥl, the channel is memoryless

since the AWGN is independent from symbol to symbol. Hence, the conditional

probability that a received packet contains at least one error bit, can be written as

P (ep|{ĥl}) = 1 −
(
1 − P (eb|{ĥl})

)n

. (5.10)

By averaging (5.10) over the chi-square random variable g, the packet error probability

P (ep) can be obtained as

P (ep) =

∞∫
0

(
1 −

(
1 − P (eb|{ĥl})

)n)
p(g)dg. (5.11)
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By applying the Chernoff bound: erfc(x) ≤ e−x2 , and the identity:
∫∞

0
xne−µxdx =

n!µ−n−1 [97, eq.(3.351.3)] on (5.11), the latter can be upper bounded by

P (ep) ≤ 2
n∑

i=1

n

i

(−1

2

)i+1(
1 +

2iEs cos2 α(σ2 − V 2)

2EsV 2 + N0

)−L

. (5.12)

In [106], when L = 1, an alternative expression for (5.12) without the binomial

coefficient, is obtained as

P (ep) ≤ 1 −
n∑

l=0

(
1

2

)n−l l−1∏
j=0

(n − j)c

2(b + (j + 1)c)
, (5.13)

where,

b =
1

2(σ2 − V 2)
, c =

Es cos2 α

2EsV 2 + N0

. (5.14)

Compared with the Chernoff bound, a closer approximation of erfc(x) without much

loss in accuracy becomes useful when computing a closer approximation of P (ep).

Applying the more accurate approximation below [107, eq.(31)]

erfc(x) ≈ 1

6
e−x2

+
1

3
e−4x2/3 (5.15)

to (5.5), we have

P (eb|{ĥl}) ≈
1

12
e
− Es cos2 αg

2EsV 2+N0

(
1 + 2e

− Es cos2 αg

3(2EsV 2+N0)

)
. (5.16)

By substituting (5.16) for P (eb|{ĥl}) in (5.11) and making use of [97, eq.(3.351.3)],

the packet error probability P (ep) can be more accurately approximated by

P (ep) ≈ −
n∑

i=1

 n

i

(−1

12

)i i∑
j=0

 i

j

 2j

(
1 +

c

b

(
j

3
+ i

))−L

. (5.17)

5.3.3 Undetectable Error Rate

Next, we evaluate the probability of undetectable error P (eu). This probability is often

quite difficult to determine since it requires a complete characterization of the output
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of the FEC decoder. A bound or an approximation, however, is usually sufficient [11].

For (n,m) linear codes, except for some short linear codes, the weight distributions for

many codes are still unknown. Consequently, it is considerably difficult to compute

their P (eu), but it is fairly easy to derive upper and lower bounds on P (eu) for the

ensemble of all (n,m) linear codes. Conditioned on knowing the estimated channel

gain ĥl, the composite channel including binary modulator and hard-decision detector

can be modeled as a binary symmetric channel (BSC) [6, Chapter 7]. Hence, the

upper bound on the conditional undetectable error probability can be evaluated by [10,

eq.(3.42)]

P (eu|{ĥl}) ≤ 2−n(1−R)
[
1 −

(
1 − P (eb|{ĥl})

)n]
, (5.18)

and the lower bound can be evaluated by [108, eq.(12)]

P (eu|{ĥl}) ≥
n∑

w=n−m+1

 n

w

(2m+w−n − 1
)
P (eb|{ĥl})w

(
1 − 2P (eb|{ĥl})

)n−w

.

(5.19)

Taking the mean of (5.18) over g, the average undetectable error probability can be

upper-bounded as

P (eu) ≤
∞∫

0

2−n(1−R)
(
1 −

(
1 − P (eb|{ĥl})

)n)
p(g)dg. (5.20)

The last integral can be evaluated like that in (5.11), giving

P (eu) ≤ 2−n(1−R)+1

n∑
i=1

n

i

(−1

2

)i+1(
1 +

ic

b

)−L

. (5.21)

The ratio between P (eu) and P (ep) can then be upper bounded by the ratio of (5.20)

to (5.11):

P (eu)

P (ep)
≤ 2−n(1−R). (5.22)
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We thus have P (eu) << P (ep) when the number of parity-check bits n − m is large

enough to make 2−n(1−R) << 1, say, (n − m) > 5, and therefore P (ed) ≈ P (ep) is

inferred from (5.4). This assumption is applied in the rest of the chapter. The lower

bound on the average undetectable error probability can be obtained by taking the mean

of (5.19) over g as

P (eu) ≥
∞∫

0

n∑
w=n−m+1

 n

w

 (2m+w−n − 1)P (eb|{ĥl})w
(
1 − 2P (eb|{ĥl})

)n−w

p(g)dg.

(5.23)

By making use of the binomial theorem, the last integral becomes

P (eu) ≥
n∑

w=n−m+1

 n

w

 (2m+w−n − 1)
n−w∑
i=0

 n − w

i

 (−2)i

∞∫
0

P (eb|{ĥl})i+wp(g)dg.

(5.24)

By substituting (5.16) for P (eb|{ĥl}) in (5.24) and using [97, eq.(3.351.3)], the

right-hand side of the last integral can be evaluated, giving

P (eu) ≥
n∑

w=n−m+1

n

w

 n−w∑
i=0

n − w

i

 i+w∑
j=0

i + w

j

 (−1)i 2
m−n+j − 2j−w

6i+w

(
1 +

c(i + w + j/3)

b

)−L

(5.25)

5.3.4 Selective-repeat ARQ scheme

If buffering at both the transmitter and the receiver is allowed, an SR-ARQ protocol can

be implemented. The throughput of the SR-ARQ scheme follows from [11, eq.(15-8)]

and [12, Sec. III] as

ηsr = Re (1 − P (ed)) . (5.26)

By applying (5.22) on (5.26), the throughput is then approximated by

ηsr ≈ Re (1 − P (ep)) . (5.27)
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One can only evaluate a lower bound to right-hand side of (5.27) by using the upper

bound on P (ep) in (5.12).

Another useful system parameter, the APER, which shows the reliability of the

ARQ system, is given by [11, eq.(15-2)]

PAE =
P (eu)

1 − P (ed)
. (5.28)

Using P (ed) ≈ P (ep) and substituting (5.21) and (5.12) into (5.28), PAE is

upper-bounded by

PAE ≤ 2−n(1−R)Z

1 − Z
, (5.29)

where,

Z = 2
n∑

i=1

n

i

(−1

2

)i+1(
1 +

ic

b

)−L

. (5.30)

The lower bound to the right-hand side of (5.28) can be evaluated by using the lower

bound on P (eu) in (5.25) and the approximation of P (ep) in (5.17).

The throughput is meaningful only when considered in conjunction with the

reliability. Therefore, the goodput ηg is defined as the ratio of the expected number

of information bits correctly received per unit of time to the total number of bits that

can be transmitted per unit of time [12,13]. The goodput of an SR-ARQ scheme, which

shows the proportion of the throughput consisting of correct packets, can be expressed

as

ηsr
g = (1 − PAE)ηsr. (5.31)

By substituting (5.28) and (5.26) into (5.31), the goodput can be obtained as

ηsr
g =

m

n + NH

(1 − P (ep)). (5.32)

The goodput can be considered as a lower bound on the throughput since the ηsr
g in

(5.32) is the same as the ηsr in (5.26) when neglecting the term P (eu). For a sufficiently
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small P (eu), the goodput approaches the throughput. Substituting (5.12) into (5.32),

we obtain the lower bound on ηsr
g as

ηsr
g ≥ m

n + NH

(1 − Z). (5.33)

Consider the special case when L = 1, (5.29) and (5.33) can be simplified to [106,

eq.(17)]

PAE ≤ 2−n(1−R)

( n∑
l=0

(
1

2

)n−l l−1∏
j=0

(n − j)c

2(b + (j + 1)c)

)−1

− 1

 (5.34)

and [106, eq.(21)]

ηsr
g ≥ m

n + NH

n∑
l=0

(
1

2

)n−l l−1∏
j=0

(n − j)c

2(b + (j + 1)c)
. (5.35)

respectively.

5.3.5 Stop-and-wait ARQ scheme

Let D be the idle time from the end of transmission of one packet to the beginning

of transmission of the next. Let τ be the bit transmission rate which is defined as the

number of bits transmitted per unit of time. In one round-trip delay time, which is

defined as the time interval between the transmission of a packet and the receipt of an

acknowledgment for that packet, the transmitter can transmit a total of 1 + Dτ/(n +

NH) packets if it does not stay idle. By evaluating the average number of packets

that the transmitter could have transmitted during the interval from the beginning of

transmission of one packet to the receipt of a positive acknowledgment for that packet,

the throughput of a SW-ARQ system follows [10, eq. (22.6)] as

ηsw =
m(1 − P (ed))

n + NH + Dτ
≈ m(1 − P (ep))

n + NH + Dτ
. (5.36)

By making use of (5.22) and (5.12), (5.36) can be limited by its lower bound as

ηsw≥ηsw
L =

m(1 − Z)

n + NH + Dτ
. (5.37)
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Since the APER merely depends on the channel error statistics and the choice of the

error detecting code, the SW-ARQ scheme has the same reliability as the SR-ARQ

scheme. Therefore, the goodput of a SW-ARQ scheme can be derived and its lower

bound is further obtained in the same way as in the SR-ARQ scheme, i.e.,

ηsw
g =

m (1 − P (ep))

n + NH + Dτ
≥ m(1 − Z)

n + NH + Dτ
. (5.38)

We see that even if the data transmission rate is low and the round-trip delay is short,

the goodput can never achieve the maximum value of Re since the inaccurate channel

estimation will deteriorate the performance.

5.3.6 Go-back-N ARQ scheme

The term ‘go-back-N ’ (GBN) derives from the fact that when a transmitter receives

a retransmission request, it must go back into its buffer some N packets and restart

transmission from there. When a NAK is received, the transmitter resends that packet

and the N − 1 subsequent packets that were transmitted earlier. The parameter N

depends on the bit transmission rate τ and on the round-trip delay D + (n + NH)/τ ,

and is therefore evaluated as N = 1 + Dτ/(n + NH). Hence, the throughput of a

GBN-ARQ scheme is given by [10, eq.(22.5)]

ηgbn =
(1 − P (ed))m

n + NH + P (ed)Dτ
≈ (1 − P (ep))m

n + NH + P (ep)Dτ
. (5.39)

The lower bound can be obtained in the same way as in (5.26) and (5.36) and expressed

as

ηgbn ≥ ηgbn
L =

(1 − Z)m

n + NH + P (ep)Dτ
. (5.40)

Making use of the APER of GBN-ARQ which is the same as that of SR-ARQ shown

in (5.28), the goodput and its lower bound can be obtained as follows:

ηgbn
g =

(1 − P (ep))m

n + NH + P (ed)Dτ
≥ m(1 − Z)

n + NH + ZDτ
. (5.41)

80



5.3 Basic ARQ with BPSK/QPSK in SIMO Systems with Imperfect CSIR

5.3.7 Power Allocation between Pilot and Data Bits

Each packet is sent with a fixed total energy ET . When more energy is devoted

to channel estimation, the estimates of channel gains are more accurate, leading

to a smaller error probability. However, this reduces the energy available for data

transmission and leads to a higher error probability. For this reason, there must exist an

optimum fraction ε of the total energy ET that should be devoted to channel estimation

so as to maximize the lower bound on the goodput ηsr
g in (5.33).

All signalling messages are assumed to be significantly shorter than the user data

packets, and therefore transmitted with negligible overall energy consumption. For a

given total packet energy ET , the amount of total energy assigned to pilot symbols is

εET = NHEp while the remainder of total energy devoted to data transmission equals

(1− ε)ET = nEs. The number of pilot symbols NH which is limited by the allowable

channel bandwidth, is assumed to be fixed for each packet. Thus an optimum ε will

lead to an optimum Ep and similarly an optimum Es. Since NH is fixed, (5.32) shows

that maximizing the goodput ηsr
g amounts to minimizing the packet error rate P (ep).

