7,082 research outputs found

    Task allocation in a distributed computing system

    Get PDF
    A conceptual framework is examined for task allocation in distributed systems. Application and computing system parameters critical to task allocation decision processes are discussed. Task allocation techniques are addressed which focus on achieving a balance in the load distribution among the system's processors. Equalization of computing load among the processing elements is the goal. Examples of system performance are presented for specific applications. Both static and dynamic allocation of tasks are considered and system performance is evaluated using different task allocation methodologies

    Performance Analysis Of Hybrid Ai-Based Technique For Maximum Power Point Tracking In Solar Energy System Applications

    Get PDF
    Demand is increasing for a system based on renewable energy sources that can be employed to both fulfill rising electricity needs and mitigate climate change. Solar energy is the most prominent renewable energy option. However, only 30%-40% of the solar irradiance or sunlight intensity is converted into electrical energy by the solar panel system, which is low compared to other sources. This is because the solar power system\u27s output curve for power versus voltage has just one Global Maximum Power Point (GMPP) and several local Maximum Power Points (MPPs). For a long time, substantial research in Artificial Intelligence (AI) has been undertaken to build algorithms that can track the MPP more efficiently to acquire the most output from a Photovoltaic (PV) panel system because traditional Maximum Power Point Tracking (MPPT) techniques such as Incremental Conductance (INC) and Perturb and Observe (P&Q) are unable to track the GMPP under varying weather conditions. Literature (K. Y. Yap et al., 2020) has shown that most AIbased MPPT algorithms have a faster convergence time, reduced steady-state oscillation, and higher efficiency but need a lot of processing and are expensive to implement. However, hybrid MPPT has been shown to have a good performance-to-complexity ratio. It incorporates the benefits of traditional and AI-based MPPT methodologies but choosing the appropriate hybrid MPPT techniques is still a challenge since each has advantages and disadvantages. In this research work, we proposed a suitable hybrid AI-based MPPT technique that exhibited the right balance between performance and complexity when utilizing AI in MPPT for solar power system optimization. To achieve this, we looked at the basic concept of maximum power point tracking and compared some AI-based MPPT algorithms for GMPP estimation. After evaluating and comparing these approaches, the most practical and effective ones were chosen, modeled, and simulated in MATLAB Simulink to demonstrate the method\u27s correctness and dependability in estimating GMPP under various solar irradiation and PV cell temperature values. The AI-based MPPT techniques evaluated include Particle Swarm Optimization (PSO) trained Adaptive Neural Fuzzy Inference System (ANFIS) and PSO trained Neural Network (NN) MPPT. We compared these methods with Genetic Algorithm (GA)-trained ANFIS method. Simulation results demonstrated that the investigated technique could track the GMPP of the PV system and has a faster convergence time and more excellent stability. Lastly, we investigated the suitability of Buck, Boost, and Buck-Boost converter topologies for hybrid AI-based MPPT in solar energy systems under varying solar irradiance and temperature conditions. The simulation results provided valuable insights into the efficiency and performance of the different converter topologies in solar energy systems employing hybrid AI-based MPPT techniques. The Boost converter was identified as the optimal topology based on the results, surpassing the Buck and Buck-Boost converters in terms of efficiency and performance. Keywordsā€”Maximum Power Point Tracking (MPPT), Genetic Algorithm, Adaptive Neural-Fuzzy Interference System (ANFIS), Particle Swarm Optimization (PSO

    The State of the Art in Model Predictive Control Application for Demand Response

    Get PDF
    Demand response programs have been used to optimize the participation of the demand side. Utilizing the demand response programs maximizes social welfare and reduces energy usage. Model Predictive Control is a suitable control strategy that manages the energy network, and it shows superiority over other predictive controllers. The goal of implementing this controller on the demand side is to minimize energy consumption, carbon footprint, and energy cost and maximize thermal comfort and social welfare.  This review paper aims to highlight this control strategy\u27s excellence in handling the demand response optimization problem. The optimization methods of the controller are compared. Summarization of techniques used in recent publications to solve the Model Predictive Control optimization problem is presented, including demand response programs, renewable energy resources, and thermal comfort. This paper sheds light on the current research challenges and future research directions for applying model-based control techniques to the demand response optimization problem