By considering the special case when L = 1 and using the lower bound (5.35), the

maximization problem now comes to

ε∗ = arg max
0≤ε≤1

{
f
(c

b

)
=

n∑
l=0

(
1

2

)n−l l−1∏
j=0

(n − j)c

2(b + (j + 1)c)

}
, (5.42)

where b and c given in (5.14) can be rewritten as

b =
1

2σ2 − 2N0σ2

N0+2εET σ2

=
1 + εγ

2εσ2γ
(5.43)

and

c =
(1 + εγ)(1 − ε)ET

2(1 − ε)ET σ2 + n(N0 + 2εET σ2)
. (5.44)

Here, γ = 2ET σ2/N0 is defined as the total transmit SNR. The objective function f
(

c
b

)
defined in (5.42) is a monotonically increasing function of the variable c/b. Therefore,
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the optimization problem can be reduced to

ε∗ = arg max
0≤ε≤1

{c

b

}
= arg max

0≤ε≤1

{
ε(1 − ε)γ2

γ(1 − ε) + n(1 + εγ)

}
. (5.45)

Setting the derivative of c/b with respective to ε equal to zero, and solving the resulting

quadratic equation, we obtain the optimal ε∗ as

ε∗ =
n + γ −

√
n2 + nγ + γ2n + γn2

γ − nγ
. (5.46)

The optimal ε∗, which is in the range [0, 1], satisfies an equality shown in the following

proposition which indicates the upper and the lower limits on the optimum amount of

energy devoted to channel estimation.

Proposition 5.1. For a given n, the optimal value ε∗ satisfies the following inequality

for any γ.

1 −
√

n

1 − n
≤ ε∗ ≤ 0.5 (5.47)

Proof. The optimal value ε∗ is a monotonically decreasing function of γ, which can

be shown as follows. By changing to the variable x = γ
n

, (5.46) becomes

ε∗ =
1 + x −

√
1 + x + nx2 + nx

x − nx
. (5.48)

Note that n is also a function of x. By taking the first derivative of ε∗ with respective

to x and simplifying, the derivative can be arranged to be

dε∗

dx
=

(n − 1)
(
2
√

1 + x + nx2 + nx − (nx + x + 2)
)

2
√

1 + x + nx2 + nx (x − nx)2 .

By applying the inequality of arithmetic and geometric means, the inequality dε∗/dx ≤

0 is true because of the relationship

2
√

1 + x + nx2 + nx = 2
√

(1 + x)(nx + 1) ≤ 2 + nx + x.
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Using the monotonically decreasing property of ε∗, the upper and lower limits of ε∗

can be seen to be

lim
x→∞

ε∗(x) ≤ ε∗ ≤ lim
x→0

ε∗(x). (5.49)

The lower limit can be shown to be

lim
x→∞

1 + x−1 −
√

x−2 + x−1 + nx−1 + n

1 − n
=

1 −
√

n

1 − n
.

By applying L’Hospital rule, the upper limit is obtained as

lim
x→0

1 − 0.5(1 + n + 2nx)(1 + nx2 + nx + x)−
1
2

1 − n
= 0.5

The upper limit on ε∗ in (5.47) indicates that the optimum amount of energy

devoted to channel estimation is always at most half of the total energy. For the lower

limit, at least a fraction of total energy (i.e. 1−
√

n
1−n

ET ) is necessary to be devoted to

channel estimation. A small amount of energy is assigned to channel estimation when

a long code (i.e. large n ) is used. This is because the lower limit in (5.47) can be

reduced to 1/
√

n when n is large.

5.3.8 Numerical Results for Basic ARQ Schemes

Since the bounds on goodput and APER only depend on the values of n and m and

they are not influenced by specific code structures, different values of n and m are

chosen to demonstrate the performances based on (5.34) and (5.35). The fixed total

energy ET for each packet is (m + NH)Ea, where Ea represents the average energy

per bit. The normalized channel estimation MSE V 2/σ2 depends on the energy ε∗ET

devoted to pilot symbols rather than the value of NH .

In Fig. 5.1 and Fig. 5.2, the performance bounds are plotted with the number

of information bits m = 210 and with equal power allocation Ep = EB
b = Ea
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Figure 5.1: The APER versus the normalized MSE and Ea/N0.

(i.e. ε = NH/(n + NH)). For the fair comparison, we consider the cases where

the transmit energy (mEb) is the same, but with the different values of R = 0.92,

R = 0.88, and R = 0.84. The number of pilot bits NH is usually limited in practice by

the channel bandwidth expansion factor 1/Re. Assume that the channel bandwidth

expansion factor is 1/Re = 1.11, 1/Re = 1.16, and 1/Re = 1.21 respectively

for R = 0.92, R = 0.88, and R = 0.84. This bandwidth expansion factor leads

to the choice here of NH = 5 pilot symbols, which is the maximum value of NH

for the given m and R. Fig. 5.1 indicates that there exists a critical value for both

V 2/σ2 and average SNR per bit Ea/N0 that separates two different trends in the APER

curves. In particular, when V 2/σ2 is above a critical value of around 10−2, the APER
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Figure 5.2: The goodput versus the normalized MSE and the APER.

deteriorates very fast. Below this critical value, the APER decreases more gently. The

corresponding critical value of SNR Ea/N0 is around 10 dB. Additionally, it can be

seen that in order to achieve a certain APER requirement, greater channel estimation

accuracy or higher Ea/N0 is needed for a code with fewer parity-check bits. Fig. 5.2

shows how the parameter V 2/σ2 and the APER affect the goodput performance. The

values of normalized MSE above a critical value of around 10−2 degrade the goodput

performance very rapidly. The goodput can be improved by more accurate channel

estimation. However, decreasing the normalized MSE below a value of about 10−3

leads to diminishing increments in the goodput. Furthermore, in order to achieve

a certain goodput requirement, greater channel estimation accuracy is needed for a
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Figure 5.3: The value of ε∗ versus average SNR per bit Ea/N0

very high rate code with more parity-check bits. This is because using more accurate

channel estimation compensates for the higher packet error rate induced by a longer

packet. The goodput versus the APER in Fig. 5.2 shows that, for a lower-rate code, a

smaller APER is required to achieve desired goodput performance. For a fixed SNR

Ea/N0, higher goodput is obtained by using a higher-rate code but at the expense of

worse APER. This proposition indicates that the optimum amount of energy devoted

to channel estimation is always at most half of the total energy. On the other hand,

at least a fraction of total energy (i.e.1−
√

n
1−n

ET ) is necessary to be devoted to channel

estimation. A small amount of energy is assigned to channel estimation when a long

code (i.e. large n ) is used. This is because the left-hand side of (5.47) can be reduced
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Figure 5.4: The lower bound on the goodput achieved by different values of ε

to 1/
√

n when n is large. The above discussion of channel estimation accuracy leads

to the consideration of optimum power allocation between channel estimation and data

transmission to achieve the maximum goodput. The power allocation and the goodput

improvement achieved are shown in Fig. 5.3 and Fig. 5.4, respectively. The curves

in Fig. 5.3 indicate that ε∗ is a decreasing function of the total transmit SNR γ but it

converges to 1−
√

n
1−n

and 0.5 in the high and low SNR regions, respectively. For different

codes, an improvement of about 0.5 dB to 1 dB can be observed in Fig. 5.4 for a given

goodput. Less improvement is achieved when a longer code is used. This is due to

that there is no significant difference between the value of ε∗ and ε when the length of

the code is long. For a code with m = 210 and R = 0.84, a 0.5 dB improvement is
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obtained.

5.4 Type-I HARQ with BPSK/QPSK in SIMO Systems

with Imperfect CSIR

In this section, the three Type-I HARQ schemes are analyzed in a SIMO system. For

each received packet, the channel gain is estimated using pilot symbols. The receiver

retains the packets detected in error in previous transmissions for combining with the

repeated copy in the current transmission in an optimum manner. The signals received

over the L receive antennas from J transmissions are combined for optimal detection

by using the optimum MRC [105], which achieves both time diversity combining

and spatial diversity combining. The maximum number of allowed transmissions for

each packet is denoted by Jm + 1. A packet will be dropped when it is not accepted

successfully in Jm + 1 transmissions.

We first evaluate the packet error probability P (ep(J)) at the J th transmission.

Based on the optimal channel estimation receiver structure obtained in [103, eq.(7)],

the conditional bit error probability after combining JL signal copies from the L

receive antennas over J transmissions, is given by [103, Appendix III]

P (eb(J)|{ĥtl}) =
1

2
erfc


Es cos2 α

J∑
t=1

L∑
l=1

|ĥtl|2

2EsV 2 + N0


1/2

. (5.50)

Since {htl} is a set of i.i.d., complex, Gaussian random variables, the estimated channel

gains ĥtl are also i.i.d., complex, Gaussian random variables, each with mean zero and

variance 2σ2. Therefore, the sum g(J) =
J∑

t=1

L∑
l=1

|ĥtl|2 is chi-square-distributed with
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2JL degrees of freedom and its pdf is given by [6, eq.(2.1-137)]

p(g) =
gJL−1

(2σ2 − 2V 2)JLΓ(JL)
e−g/(2σ2−2V 2). (5.51)

The term P (ep(J)) is the probability that the packet contains one or more bit errors at

the J th transmission. It can be evaluated by

P (ep(J)) =

∞∫
0

(
1 −

(
1 − P (eb(J)|{ĥtl})

)n)
p(g)dg. (5.52)

By applying the Chernoff bound: erfc(x) < e−x2 , and [97, eq.(3.351.3)] on (5.52), it

can be upper bounded by

P (ep(J)) < 2
n∑

i=1

n

i

(−1

2

)i+1(
1 +

ic

b

)−JL

. (5.53)

Using the approximation of the erfc(x) in (5.15), (5.52) can be evaluated like that in

(5.17), giving

P
(
ep(J)

)
≈ −

n∑
i=1

 n

i

(−1

12

)i i∑
j=0

 i

j

 2j

(
1 +

c

b

(
j

3
+ i

))−JL

. (5.54)

By substituting (5.50) into the bounds in (5.18) and (5.19) and taking the average over

the chi-square random variable g(J), the term P (eu(J)) can be respectively upper and

lower bounded by

P (eu(J)) ≤ 2−n(1−R)+1

n∑
i=1

n

i

(−1

2

)i+1(
1 +

ic

b

)−JL

, (5.55)

and

P (eu(J)) ≥
n∑

w=n−m+1

n

w

n−w∑
i=0

n − w

i

i+w∑
j=0

i + w

j

(−1)i 2
m−n+j − 2j−w

6i+w

×
(
1 +

c(i + w + j/3)

b

)−JL

(5.56)
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Define er(J) to be the event that a packet is not accepted successfully in J

transmissions (including the original transmission). The probability that a packet is

to be retransmitted the J th time (excluding the original transmission) can be expressed

as

P (er(J)) = P (ed(1), ed(2), · · · , ed(J)) .

Based on the discussion for (5.22), we have that P (ed(J)) ≈ P (ep(J)) when (n − m)

is large enough. The evaluation of the probability P (er(J)) is complicated since the

statistical dependence among different receptions is induced by combining all received

packets. A lower and an upper bound on P (er(J)) can be obtained as [28, eq.(35)]
J∏

t=1

P (ep(t)) ≤ P (er(J)) ≤ P (ep(J)). (5.57)

5.4.1 Selective-repeat based Type-I HARQ scheme

The average number of transmissions it takes before a packet is accepted is given

by [11, eq.(15-3)]

T sr
r =

Jm+1∑
J=1

J
[
P
(
er(J − 1)

)
− P

(
er(J)

)]
=

Jm∑
J=0

P
(
er(J)

)
− (Jm + 1)P

(
er(Jm + 1)

)
. (5.58)

where P
(
er(0)

)
= 1 and P

(
er(J − 1)

)
− P

(
er(J)

)
is the probability that a packet is

accepted at its J th transmission. Therefore, the throughput of the SR-HARQ system

with the allowed maximum number of retransmission Jm, follows from [11, eq.(15-8)]

as

ηsr(Jm) =
m

n + NH

1

T sr
r

. (5.59)

The upper bound on T sr
r can be obtained as [28, eq.(26)]

T sr
r < 1 +

Jm∑
J=1

P
(
er(J)

)
, (5.60)
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which is reasonable since the term P (er(Jm + 1)) can be small enough to be ignored

when L or Jm is large enough. By using the bounds (5.57), (5.60) and (5.53) in (5.59),

a lower bound on throughput for SR-HARQ scheme is obtained as

ηsr(Jm) >
m

(n + NH)

(
1 +

Jm∑
J=1

Z(J)

) , (5.61)

where

Z(J) = 2
n∑

i=1

 n

i

(−1

2

)i+1(
1 +

ic

b

)−JL

. (5.62)

By applying (5.57) to (5.58), (5.59) can be upper-bounded by

ηsr(Jm) <
Re

1 +
Jm∑
J=1

J∏
t=1

P
(
ep(t)

)
− (Jm + 1)P

(
ep(Jm + 1)

) . (5.63)

The right-hand side of (5.63) can be approximated by substituting (5.54) for P
(
ep(t)

)
.

The term eu(J) denotes the event that a packet is erroneously accepted if, after

packet combining at the J th transmission attempt, it contains an undetectable error

pattern. The packet can be accepted on the first transmission, the second (after a

retransmission request), etc. Therefore, the APER of the HARQ system with the

allowed maximum number of retransmissions Jm, can be computed by summing the

probabilities of the various events that lead to the acceptance of an erroneous packet

as [11, eq.(15-2)], [12].

PAE(Jm) = P
(
eu(1)

)
+

Jm+1∑
J=2

P
(
ed(1), · · · , ed(J − 1), eu(J)

)
. (5.64)

By applying (5.57) to (5.64), the term PAE(Jm) can be upper and lower bounded by

PAE(Jm) ≤ P
(
eu(1)

)
+

Jm+1∑
J=2

P
(
eu(J)

)
=

Jm+1∑
J=1

P
(
eu(J)

)
, (5.65)

and

PAE(Jm) ≥ P
(
eu(1)

)
+

Jm+1∑
J=2

J−1∏
t=1

P
(
ed(t)

)
P
(
eu(J)

)
. (5.66)
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By substituting the bounds given in (5.55) for P (eu(J)) in (5.65), an upper bound on

PAE(Jm) can be obtained as

PAE(Jm) ≤
Jm+1∑
J=1

2−n(1−R)Z(J). (5.67)

An approximation on the right-hand side of (5.66) can be evaluated by substituting

(5.56) for P
(
eu(J)

)
and (5.54) for P

(
ed(t)

)
since P

(
ed(J)

)
≈ P

(
ep(J)

)
when n−m

is sufficiently large.

5.4.2 Stop-and-wait based Type-I HARQ scheme

During the interval from the beginning of transmission of one packet to the receipt of a

positive acknowledgment for that packet, the average number of packets (including the

idling effect which refers to the idle time spent waiting for an acknowledgement for

each transmitted packet) that the transmitter could have transmitted is [10, eq.(22.6)]

T sw
r =

Jm+1∑
J=1

J

(
1 +

Dτ

n + NH

)[
P
(
er(J − 1)

)
− P

(
er(J)

)]
=

(
1 +

Dτ

n + NH

)[ Jm∑
J=0

P
(
er(J)

)
− (Jm + 1)P

(
er(Jm + 1)

)]
.

Therefore, the throughput of an SW-HARQ scheme is [10, eq.(22.6)]

ηsw(Jm) =
Re

T sw
r

. (5.68)

By using the same derivation as that for (5.60), the upper bound on T sw
r can be obtained

as

T sw
r <

(
1 +

Dτ

n + NH

) Jm∑
J=0

P
(
er(J)

)
. (5.69)

Therefore, the lower bound on the throughput of an SW-HARQ scheme becomes

ηsw(Jm) >
m

(n + NH + Dτ)

(
1 +

Jm∑
J=1

Z(J)

) . (5.70)
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By using the same approach as that for (5.63), (5.68) can be upper-bounded by

ηsw(Jm) <
Re(

1 + Dτ
n+NH

)(
1 +

Jm∑
J=1

J∏
t=1

P
(
ep(t)

)
− (Jm + 1)P

(
ep(Jm + 1)

)) .

(5.71)

The right-hand side of (5.71) can be approximated by using the approximation in (5.54)

for P
(
ep(t)

)
.

5.4.3 Go-back-N based Type-I HARQ scheme

When a NAK is received, the transmitter resends that packet and the N −1 subsequent

packets that were transmitted earlier. Therefore, for a packet to be successfully

accepted by the receiver, the average number of retransmissions (including the original

transmission) required is [10, eq. (22.5)]

T gbn
r =

Jm+1∑
J=1

[
1+(J − 1)

(
1 +

Dτ

n + NH

)](
P
(
er(J − 1)

)
− P

(
er(J)

))

=1 − P
(
er(Jm + 1)

)
+

(
1 +

Dτ

n + NH

)( Jm∑
J=1

P
(
er(J)

)
− JmP

(
er(Jm + 1)

))

=1 +

(
1 +

Dτ

n + NH

) Jm∑
J=1

P
(
er(J)

)
− P

(
er(Jm + 1)

) [
Jm

(
1 +

Dτ

n + NH

)
+ 1

]
.

(5.72)

Since the drop rate P
(
er(Jm + 1)

)
, which is defined to be the probability that a packet

is drop when it is not accepted successfully in Jm + 1 transmissions, must be small

enough to satisfy the quality of service requirement, by ignoring the effect of the term

P
(
er(Jm + 1)

)
, we have

T gbn
r < 1 +

(
1 +

Dτ

n + NH

) Jm∑
J=1

P
(
er(J)

)
. (5.73)
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Using the bounds (5.57) and (5.53), we obtain the lower bound on throughput for

GBN-HARQ scheme to be

ηgbn(Jm) >
m

n + NH + (n + NH + Dτ)
Jm∑
J=1

Z(J)

. (5.74)

By using the same approach as that for (5.63), the upper bound on throughput can be

shown to be

ηgbn(Jm) <
Re

1 +
(
1 + Dτ

n+NH

)[ Jm∑
J=1

J∏
t=1

P
(
ep(t)

)
− JmP

(
ep(Jm + 1)

)]
− P

(
ep(Jm + 1)

) .
(5.75)

The right-hand side of (5.75) can be approximated by using the approximation in (5.54)

for P
(
ep(J)

)
.

5.4.4 Numerical Results for Type-I HARQ

Since the bounds on goodput and APER depend on the values of n and m and they are

not influenced by specific code structures, different values of n and m are chosen to

demonstrate the performances. A (50, 45) linear block code is adopted in the section.

For packet ARQ schemes, the round-trip delay D + (n + NH)/τ is assumed to be

equal to the amount of time for transmitting N packets. Thus, the term Dτ can

be evaluated from the equation: N = 1 + Dτ/(n + NH). The average received

SNR per symbol per diversity channel is γs = 2Esσ
2/N0, while the average received

SNR per data bit is γb where γb = Lγs for BPSK modulation, and γb = Lγs/2 for

QPSK. By taking into account the energy devoted to channel estimation, the effective

received SNR per data bit γeff
b is defined to be 2Eeff

b Lσ2/N0, from (5.9). Regarding

GBN, the energy consumption for retransmission is not taken into consideration in

the effective energy per data bit [10] as it is impossible to obtain the exact number
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Figure 5.5: The APER versus the NMSE for basic ARQ without packet combining (w/o

comb.) and Type-I HARQ with packet combining (w/ comb.)

of retransmissions of each packet for energy consumption calculation. However,

the effect of the retransmission has been taken into consideration in the throughput

performance. The normalized MSE (NMSE) of channel estimation V 2/σ2 depends on

the energy devoted to pilot symbols rather than on the value of NH . The number of

pilot symbols which is limited by the allowable channel bandwidth, is assumed to be

NH = 5. With equal power allocation, it is assumed that the energy per pilot bit equals

the energy per data bit, i.e. Ep = Eb. The optimum power allocation between Ep

and Eb of pure ARQ schemes for achieving a maximum goodput has been presented

in [106].

In Fig. 5.5 and Fig. 5.6, the dependence of the reliability of packet ARQ schemes
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Figure 5.6: The APER versus the effective received SNR per bit for basic ARQ (w/o

comb.) and Type-I HARQ (w/ comb.)

on the accuracy of the channel estimation and the effective received SNR per data bit

is studied. The upper and lower bounds on APER of both basic ARQ schemes and

HARQ schemes with BPSK modulation are illustrated. For basic ARQ schemes, the

transmitter is allowed to request retransmissions till the packet is accepted successfully.

Therefore, the maximum number of transmissions can theoretically be infinite. For

fair comparison between basic ARQ schemes and HARQ schemes, the maximum

transmission limit Jm + 1 of HARQ is assumed to be infinite. The two figures indicate

that the upper and lower bounds are close to one another and follow the similar trend.

Therefore, these bounds enable the behavior of the exact performance parameters to

be investigated. Seen from the two figures, there exists a critical value for both V 2/σ2
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Figure 5.7: The goodput versus the NMSE for SR, GBN, and SW based Type-I HARQ

with N = 10.

and γeff
b that separates two different trends in the APER curves. In particular, as can

be seen from Fig. 5.5, the APER of the basic ARQ scheme deteriorates very fast

at large NMSE, say, larger than around 10−2. For HARQ scheme with first order

spatial diversity L = 1, the APER is less sensitive to the MSE, hence it deteriorates

fast only at higher values of NMSE, say, around 10−1. With second order spatial

diversity L = 2, the APER continues to be less sensitive. A similar change in the

slop of the APER as a function of γeff
b can be observed in Fig. 5.6. Hence, the spatial

diversity achieved by using multiple receive antennas as well as the time diversity

achieved by using packet combining are capable of maintaining a significant, low

APER over a wide range of NMSE of the channel estimation. When the channel gain
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Figure 5.8: The goodput versus the effective received SNR per bit for Type-I HARQ

schemes with N = 10.

is not estimated accurately, with the same order spatial diversity, HARQ achieves a

smaller APER than basic ARQ does because of its inherent capability of achieving time

diversity, whereas, it performs close to the basic ARQ when the channel is estimated

accurately. In other words, with a larger NMSE, the time diversity of the HARQ is

more beneficial in terms of decreasing the APER. With the spatial diversity achievable

by multiple antennas in HARQ schemes, when the CSIR is estimated accurately, the

APER can be decreased more dramatically by using more receive antennas, however,

the improvement is diminished when V 2/σ2 increases. This is because the effect of

diversity combining using multiple antennas cannot be achieved when the CSIR is

poorly estimated.
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Figure 5.9: The number of necessary transmissions for achieving a drop rate less than

10−8 and 10−6 for Type-I HARQ versus the NMSE.

Fig. 5.7 and Fig. 5.8 show how the accuracy of the channel estimation NMSE

V 2/σ2 and the effective SNR γeff
b affect the goodput performance. The closed-form

expressions of the bounds on the goodput are nonlinear functions of the NMSE and

the effective SNR. They enable us to study numerically the dependence of the goodput

on the NMSE and the effective SNR. At the large MSE, the performance deteriorates

very rapidly with increasing values of MSE, while at low values of the MSE, the

performance improves gently with decreasing values of MSE, i.e., decreasing the

NMSE leads to diminishing increments in the goodput. A similar observation with

regard to the effective SNR can be seen from Fig. 5.8. Moreover, to achieve a

specified goodput performance requirement, SR-HARQ requires less energy devoted
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Figure 5.10: The comparison of lower bounds on goodput of Type-I HARQ schemes with

BPSK and QPSK when L = 2.

to channel estimation than GBN-HARQ does, since its goodput is less sensitive to the

accuracy of the channel estimation. However, the implementation of SR-HARQ is

more complicated than that of GBN-HARQ.