    Using Particle Swarm Optimization for Power System Stabilizer and energy storage in the SMIB system under load shedding conditions

    Get PDF
    Generator instability, which manifests as oscillations in frequency and rotor angle, is brought on by sudden disruptions in the power supply. Power System Stabilizer (PSS) and Energy Storage are additional controllers that enhance generator stability. Energy storage types include superconducting magnetic (SMES) and capacitive (CES) storage. If the correct settings are employed, PSS, SMES, and CES coordination can boost system performance. It is necessary to use accurate and effective PSS, SMES, and CES tuning techniques. Artificial intelligence techniques can replace traditional trial-and-error tuning techniques and assist in adjusting controller parameters. According to this study, the PSS, SMES, and CES parameters can be optimized using a method based on particle swarm optimization (PSO). Based on the investigation's findings, PSO executes quick and accurate calculations in the fifth iteration with a fitness function value of 0.007813. The PSO aims to reduce the integral time absolute error (ITAE). With the addition of a load-shedding instance, the case study utilized the Single Machine Infinite Bus (SMIB) technology. The frequency response and rotor angle of the SMIB system are shown via time domain simulation. The analysis's findings demonstrate that the controller combination can offer stability, reducing overshoot oscillations and enabling quick settling times.

    Synchronization and Control of Chaotic Spur Gear System Using Type-II Fuzzy Controller Optimized via Whale Optimization Algorithm

    Full text link
    Interval type-II Fuzzy Inference System (FIS) assumes a crucial role in determining the coefficients of the PID controller, thereby augmenting the controller's flexibility. Controlling chaotic systems presents inherent challenges and difficulties due to their sensitivity to initial conditions and the intricate dynamics that require precise and adaptive control strategies. This paper offers an exhaustive exploration into the coordination and regulation of a chaotic spur gear system, employing a Type-II Fuzzy Controller. The initial control parameters of the PID controller undergo optimization using the Whale Optimization Algorithm (WOA) to increase the overall system performance. The adaptability and strength of the suggested control system are tested in various scenarios, covering diverse reference inputs and uncertainties. The investigation comprehensively assesses the operational efficacy of the formulated controller, contrasting its performance with other methodologies. The outcomes highlight the impressive efficiency of the suggested strategy, confirming its supremacy in attaining synchronization and control within the turbulent spur gear system under demanding circumstance

    Integrated Room Monitoring and Air Conditioning Efficiency Optimization Using ESP-12E Based Sensors and PID Control Automation: A Comprehensive Approach

    Get PDF
    This study addresses the critical need for efficient room monitoring and air conditioning systems, particularly in educational settings like the STMIK STIKOM Indonesia campus. The paper introduces a novel approach that combines ESP-12E based sensors with Proportional-Integral-Derivative (PID) control automation to optimize air conditioning efficiency. Utilizing an ESP-12E microcontroller, the study designed and implemented a room monitoring tool equipped with DHT22 and BH1750 sensors for accurate measurement of temperature, humidity, and light intensity. We also explores the integration of a PID control system into an existing air conditioning (AC) unit. The PID controller was fine-tuned to maintain a stable indoor temperature of 25oCelsius, even when subjected to external heat loads, such as ten LED lamps. The effectiveness of this system was quantified through real-time monitoring of temperature, humidity, and energy consumption, both pre- and post-implementation. Results indicated a rapid and stable response from the PID controller, achieving an amplitude of 1 within 0.08 seconds, thereby confirming its successful tuning and adaptability. We found that this study has broader implications for enhancing energy efficiency and creating conducive learning environments. However, it is worth noting that the research was conducted under specific conditions, and further studies could explore its applicability in different settings
    • ā€¦
    corecore