In practical packet ARQ systems, the number of necessary transmissions is

usually limited. To achieve a specified requirement on the drop rate, the number

of necessary transmissions is shown in Fig. 5.9 versus the accuracy of the channel

estimation. For example, to achieve a drop rate less than 10−8, with L = 2, the number

of necessary transmissions increases dramatically when the value of NMSE is larger

than around 0.7. Using more receive antennas or alleviating the drop rate requirement

can reduce the number of necessary transmissions.
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Figure 5.11: The comparison of the necessary number of transmissions of Type-I HARQ

with BPSK and QPSK for achieving a drop rate less than 10−6.

For illustrating the performance loss due to imperfect CSIR, the performance

parameters: APER and goodput, with perfect CSIR versus the effective SNR are

plotted in Fig. 5.6 and Fig. 5.8, respectively. We assume that perfect CSIR is provided

by a genie-aided receiver without using any pilot symbols. Thus, the effective received

SNR is obtained from (5.9) by making Ep = 0. The bounds on the APER and the

goodput are computed from the closed-form expressions by setting V 2 = 0. Compared

with the case of perfect CSIR, the packet ARQ schemes with imperfect CSIR have a

performance loss which is due to the greater energy consumed for channel estimation

resulting in a higher γeff
b , as well as the non-zero channel estimation error V 2/σ2.

As the effective SNR γeff
b increases, the performance gap decreases because of the
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decreased value of V 2/σ2. At the high γeff
b region, for the APER, the performance

loss is constant and irreducible, and is due to the higher γeff
b resulting from the energy

devoted to the channel estimation. However, for the goodput, the performance loss can

be reduced to zero at the high γeff
b region. This is because the goodput is approaching

a limiting value with the increasing γeff
b .

In Figs. 5.5–5.9, all the performance curves are for the case of BPSK modulation.

For comparison, the performance curves of HARQ schemes with QPSK modulation

are also shown in Figs. 5.10–5.11. The expressions of the APER for QPSK can be

obtained by substituting α = π/4 and Es = 2EbR into (5.54), (5.65) and (5.66).

One can easily show that the results can be obtained by simply replacing n by n/2 in

(5.61), (5.70), and (5.74), respectively. As expected, at low values of V 2/σ2, packet

ARQ schemes with QPSK modulation provide a higher thoughput than those with

BPSK modulation. However, the imperfect CSIR with a large value of V 2/σ2, say,

larger than around 10−1, leads to a lower goodput for QPSK modulation than for BPSK

modulation. To achieve a specified requirement on the drop rate, a larger number of

necessary transmissions is needed for QPSK modulation than for BPSK modulation.

With imperfect CSIR, we have studied the effect of channel estimation accuracy

on the performance of ARQ and HARQ systems over block Rayleigh fading channels.

Our work provides a systematic approach whereby the link-layer performance

parameters can be evaluated in terms of the parameters at the lowest physical-layer.

While the closed-form expressions of the bounds on the APER, goodput and drop

rate are nonlinear functions of the NMSE, they enable the system designer to study

numerically the dependence of the link-layer performance parameters on the NMSE

and the effective SNR, for any given (n,m) linear block code and any modulation

format for transmitting the code bits. A key physical-layer parameter that plays an

implicit but crucial role in the analysis here is the channel bandwidth. The bandwidth,
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together with the code rate, determines the allowable number of pilot symbols per

packet, which in turn determines the required SNR for achieving the desired channel

estimation NMSE that leads to the target link-layer performance level.

5.5 Basic ARQ with BDPSK in SIMO Systems

Most of the existing ARQ schemes assume that the receiver has perfect CSI, and

utilize the CSI for coherent detection [10, 11, 13, 22–24, 76, 100]. However, it is

rather costly or even infeasible to obtain accurate channel estimates especially in rapid

fading environments. In the differential transmission scheme, the information bits are

differentially encoded and transmitted while at the receiver the signals are differentially

decoded by using the previous received symbol. DPSK is a commonly used alternative

modulation to BPSK, because it does not require additional pilot symbols for channel

estimation for the acquisition of CSI used. But its performance is degraded because

of only one previous received signal is used for the detection of the current signal.

Therefore, it is necessary to study the performance of ARQ schemes with DPSK

modulation. The PEP performance of an ARQ scheme for packet transmission depends

on the modulation format and the channel characteristics, among other factors. For the

case of a static channel, we derive the exact closed-form expressions as well as tight

bounds for the PEP and the goodput. For the case of a slowly time-varying channel,

the performance can only be studied via simulations.

We have considered in [106] the impact of imperfect receiver CSI on the

performance of FEC-ARQ schemes over a static, nonselective, Rayleigh fading

channel with BPSK modulation. There, we have shown a crucial dependence of

the performance on the accuracy of the receiver CSI. DBPSK is a commonly used

alternative modulation to BPSK, because it does not require channel estimation for the
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acquisition of CSI. This section thus extends the work of [106] to the case of DBPSK

modulation. In addition to the case of a static channel, the effects of fading fluctuations

in a time-varying channel on the performance are also examined.

In ARQ schemes, information bits are grouped into packets for transmission.

Therefore, the PEP is an important performance measure of an ARQ scheme. In some

works, the PEP is also known as the frame error probability. We study the PEP of

ARQ schemes here with DBPSK over a nonselective Rayleigh fading channel. For the

case of a static channel, we derive the exact closed-form expressions as well as tight

bounds for the PEP and the goodput. For the case of a slowly time-varying channel,

the performance is studied via simulations.

When information is transmitted using an ARQ scheme, each information stream

with m bits is encoded by a (n, m) CRC code into a packet of n bits for transmission.

Without the use of pilot bits (NH = 0), all the n bits of each packet are transmitted

by DBPSK modulation. At the receiver, the received packet is then demodulated and

the detected bits are checked by the error detection code. When the receiver detects

an error in a received packet, a NAK is sent to the transmitter. The feedback channel

is assumed to be error-free. The round-trip delay is assumed to be larger than the

coherence time of the channel. Hence, the fading gain experienced by the retransmitted

packet is independent of the gains experienced in previous transmission(s), and they

are identically distributed.

We consider a SIMO system with L receive antennas and a single transmit

antenna. The received signal at the lth receive antenna over the kth symbol interval, is

given by

rl(k) =
√

Esm(k)hl(k) + nl(k), k = 1, · · · , n, (5.76)

where, Es is the energy per symbol and the term m(k) is the transmitted data

symbol. The channel gain for the lth antenna {hl(k)}k is a sequence of complex
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Gaussian random variables (CGRVs) with E[hl(k)] = 0 and autocorrelation function

E[hl(k)h∗
l (k + t)] = 2R(t). The channel gains {hl(k)} and {hj(k)} are independent

of each other for l ̸= j, and are identically distributed. The AWGN for the lth receive

antenna {nl(k)}k is a sequence of CGRVs with E[nl(k)] = 0 and E[|nl(k)|2] = N0.

Terms {nl(k)} and {nj(k)} are independent of each other for l ̸= j, and are identically

distributed.

5.5.1 Packet Error Probability

The normalized fading correlation coefficient between two adjacent symbols is denoted

by ρ = R(1)/R(0). It is a measure of the fluctuation rate of the channel fading process.

For the case of a static channel (ρ = 1), the exact closed-form expression and a tight

upper bound for the PEP P (ep) will be derived in this section. However, for the case

of a slowly time-varying channel (ρ < 1), the PEP can only be studied via simulation

in Section 5.5.3.

For the case of a static channel (ρ = 1), channel gain hl(k) remains constant over

the duration of a packet for each receive antenna. For the sake of brevity, in the rest of

this section, we omit the symbol index k in hl(k) as the static channel is considered.

Conditioned on fixed values of the gains {hl}L
l=1, the conditional BEP of DBPSK is

given by [109, eq.(9A.15)]

P (eb|{hl}) =
1

2
+

1

22L−1

L∑
l=1

2L − 1

L − l

 (Ql(α, β) − Ql(β, α)) , (5.77)

where, Qm(α, β) is mth order Marcum Q-function with

α = 0, and β =

(
2

L∑
l=1

Es|hl|2

N0

)1/2

.
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The instantaneous, received, effective SNR is defined to be

γs =
L∑

l=1

Es|hl|2

N0

, (5.78)

which can be derived from (5.9) by letting NH = 0 because there are no pilot symbols

for channel estimation. Furthermore, it can be easily shown that

1

22L−1

L∑
l=1

 2L − 1

L − l

 =
1

2
. (5.79)

Using the identity Qm(β, 0) = 1 [109, eq.(4.75)] as well as the identity [109, eq.(4.73)]

Qm(0, β) =
m−1∑
n=0

exp

(
−β2

2

)
(β2/2)n

n!
,

after simple manipulation, we can simplify the conditional BEP of DBPSK in (5.77)

into

P (eb|{hl}) =
1

22L−1

L∑
l=1

 2L − 1

L − l

 l−1∑
n=0

e−γs
γn

s

n!
. (5.80)

Conditioned on knowing the channel gain hl, the channel is memoryless since the

AWGN is independent from symbol to symbol. The occurrences of bit errors are

independent of one another. Therefore, the conditional packet error probability

P (ep|{hl}) that a received packet contains at least one error bit, can be written as

P (ep|{hl}) = 1 − (1 − P (eb|{hl}))n. (5.81)

Because of the dependence of the conditional BEP in (5.80) on the instantaneous

received effective SNR γs, the conditional PEP also depends on the

chi-square-distributed random variable γs, which has a PDF [6, eq.(2-1-110)]

p(γs) =
1

γ̄L
s Γ(L)

γL−1
s e−γs/γ̄s , (5.82)
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where, the term γ̄s = 2EsR(0)/N0 is defined to be the mean received SNR per symbol

per channel. By averaging (5.81) over the PDF of γs, the average PEP is given by

P (ep) =

∫ ∞

0

P (ep|{hl})p(γs)dγs. (5.83)

We consider the following two special cases to get a closed form for the integral in

(5.83) to evaluate the PEP .

PEP for Single Receive Antenna: Case (a)

Considering the single-input-single-output (SISO) system of L = 1, the conditional

BEP in (5.80) is reduced to

P (eb|h1) =
1

2
e−γs , (5.84)

which agrees with [6, eq.(12.1-15)], and γs = Es|h1|2/N0. The PDF of γs is obtained

by substituting L = 1 in (5.82) as

p(γs) =
1

γ̄s

e−γs/γ̄s . (5.85)

Thus, the PEP for a SISO system is given by

P (1)(ep) = 1 −
∫ ∞

0

(
1 − 1

2
e−γs

)n

p(γs)dγs (5.86)

By using integration by parts with u = (1− 1
2
e−γs)n and dv = de−γs/γ̄s , (5.86) becomes

P (1)(ep) = 1 − 2−n − n

2

∫ ∞

0

(
1 − 1

2
e−γs

)n−1

e−γs(1+γ̄−1
s )dγs.

By continuing the integration by parts till the last integral, P (1)(ep) further comes to

P (1)(ep) = 1 − 2−n − n21−n

2(1 + γ̄−1
s )

− n(n − 1)22−n

2(1 + γ̄−1
s )2(2 + γ̄−1

s )

− · · · − n(n − 1) · · · 1
2(1 + γ̄−1

s )2(2 + γ̄−1
s ) · · · 2(n + γ̄−1

s )
. (5.87)

After some manipulation, we obtain the PEP in closed form as

P (1)(ep) = 1 − 2−n

(
1 +

n∑
k=1

k∏
j=1

n − j + 1

j + 1/γ̄s

)
. (5.88)
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PEP for Multiple Receive Antennas: Case (b)

For the SIMO system with L > 1, we can only derive an upper bound in closed

form for the PEP. The conditional BEP P (eb|{hl}) in (5.80) is smaller than 1, i.e.,

P (eb|{hl}) < 1. When x is much smaller than 1, we have the approximation [97,

eq.(1.511)]:

ln(1 − x) ≈ −x. (5.89)

Multiplying both sides of (5.89) by a factor n, we have

ln(1 − x)n = n ln(1 − x) ≈ −nx, (5.90)

which gives the approximation that

(1 − x)n ≈ e−nx. (5.91)

Using the result: (1 − x)n ≈ e−nx, for 0 < x << 1, we can approximate the average

PEP in (5.83) as

P (ep) ≈ 1 −
∫ ∞

0

e−nP (eb|{hl})p(γs)dγs. (5.92)

Since ex is a convex function in x, applying the Jensen’s inequality, we have∫ ∞

0

e−nP (eb|{hl})p(γs)dγs ≥ e−n
∫∞
0 P (eb|{hl})p(γs)dγs . (5.93)

The term
∫∞

0
P (eb|{hl})p(γs)dγs in (5.93) is the average BEP P (eb). By substituting

(5.80) and making use of the result [97, eq.(3.351-3)]∫ ∞

0

xne−µxdx = n!µ−n−1,

the average BEP can be obtained as

P (eb) =
(1 + γ̄s)

−L

22L−1Γ(L)

L∑
l=1

2L − 1

L − l

 l−1∑
n=0

1

n!

(n + L − 1)!γ̄n
s

(1 + γ̄n
s

(5.94)
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which agrees with [6, eq.(14.4-26)]. Substituting (5.94) and (5.93) in (5.92), we obtain

an approximate upper bound on the average PEP in closed form as

P (ep) ≤ P (L)(ep) = 1 − e−nP (eb). (5.95)

5.5.2 Goodput Analysis of ARQ Schemes

In this section, the performance of three basic ARQ schemes are analyzed in a SIMO

system. Whenever a received packet is detected in error, that packet is discarded and

replaced by a retransmitted copy. The APER showing the reliability of the ARQ

system is given by (5.28). The probability of detectable error or the probability of

retransmission P (ed) can be obtained by omitting the index J in (5.4), since the

received J th erroneous packet is discarded without packet combining. In Section

5.5.1, the PEP P (ep) has been evaluated for different cases. Next, we evaluate the

probability of undetectable error P (eu). An exact determination of the P (eu) of a

CRC code requires knowledge of the weight distribution of the code. As this is

usually unavailable, the probability of undetectable error can be upper bounded by [10,

Theorem 4.11]

P (eu) ≤ 2−n(1−R). (5.96)

When the number of parity-check bits n−m is large enough so that we have P (eu) ≈ 0.

Therefore P (ed) ≈ P (ep). By substituting (5.96) and P (ed) ≈ P (ep) into (5.28), the

PAE is then upper bounded by

PAE ≤ 2−n(1−R)

1 − P (ep)
. (5.97)

By substituting (5.88) and (5.95) for P (ep) in (5.97), we have

PAE ≤

 2−n(1−R)/(1 − P (1)(ep)), L = 1, (a)

2−n(1−R)/(1 − P (L)(ep)), L > 1, (b)
(5.98)
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As another useful system parameter, the throughput, is investigated for the three basic

ARQ schemes in the following.

SR-ARQ Schemes

An infinite receiver buffer is assumed to be available to store successful packets

following a packet which is detected in error. The throughput of an SR-ARQ scheme is

given by replacing Re by R in (5.26). The rate of the error detecting code is R = m/n.

The goodput defined in (5.31) shows the proportion of the throughput consisting of

correct packets and can be obtained by setting NH = 0 in (5.32). By substituting

(5.88) and (5.95) for P (ep) in (5.32) with NH = 0, the goodput can be lower bounded

in closed form as

ηsr
g ≥

 R(1 − P (1)(ep)), L = 1, (a)

R(1 − P (L)(ep)), L > 1, (b)
(5.99)

SW-ARQ Schemes

Let D be the idle time from the end of transmission of one packet to the beginning

of transmission of the next. Let τ be the bit transmission rate which is defined as

the number of bits transmitted per unit of time. In one round-trip delay time, which

is defined as the time interval between the transmission of a packet and the receipt

of an acknowledgment for that packet, the transmitter can transmit a total of N =

1+Dτ/n packets if it does not stay idle. By evaluating the average number of packets

that the transmitter could have transmitted during the interval from the beginning of

transmission of one packet to the receipt of a positive acknowledgment for that packet,

the throughput of an SW-ARQ system can be given by setting NH = 0 in (5.36). Since

the APER merely depends on the channel error statistics and the choice of the error

detecting code, the SW-ARQ scheme has the same reliability as the SR-ARQ scheme.
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Figure 5.12: The PEP versus the average SNR γ̄s with a single receive antenna.

Therefore, the goodput of a SW-ARQ scheme can be given by setting NH = 0 in

(5.38). By substituting (5.88) and (5.95) for P (ep) in (5.38) with NH = 0 and replacing

Dτ by (N − 1)n, the goodput of SW-ARQ schemes can be lower bounded by

ηsw
g ≥

 R(1 − P (1)(ep))/N, L = 1, (a)

R(1 − P (L)(ep))/N, L > 1, (b)
(5.100)

GBN-ARQ Schemes

The term‘go-back-N ’ derives from the fact that when a transmitter receives a NACK,

it must go back into its buffer some N packets and restart transmission from there.

In other words, the transmitter resends that packet and the N − 1 subsequent packets
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Figure 5.13: The goodput versus the average SNR γ̄s with a single receive antenna.

that were transmitted earlier before the NACK is received. The parameter N depends

on transmission rate τ and the round-trip delay D + n/τ , which is evaluated by N =

1 + Dτ/n. Therefore, the throughput of a GBN-ARQ scheme is given by setting

NH = 0 in (5.39). Making use of the APER of GBN-ARQ which is the same as that of

the SR-ARQ shown in (5.97), the goodput can be obtained to be (5.41) with NH = 0.

Since P (ed) ≤ P (ep) according to (5.4), substituting P (ep) for P (ed) in (5.41) with

NH = 0 gives an upper bound on the goodput:

ηgbn
g ≤ (1 − P (ep))m

n + P (ep)Dτ
. (5.101)
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Figure 5.14: The PEP versus the average SNR γ̄s when ρ = 1.

By substituting (5.88) and (5.95) for P (ep) in (5.101) and replacing Dτ by (N − 1)n,

the goodput of SW-ARQ schemes can be lower bounded by

ηgbn
g ≥

 R 1−P (1)(ep)

1+(N−1)P (1)(ep)
, L = 1, (a)

R 1−P (L)(ep)

1+(N−1)P (L)(ep)
, L > 1, (b)

(5.102)

5.5.3 Simulation and Numerical Results

In this section, we present simulation and numerical results for the performance

of different ARQ schemes over Rayleigh fading channels. The autocorrelation

coefficient of the fading process is given according to Jake’s model by 2R(t) =

2R(0)J0(2πfdtTs), where fd is the maximum Doppler frequency and Ts is the symbol

period. Therefore, we have the parameter ρ = R(1)/R(0) = J0(2πfdTs). We consider
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Figure 5.15: The goodput of GBN-ARQ versus the average SNR γ̄s when ρ = 1.

three cases of the fading channels with different values of fd. For static fading, we set

fd = 0 which gives ρ = 1. For time-varying channels, we use two values of fd for fdTs.

Hence, the term fdTs is set to be 2 × 10−2 and 0.8 × 10−2 which gives ρ = 0.9961

and ρ = 0.9994, respectively. A (28, 23) CRC code with the generator polynomial

g(x) = 1 + x2 + x5 is used for error detection. It is assumed that the round-trip delay

is the time during which N = 5 packets can be transmitted.

In Figs. 5.12 and 5.13, the PEP and goodput are shown for both static channels

and time varying channels. For static channels, the PEP is computed based on

(5.88) while the goodput is computed by (5.99.(a)), (5.100.(a)) and (5.102.(a)). The

correctness of these numerical results is verified by the simulation results. For the
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performance comparison with the results of DBPSK, the case of BPSK considered in

[106] are also included in Figs. 5.12 and 5.13. For fair comparison, the performance of

the basic ARQ scheme with BPSK is considered by assuming the perfect CSI provided

by a genie without using any pilot symbols. It can be observed that SR-ARQ with

DBPSK has a performance loss of around 2 dB in both PEP and goodput compared

with that of ideal coherent BPSK. The reason is that, for time-varying channels, it is

expected that an error-rate floor for PEP exists for ρ < 1, since it is well known that

an inherent irreducible BEP floor exists for time-varying channels [110]. Furthermore,

the irreducible error-rate floor of PEP results in a significantly reduced goodput due to

the dependence of goodput on the PEP.

In Figs. 5.14 and 5.15, the exact results are plotted according to (5.88)

and (5.100.(a)) while the performance bounds are computed based on (5.95) and

(5.100.(b)), respectively. The tightness of the bounds and the correctness of the exact

results are verified by simulation results. The two figures show that the spatial diversity

achieved by multiple receive antennas is capable of achieving a significantly lower PEP

and higher goodput over a wide range of SNR. In this section, we study the PEP of

ARQ schemes with DBPSK over a nonselective Rayleigh fading channel. For the case

of a static channel, we derive the exact closed-form expressions as well as tight bounds

for the PEP and the goodput. The correctness and tightness of these closed-form

expressions are verified by the simulation results. Furthermore, we observe that

SR-ARQ with DBPSK has a performance loss of around 2 dB in both PEP and goodput

performance, compared with that of ideal coherent BPSK. For the case of a slowly

time-varying channel, the performance is studied via simulations. It is observed that

there is an inherent irreducible error-rate floor for PEP which significantly reduces the

goodput.
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5.6 Conclusions

In this chapter, with imperfect CSIR, we have studied the effect of channel

estimation accuracy on the performance of ARQ and HARQ systems over Rayleigh

fading channels. Our work provides a systematic approach whereby the link-layer

performance parameters can be evaluated in terms of the parameters at the lowest

physical-layer. The results enable the system designer to study numerically the

dependence of the link-layer performance parameters on the NMSE and the effective

SNR, for any given (n,m) linear block code and any modulation format for

transmitting the code bits.
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Chapter 6

Goodput-Optimal Rate Adaptation

with Imperfect CSIT and CSIR

Channel-adaptive rate allocation is a promising technique which makes use of the

wireless fading channel in a more efficient manner. The transmission rates are adapted

with respect to the channel conditions. Therefore, the CSI plays a crucial role in

determining the performance of the systems. Rate adaptation schemes require channel

state information CSI, which can be acquired at the receiver by inserting pilot symbols

in the transmit signals. We develop here a rate adaptation scheme that takes account of

both channel estimation and prediction errors. The transmitter adapts the transmission

rate relative to the predicted channel state and a utilization factor. In turn, this

utilization factor is optimized so as to achieve a maximum goodput.

6.1 Introduction

Channel-adaptive rate allocation is a promising technique which makes use of the

wireless fading channel in a more efficient manner. The transmission rates are adapted

with respect to the channel conditions. Compared with fixed rate transmission which
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results in insufficient utilization of the full channel capacity, adaptive rate allocation

can improve the system throughput significantly. When perfect CSIT is available, the

transmission rate can be adapted relative to the channel state to maximize spectral

efficiency [19, 111]. However, it is too optimistic in practice to assume the availability

of perfect CSIT, since CSIT may be outdated or imperfect due to the feedback delays

or the imperfect CSIR. The effect of the imperfect CSIT has attracted much attention

since the CSIT plays a crucial role in determining the rates to adapt. By assuming

perfect CSIR, the effect of imperfect CSIT due to the feedback delay has been

investigated for adaptive transmitter designs in [32, 35, 112, 113] and the references

therein. Considering a more practical case with imperfect CSIT and imperfect CSIR,

the authors in [114] design an adaptive M -QAM pilot symbol assisted modulation

(PSAM) to meet target performance and maximize spectral efficiency.

In contrast to the work in [114], in which the modulation is restricted to M -QAM,

a continuous rate adaptation scheme following the approach proposed in [35] will be

considered in this Chapter. Instead of assuming perfect CSIR [35], we consider the

imperfect CSIT due to the channel prediction errors and the imperfect CSIR due to

the channel estimation errors. While a strictly causal channel predictor is employed

to predict the CSIT for adapting transmission rates, a noncausal channel estimator

estimates the CSIR for coherent demodulation. The PSAM scheme is applied at the

transmitter to facilitate the channel prediction and estimation at the receiver. Based on

the predicted channel state and a utilization factor, the transmitter allocates the optimal

rates. In turn, the utilization factor, which takes into account both channel estimation

and prediction errors, is to be optimized in order to achieve maximum goodput. As a

performance measure, goodput is the amount of data delivered to the receiver correctly

per unit time, considering both the throughput and the reliability [26].
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6.2 System Model

The adaptive system under consideration is described as follows. At the receiver, based

on known pilot symbols, the channel estimator and channel predictor extract the pilot

signal to estimate and predict the channel periodically. According to the predicted

channel, the transmitter selects a transmission rate with constant transmission power

Es and fixed symbol rate T .

For signal transmission over a frequency nonselective Rayleigh fading channel

with AWGN, the received signal in the kth symbol interval kT ≤ t < (k + 1)T is

given by

r[k] = s[k]h[k] + n[k], (6.1)

where s[k] is a signal symbol with constant energy |s[k]|2 = Es. The channel {h[k]}k

is a sequence of zero-mean, circularly symmetric, complex, Gaussian random variables

with covariance function

E [h[k]h∗[k − j]] = 2R[j] = 2R[0]J0(2πjfdT ), (6.2)

where Jakes’ model is used and J0(·) represents the zero-order Bessel function of

the first kind and fd is the Doppler frequency. The noise {n[k]}k is a sequence of

independent, identically distributed, zero-mean, complex Gaussian random variables

with double sided power spectral density N0.

6.3 PSAM Scheme with Channel Prediction and

Channel Estimation

In a PSAM system, known pilot symbols are inserted periodically into the data

sequence. It is assumed that each frame contains N symbols, with the first symbol
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being the pilot. The parameters i and j represent the frame index and symbol index in

each frame, respectively. The time index k can therefore be expressed as k = iN + j,

where j = 0 represents the pilot symbol in each frame. The channel estimator

and channel predictor extract the pilot signal to estimate and predict the channel

periodically.

6.3.1 Channel Estimation

Without loss of generality, it is assumed that the estimated channel state of the current

frame is obtained from the nearest Lp + Le + 1 modulation-free pilot symbols. The Lp

pilot symbols are transmitted in frames prior the current frame while the Le symbols

are transmitted after the current frame. After dividing the received signal by the known

pilot symbols, the channel fading at the pilot symbol times can be expressed as

z=

[
r[(i − Lp)N ]

s[(i − Lp)N ]
· · · r[iN ]

s[iN ]

r[(i + 1)N ]

s[(i + 1)N ]
· · · r[(i + Le)N ]

s[(i + Le)N ]

]T

.

The function of channel estimation is to accurately recover the true fading gain

h[iN + j] of the jth data symbol in the ith frame from the pilot channel observation z.

Therefore the maximum a posteriori (MAP) estimation of the true fading gain denoted

by ĥ[iN + j] is given by [104, (2.1)]

ĥ[iN + j] = wT
o z. (6.3)

The corresponding optimum interpolation coefficient wo can be obtained by using

[115, (19)],

wo = [wo [(i − Lp)N ] · · ·wo [iN ] · · ·wo [(i + Le)N ]]T

=
(
E
[
zzH

])−1
E [h∗[iN + j]z]

=

[
R +

N0

Es

I

]−1

v, (6.4)
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where, R is given by

R=



R [0] R [N ] · · · R [(Lp + Le)N ]

R [N ] R [0] · · · R [(Lp + Le − 1)N ]

...
...

...
...

R [(Lp + Le)N ] · · · · · · R [0]


and v can be written as

v = [R [LpN + j] · · ·R [j] · · ·R [LeN − j]]T .

The MMSE of estimated channel can be expressed as [115, (20)]

2σ2
ĥ

= E
[
|h[iN + j] − ĥ[iN + j]|2

]
= E

[
|e[iN + j]|2

]
= 2R[0] − vT

[
R +

N0

Es

I

]−1

v. (6.5)

Since the channel of interest is a Gaussian random process, ĥ[iN + j] is Gaussian

random variable with mean zero and variance 2(R[0]−σ2
ĥ
) [104, (2.18)]. Given ĥ[iN+

j], the gain h[iN + j] is a conditional Gaussian random variable with mean ĥ[iN + j]

and variance 2σ2
ĥ
. The channel estimation error e[iN + j] is a zero-mean Gaussian

random variable with variance 2σ2
ĥ

and is uncorrelated with ĥ[iN + j].

6.3.2 Channel Prediction

Due to the feedback delay which takes account of both actually transmission delay and

the processing time, channel prediction is needed so that the transmission rates can

be adjusted properly. If the length of the linear MMSE channel predictor is L′
p and

the feedback delay is a integer of NT (i.e. DNT ), the predicted channel h̃[iN + j]

can then be obtained from a number (L′
p) of observations of channel fading before the

current transmission

z′ =

[
r[(i − D − L′

p + 1)N ]

s[(i − D − L′
p + 1)N ]

· · · r[(i − D)N ]

s[(i − D)N ]

]T

.
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Let h̃[iN + j] be the predicted channel, the MMSE of h̃[iN + j] is

2σ2
h̃

= E
[
|h[iN + j] − h̃[iN + j]|2

]
= E

[
|ε[iN + j]|2

]
= 2R[0] − v′T

[
R′ +

N0

Es

I′
]−1

v′, (6.6)

where

v′ = E [h∗[iN + j]z′]

= 2
[
R[(D + L′

p − 1)N + j] · · ·R[DN + j]
]T

,

and R′ can be evaluated from

R′ = E
[
z′z′H

]
− N0

Es

I′

=



R [0] R [N ] · · · R
[
(L′

p − 1)N
]

R [N ] R [0] · · · R
[
(L′

p − 2)N
]

...
...

...
...

R
[
(L′

p − 1)N
]

· · · · · · R [0]


.

Similar to the estimated channel ĥ[iN+j], the predicted channel h̃[iN+j] is a Gaussian

random variable with mean zero and variance 2(R[0] − σ2
h̃
). With a given h̃[iN + j],

the channel h[iN + j] is Gaussian distributed with mean h̃[iN + j] and variance 2σ2
h̃
.

The channel prediction error ε[iN + j] is a zero mean Gaussian random variable with

variance 2σ2
h̃

and is uncorrelated with h̃[iN + j].

6.3.3 The Relationship Between Channel Estimation and

Prediction

The following equations between the true channel and the estimation/prediction error

h[iN + j] = ĥ[iN + j] + e[iN + j]

h[iN + j] = h̃[iN + j] + ε[iN + j]
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can be used to express the relationship between the estimated and predicted channels

shown below

ĥ[iN + j] = h̃[iN + j] + ε[iN + j] − e[iN + j]. (6.7)

The term h̃[iN + j] and ε[iN + j] are uncorrelated because of the orthogonality

principle, however, h̃[iN + j] is correlated with e[iN + j]. Before deriving the

conditional statistical distribution of ĥ[iN + j] conditioned on h̃[iN + j], we give

Lemma 6.1 first [116], which will be used to derive the conditional distribution of

ĥ[iN + j] later.

Lemma 6.1. If X and Y are jointly Gaussian circularly symmetric complex random

variables with means E[X] = 0 and E[Y ] = 0 and variances σ2
X and σ2

Y , the covariance

µXY = E[XY ∗] is shown to be a real number. Conditioned on X , Y is a conditional

Gaussian random variable with conditional mean

E[X|Y ] = ρXY
σX

σY

Y,

and conditional variance Var[X|Y ] = σ2
X(1 − ρ2

XY ). The normalized covariance ρXY

is defined to be

ρXY =
µXY

σXσY

.

Now we are ready to derive the conditional statistical distribution of ĥ[iN + j]

conditioned on h̃[iN + j]. Since h̃[iN + j] and ε[iN + j] are uncorrelated, in addition

h̃[iN + j] and ĥ[iN + j] are jointly Gaussian random variables, according to Lemma

6.1, the conditional mean can be expressed as

mĥ|h̃ = E[ĥ[iN + j]|h̃[iN + j]]

= h̃[iN + j] + 0 − E[e[iN + j]|h̃[iN + j]]

=

(
1 − E[e[iN + j]h̃∗[iN + j]]

2(R[0] − σ2
h̃
)

)
h̃[iN + j], (6.8)
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and the conditional variance can be written as

2σ2
ĥ|h̃ = E[|ĥ[iN + j] − mĥ|h̃|

2|h̃[iN + j]]

= 0 + E[|ε[iN + j]|2] + Var[e[iN + j]|h̃[iN + j]]

= 2σ2
h̃

+ 2σ2
ĥ

(
1 − (E[e[iN + j]h̃∗[iN + j]])2

4(R[0] − σ2
h̃
)σ2

ĥ

)
. (6.9)

Therefore, with a given h̃[iN + j], the amplitude of ĥ[iN + j] has a Rician distribution

with PDF in the form of [6]

p
(
|ĥ||h̃

)
=

2|ĥ|
σ2

ĥ|h̃

e
−(|ĥ|2+|mĥ|h̃|

2)/(2σ2
ĥ|h̃

)
I0

(
2|ĥ||mĥ|h̃|

σ2
ĥ|h̃

)
. (6.10)

6.4 Goodput-Optimal Rate Allocation

With a given estimated channel ĥ[iN + j], the decision variable for s[iN + j] is

d[iN + j] =
s[iN + j](ĥ[iN + j] + e[iN + j]) + n[iN + j]

ĥ[iN + j]
. (6.11)

The post-detection SNR can then be expressed as the ratio of energy between signal

and noise component shown below

γd[iN + j] =
Es|ĥ|2

2Esσ2
ĥ

+ N0

, (6.12)

Given the transmitted signal s[iN + j], (6.11) is effectively an AWGN channel with

SNR γd[iN + j]. In the rest of this section, the time indexes of s[iN + j], ĥ[iN + j]

and h̃[iN + j] are omitted for notational brevity. Hence, given an estimated channel

knowledge ĥ, a lower bound on the mutual information is given by [117, eq.(2)]

Clow = log

(
1 +

Es|ĥ|2

2Esσ2
ĥ

+ N0

)
. (6.13)

In the rate allocation scheme, the transmitter makes use of the predicted channel and

allocates a rate R as

R = log

(
1 +

Es|h̃|2λ
N0

)
(6.14)
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where λ is defined to be a utilization factor of the predicted channel h̃. When λ = 1,

the predicted channel is used as if it was the true channel and the transmitter does not

take advantage of the utilization factor of predicted channel at all. The goodput metric

can be defined as [35]

η = RP (Clow > R) (6.15)

and can be used as a cost function to optimize the rate adaptation scheme. The

probability P (Clow > R) represents the probability that the rate R can be successfully

delivered and is expressed by

P (Clow > R) = P

|ĥ| >

√
(2Esσ2

ĥ
+ N0)λ

N0

|h̃|

 . (6.16)

The goodput in (6.15) can be expressed as

η = RP

|ĥ| >

√
(2Esσ2

ĥ
+ N0)λ

N0

|h̃|


= log

(
1 +

Es|h̃|2λ
N0

)
Q1

√
2|mĥ|h̃|
2σĥ|h̃

,

√
2Aλ|h̃|2

2σĥ|h̃

 (6.17)

where A = (2Esσ
2
ĥ

+ N0)/N0 and Q1(a, b) is the first-order Marcum Q function. The

goodput optimization problem is to maximize the product of the transmission rate and

the outage probability, which can be formulated as

max
λ

RP (Clow > R) . (6.18)

6.4.1 Optimal Solution λ∗
o

By taking the first derivative of (6.17) and making use of the integral expression for

the Marcum Q function [6, (2.1-121)], the optimal utilization factor λ∗
o can be obtained
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from the following equation

Es|h̃|2

N0 + Es|h̃|2λ
Q1

(√
2K11,

√
2AλK12

)
− log

(
1 +

Es|h̃|2λ
N0

)

× AK2
12e

−(K2
11+AλK2

12)I0

(
2
√

AλK13

)
= 0, (6.19)

where

K11 =
|mĥ|h̃|
2σĥ|h̃

; K12 =
|h̃|

2σĥ|h̃
; K13 =

|h̃||mĥ|h̃|
2σ2

ĥ|h̃

,

and I0(·) is the zeroth order modified Bessel function of the first kind.

6.4.2 Approximation of λ∗
o

The optimum λo calculated from (6.19) depends on many parameters and is

complicated to obtain. In this subsection, an approximation of λ∗
o will be derived.

The following expression appearing in (6.8) can be written as

E[e[iN + j]h̃∗[iN + j]]

2(R[0] − σ2
h̃
)

=
2σ2

ĥ
− E[eε∗]

2(R[0] − σ2
h̃
)
, (6.20)

which can be upper and lower bounded by [114, (14)]

σ2
ĥ
− σĥσh̃

R[0] − σ2
h̃

≤
2σ2

ĥ
− E[eε∗]

2(R[0] − σ2
h̃
)
≤

σ2
ĥ

+ σĥσh̃

R[0] − σ2
h̃

. (6.21)

Since 2σ2
ĥ

and 2σ2
h̃

are very small and much smaller than 2R[0] in practical systems,

the right-hand side of (6.20) is upper and lower bounded by a small value, which can

be inferred from (6.21). Hence the value of (6.20) can be assumed to be zero. The

conditional mean in (6.8) is therefore mĥ|h̃ ≈ h̃. Similarly, one of the terms in (6.9)

which is bounded by

(σĥ − σh̃)
2

R[0] − σ2
h̃

≤ (E[e[iN + j]h̃∗[iN + j]])2

4(R[0] − σ2
h̃
)σ2

ĥ

≤
(σĥ + σh̃)

2

R[0] − σ2
h̃

can also be assumed to be zero. Hence, the conditional variance in (6.9) is 2σ2
ĥ|h̃ ≈

2(σ2
h̃
+σ2

ĥ
). By applying mĥ|h̃ ≈ h̃ and 2σ2

ĥ|h̃ ≈ 2(σ2
h̃
+σ2

ĥ
) on (6.19), it can be observed
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that K2
11 = K2

12 = K13 = K. Term K = |h̃|2/(2σ2
h̃

+ 2σ2
ĥ
) is the Rician factor of the

Rician distribution shown in (6.10). The K actually represents the ratio of the energy

of predicted channel to the energy of prediction and estimation error. Hence, K can

be used as a quality indicator of the feedback channel. An approximation of λ∗
o can be

obtained by numerically solving (6.19) with K11, K12, K13 replaced by
√

K, i.e.,

Es|h̃|2

N0 + Es|h̃|2λ
Q1

(√
2K,

√
2AλK

)
− log

(
1 +

Es|h̃|2λ
N0

)

× AKe−(K+AλK)I0

(
2
√

AλK
)

= 0 (6.22)

Therefore, the goodput-optimal rate allocation can be described by

R = log

(
1 +

Es|h̃|2λ∗
o

N0

)
.

Remark: The MMSEs of the channel prediction and estimation 2σ2
h̃

and 2σ2
ĥ

do not

depend on frame index i. It is shown in [114] that the MMSE depends only on Es/N0,

fdT and N when the number of filter coefficients approaches infinity.

6.5 Numerical Results

We consider a rate adaptive system which employs the predicted channel h̃ and the

utilization factor λ∗
o. The channel is assumed to have a Jakes’ Doppler spectrum.

For a given estimator or a predictor, the MMSEs of estimation and prediction can be

evaluated by (6.5) and (6.6), respectively. The values of 2σ2
h̃

and 2σ2
ĥ

have incorporated

the effects of Doppler frequency fd and pilot spacing N . For the sake of simplicity,

2R[0] is assumed to be 1 in this section so that 2σ2
h̃

and 2σ2
ĥ

become the normalized

MMSEs which will be denoted as 2σ2
ε and 2σ2

e in the following figures, respectively.

In Fig. 6.1, the optimal utilization factor approximated by (6.22) is plotted versus

Rician factor K for different transmit SNR Es/N0. The sum of 2σ2
e and 2σ2

ε is assumed
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Figure 6.1: The optimal utilization factor versus Rician factor K for different transmit

SNR with different accuracy of channel estimation and prediction.

to be constant. Two cases with different values of 2σ2
e and 2σ2

ε are considered in Fig.

6.1. For the same Es/N0 and at a fixed K value, a larger 2σ2
ε results in a larger λ∗

o. This

suggests that a worse channel prediction enables a larger λ∗
o providing a larger error

margin to attain the maximum goodput. Utilization factor λ∗
o is a decreasing function of

K. This is because a high K, (i.e., a high |h̃|2) increases the outage probability, which

can be inferred from (6.16). The significantly increased outage probability causes the

maximum goodput to be achieved at a rate allocation with λ∗
o < 1 having a smaller

error margin. For the same reason, a higher transmit SNR Es/N0 gives a smaller value

of λ∗
o. As K continues to grow, the optimum utilization factor converges to 1. This

is consistent with the intuition that the CSIT feedback of high quality can be regarded
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Figure 6.2: The goodput achieved by different utilization factors versus Rician factor K

with 2σ2
ε = 10−2, 2σ2

e = 10−1 and Es/N0 = 5 dB.

as perfect CSIT and the transmission rate can be allocated accordingly. However, the

convergence of the utilization factor is so slow that the transmission rate is reduced

with a utilization factor of less than 1.

The goodput for different utilization factors as a function of Rician factor K is

plotted in Fig. 6.2. The transmit SNR is assumed to be 5 dB with 2σ2
ε = 10−2 and

2σ2
e = 10−1. The λ∗

o obtained from (6.22) gives a maximum goodput while other fixed

utilization factors provide the lower goodput. A fixed utilization factor larger than

1 makes the goodput diverge from the maximum value with the increasing K. This

indicates that excessive rate allocation when K is large leads to a reduced goodput.

Fig. 6.3 depicts the goodput achieved by optimal rate allocation as a function of
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Figure 6.3: The goodput achieved by λ∗
o versus K for different transmit SNR and different

accuracy of channel estimation and prediction.

K for different transmit SNR. For the same Es/N0 and at a fixed K value, a more

accurate channel estimation (i.e a smaller 2σ2
e ) can increase the goodput despite the

fact that a poor prediction is made. The impact of prediction error 2σ2
ε on the goodput

is not so significant as the estimation error 2σ2
e .

6.6 Conclusions

In this Chapter, a rate adaptive transmission scheme with pilot-symbol-assisted

estimation and prediction of fading channels is studied. The effect of channel

estimation and prediction errors on rate allocation which helps achieve maximum
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goodput is investigated. It is shown that with a high quality indicator K of feedback

channel, the margin for the error of rate allocation needs to be reduced in order that

the goodput is maximized. With a constant value of the quality indicator, a smaller

estimation error (i.e. a better channel estimation) enables a higher rate allocation to

reach the maximum goodput. Furthermore, a more accurate channel estimation can

increase the goodput in spite of a poor channel prediction. The simple bounds on the

first-order Marcum Q function obtained in [118] provide a great potential to further

simplify the solution given by (6.19).
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Many of the current and emerging wireless communication systems make use of

diversity in one form or another to combat the effects of multipath fading. Diversity

combining consists of receiving redundantly the same information-bearing signal over

two or more fading channels, then combining these multiple replicas at the receiver

in order to increase the overall received SNR. Depending on the domain where

replicas of the same information-bearing signal are obtained, diversity techniques

can be categorized into space diversity and time diversity. A conventional approach

to achieving space diversity is to employ a MIMO communication system with

multiple transmit and receive antennas. For achieving time diversity by combining

packets transmitted in different time slots, ARQ/HARQ provide a great opportunity

for obtaining additional copies of the packets by requesting a retransmission. In this

dissertation, we studied the performance and transmission strategies of MIMO systems

and ARQ/HARQ systems.

The ergodic capacity of a MIMO system in a fading environment is an important

information theoretic performance measure. For the case of no CSIT but perfect CSIR,
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we obtained three simple and tight bounds on the ergodic capacity of the i.i.d MIMO

Rayleigh fading channels in closed-form. These simple bounds show explicitly the

dependence of the ergodic capacity on SNR and the numbers of transmit and receive

antennas. Since the CSIT is not available and the channel is assumed to be i.i.d,

it is well known that the optimal transmission strategy for achieving the maximum

ergodic capacity is to transmit independent, circularly symmetric, complex Gaussian

distributed signals on all the antennas with equal power allocation. For the special

case when the number of transmit antennas is equal to the number of receive antennas,

previous results have shown that the ergodic capacity increases linearly with the

number of transmit antennas. However, the simple bounds obtained in this dissertation

enable us to determine the optimum number of transmit antennas to be used for a given

SNR and a given total number of antennas in the system. We concluded that increasing

the number of transmit antennas cannot always guarantee increasing the ergodic

capacity. When the total transmit SNR is low, deploying more transmit antennas

cannot increase the channel capacity since the SNR per transmit-receive link is too

low when further decreased. When the total transmit SNR is high, providing more

transmit-receive links is beneficial for achieving a higher channel capacity because

of the greater spatial diversity achieved. We then considered a more practical MIMO

system over i.n.d fading channels with the partial CSIT available at the transmitter. The

partial CSIT is referred as the covariance feedback, i.e., the distribution of the channel

is known at the transmitter to be a Gaussian distribution with mean zero and a certain

nonzero covariance matrix. In practice, the covariance matrix could be computed

at the receiver via long-term time averaging of the channel realizations and reliably

transmitted to the transmitter through a low data rate feedback channel. The i.n.d

fading channel attracts greater attention than the i.i.d fading channel since it occurs

more naturally in practical MIMO systems. In order to enjoy the space diversity, the
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antenna spacing needs to be sufficiently large to minimize the correlation between

channels. The large spatial channel separation implies that the channels would more

likely encounter different propagation environments. Therefore, we derived bounds on

ergodic capacity and outage probability over i.n.d Rayleigh fading channels with the

partial CSIT. By studying the simple and closed-form bounds, we derived two simple

and near-optimal power-allocation schemes for maximizing the ergodic capacity and

minimizing the outage probability, respectively. For ergodic capacity maximization at

high SNR, the power control only depends on the ratios between the channel variances.

In particular, for highly unbalanced channels, some antennas associated with lower

channel variances may be turned off. For slightly unbalanced channels, all antennas

may be active but more power is given to the antenna associated with larger channel

variances. For minimizing the outage probability, the power allocation depends on

the geometric mean of channel variances and follows the “water-filling” principle.

According to the properties of this principle, at a high SNR, the power tends to

be equally allocated among all transmit antennas whereas at low SNR, some of the

transmit antennas with geometric mean of channel variances significantly lower than

the others may be turned off.

In ARQ/HARQ systems, when the received packets have been detected in error

by an error detection code, an additional copy of the packet is requested by the

receiver. This retransmission mechanism provides the opportunity for packets to be

transmitted in different time slots for achieving the time diversity. Instead of discarding

the previously received packets, the receiver can combine the received packets in an

optimal manner to obtain a more reliable packet. We considered such an ARQ/HARQ

system with time diversity combining when the CSIR is imperfect and the maximum

number of retransmissions is limited. In practice, only finite delays and buffer sizes

can be accommodated, therefore, it is more meaningful to bound the maximum number
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of retransmissions to a small number. Since the CSIR may be imperfect due to

the channel estimation errors at the receiver, evaluating the effects of the imperfect

CSIR on the system performance is important to provide insights on system operation

and guidelines for designing effective system management schemes. Therefore, the

performance of ARQ/HARQ systems are evaluated as a function of the accuracy of

channel estimation, with the imperfect CSIR acquired by channel estimation at the

receiver. A link between data-link-layer performances and physical-layer parameters

is therefore established. The data-link layer performance parameters we studied in

particular are the goodput, the APER and the drop rate, as a function of the channel

estimation MSE and the factors which affect the MSE. Upper and lower bounds on

the APER, the goodput as well as the drop rate were derived. These upper and

lower bounds are close to one another, and therefore, enable the behavior of the exact

performance parameters to be investigated. The precise dependence of the APER

and the goodput on the channel estimation accuracy was quantified. An attempt was

made to study the inter-relationships among the various relevant system performance

parameters and the crucial dependence of these relationships on the CSIR accuracy. In

particular, when the channel gain is not estimated with sufficient accuracy, for a given

order of receive space diversity, HARQ achieves a smaller APER than basic ARQ does

because of its inherent capability of achieving time diversity, whereas, it performs as

close as the basic ARQ does when the channel is estimated accurately. In other words,

with a lager value of MSE, the time diversity of the HARQ is more beneficial in terms

of decreasing the APER. When receive space diversity is available in HARQ schemes

and the CSIR is estimated accurately, the APER can be decreased more dramatically

by using more receive antennas.

For enhancing the throughput, adaptive transmission strategies have been adopted

to match the modulation and coding to time-varying channel conditions to achieve
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higher spectral efficiency. As a MIMO system provides high reliability, an

ARQ/HARQ system is an alternative way to mitigate channel fading to ensure a

higher probability in the acceptance of retransmitted packets. Therefore, with regard

to maximizing the throughput, in addition to providing a more reliable transmission,

ARQ/HARQ schemes with adaptive transmissions are extensively adopted. There are

two aspects to adaptive transmissions: channel quality estimation and rate selection.

Channel quality estimation involves measuring the time-varying state of the wireless

channel for the purpose of generating predictions of future quality. Rate selection

involves using the channel quality predictions to select an appropriate rate. Among the

factors that influence the effectiveness of rate adaptation, of particular importance is the

accuracy of the channel quality estimates. We therefore developed a continuous-rate

adaptation scheme that takes account of both channel estimation and prediction errors.

While a strictly causal channel predictor is employed to predict the channel state for the

transmitter to adapt its rates, a noncausal channel estimator estimates the channel for

the receiver to perform coherent demodulation. The goodput, defined as the amount of

data delivered to the receiver correctly per time unit, considering both the throughput

and the reliability, was considered as the performance metric to be optimized. The

transmission rate determined by the transmitter is adapted relative to the predicted

channel state and a utilization factor so as to achieve a maximum goodput. It is shown

that both excessive and insufficient rate adaptation lead to a reduced goodput. The

utilization factor depends on the quality of the channel prediction.
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7.2 Future Work

7.2.1 Effects of Imperfect CSIR on MIMO Systems

In Chapters 3 and 4 of this dissertation, it is assumed that the CSIR is perfectly known

at the corresponding receivers. We have obtained bounds on the ergodic capacity

and outage probability with perfect CSIR in [39, 40, 119]. However, the perfect

CSIR is difficult to obtain in MIMO systems due to the increased number of channel

parameters to be estimated at the receive. Therefore, the ergodic mutual information

with imperfect CSIR is an important problem to investigate. To the best of our

knowledge, deriving a closed-form expression for the ergodic mutual information with

imperfect CSIR is still an open problem. Further more, it is important and meaningful

to investigate MIMO systems with imperfect CSI on their applications in cooperative

communications and distributed antenna systems.

7.2.2 Transmission Strategies in MIMO Systems with Imperfect

CSIR and Outdated CSIT

In Chapters 3 and 4, it is assumed that either no CSIT or the partial CSIT is available.

We have derived two sub-optimal power control schemes with only partial CSIT for

optimizing the ergodic capacity and outage probability, respectively [39,40]. However,

the CSIT may be outdated or imperfect due to the feedback delay or the imperfect CSIR

that is fed back. The effect of the imperfect CSIR and outdated CSIT on the ergodic

capacity and outage probability is a meaningful problem to study. Since the channel

state may change to a new one from the time the receiver estimates the channel state

to the time the transmitter receives the CSIR that is fed back, adaptive transmission

without taking into account the feedback delay may reduce the performance. Thus,
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transmission strategies for systems with outdated CSIT should be studied to reduce the

capacity loss due to the feedback delay.

7.2.3 Extension of HARQ with Diversity Combining to Code

Combining

In Chapter 5, the effect of the imperfect CSIR on the performance of the ARQ/HARQ

systems with diversity combining was investigated [106,120]. The diversity combining

combines the symbols in the received packets with a code rate of R in an optimal

manner i.e., using MRC, and decodes the packet with the same code rate R. The

diversity combining is effective for simple fading channels, but not necessarily

effective in the presence of jamming [14]. Code combining treats the J received

packets as a packet of a rate R/J . The decoder may be a rate-R/J soft or hard

decoder, but also has the capability of weighting the reliability of each received packet.

Since code combining is designed to work in a very noisy (jamming) environment, its

performance should be studied with imperfect CSIR to see if it still works with a large

MSE.

7.2.4 Adaptive Transmission in HARQ Schemes with Imperfect

CSIT/CSIR

For enhancing the throughput, adaptive transmission strategies have been adopted

to match the modulation and coding to time-varying channel conditions to achieve

higher spectral efficiency. In Chapter 6, a continuous-rate adaptation scheme was

developed with imperfect CSIR and imperfect CSIT for maximizing the goodput

performance [121]. The adaptive transmission rate can be achieved by either changing

the modulation scheme directly, or by sending more redundancy bits to reduce the
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code rate indirectly. In Type-I HARQ systems with code combining, the individual

transmitted packets are encoded at some code rate R. If the receiver has J packets

that have caused retransmission requests, these packets are concatenated to form a

single packet encoded at rate R/J . As J increase, the decoder eventually acquires

sufficient power to reliably decode the packets under existing channel conditions.

In Type-II HARQ, the transmitter responds to retransmission requests by sending

additional parity bits to the receiver. The receiver appends these bits to the received

packets to reduce the code rate allowing for increased error correction capability. With

a rate adaptation scheme with imperfect CSI, a study on the maximum number of

retransmissions in Type-I HARQ and the FEC codes used in Type-II HARQ is useful

to design a HARQ combined with the rate adaptation, which can achieve high spectral

efficiency and high reliability.
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Appendix A

Proof of the Inequality (3.8)

Substituting (3.7) into (3.6), we obtain the upper bound on the ergodic capacity to be

E[I] ≤ N

Γ(NM) ln 2

∫ ∞

0

ln(1 + γσ2/Nz)zNM−1e−zdz (A.1)

Letting c = γσ2/N and b = NM − 1, the above integral can be rewritten as

E[I] ≤ N

Γ(NM) ln 2

∫ ∞

0

ln(1 + cz)zbe−zdz. (A.2)

Denote the integral term in the above equality as

F (b) =

∫ ∞

0

ln(1 + cz)zbe−zdz. (A.3)

Making use of integration by parts, we have

F (b) = −
∫ ∞

0

ln(1 + cz)zbde−z

= − ln(1 + cz)zbe−z |∞0 +

∫ ∞

0

czbe−z

1 + cz
dz + bF (b − 1) (A.4)

Due to the following two limits:

lim
z→∞

ln(1 + cz)zb

ez
= 0

and

lim
z→0

ln(1 + cz)zb

ez
= 0,
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A. Proof of the Inequality (3.8)

term F (b) in (A.4) can be written as

F (b) =

∫ ∞

0

c

1 + cz
zbe−zdz + bF (b − 1). (A.5)

Making use of [97, eq.(366.10)]:∫ ∞

0

xv−1e−µx

x + β
dx = βv−1eβµΓ(v)Γ(1 − v, βµ), (A.6)

when | arg β| < π, Re[µ] > 0, and Re[v] > 0, we can evaluate the integral in (A.4) to
be ∫ ∞

0

c

1 + cz
zbe−zdz = (1/c)be1/cΓ(b + 1)Γ(−b, 1/c) = A(b), (A.7)

in which, term Γ(α) is the gamma function defined as Γ(α) =
∫∞
0

tα−1e−tdt, α > 0.
Making use of (A.5) recursively, the quantity F (b) can be expressed as

F (b) = A(b) +
b−1∑
j=1

A(b − j)

j∏
i=1

(b + 1 − i)

+
b∏

i=1

(b + 1 − i)

∫ ∞

0

ln(1 + cz)e−zdz. (A.8)

After some simple manipulation, term F (b) can be simplified to be

F (b) =
b∑

j=0

A(b − j)

j∏
i=1

(b + 1 − i) (A.9)

where
0∏

i=1

(b + 1− i) is defined to be 1. By applying (A.9) to (A.2), the average mutual

information E[I] can be upper bounded as

E[I] ≤ NeN/(σ2γ)

Γ(NM) ln 2

NM−1∑
j=0

(
N

σ2γ

)NM−1−j j∏
i=1

(NM − i)

× Γ(NM − j)Γ(−(NM − 1 − j), N/(σ2γ)) (A.10)

Since
∏j

i=1(NM − i)Γ(NM − j) = Γ(NM), the above bound can be further reduced
to

E[I] ≤ I tr−U , 1

ln 2
NeN/(σ2γ)

×
NM−1∑

j=0

(
N

σ2γ

)NM−1−j

Γ(−(NM − 1 − j), N/σ2γ).
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Appendix B

Proof of the equation (5.12)

By using the Chernoff bound: erfc(x) < e−x2 , an upper bound can be obtained as

Pe ≤ 1 −
∞∫

0

(
1 − 1

2
e−c|ĥ|2

)n

e−b|ĥ|2d(b|ĥ|2) = 1 − Z.

Using integration by parts with u = (1 − 1
2
e−c|ĥ|2)n and dv = de−b|ĥ|2 , Z = −[uv −∫

vdu]∞0 can be expressed as

Z =

(
1

2

)n

+
nc

2

∞∫
0

(1 − 1

2
e−c|ĥ|2)n−1e−|ĥ|2(b+c)d|ĥ|2 (B.1)

Continuing the integration by parts with u = (1 − 1
2
e−c|ĥ|2)n−1 and dv =

e−|ĥ|2(b+c)d|ĥ|2, and performing the similar process till the last integral, term Z comes
to

Z =

(
1

2

)n

+
nc

2(b + c)

(
1

2

)n−1

+
nc(n − 1)c

2(b + c)2(b + 2c)

(
1

2

)n−2

+ · · · − nc(n − 1)c · · · c
2(b + c)2(b + 2c) · · · 2(b + nc)

. (B.2)

Hence, we can get

Z =
n∑

l=0

(
1

2

)n−l l−1∏
j=0

(n − j)c

2(b + (j + 1)c)
. (B.3)

Note that when l = 0, term
l−1∏
j=0

(n−j)c
2(b+(j+1)c)

is defined to be 1.
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