43 research outputs found

    Towards finite element exterior calculus on manifolds: commuting projections, geometric variational crimes, and approximation errors

    Full text link
    We survey recent contributions to finite element exterior calculus on manifolds and surfaces within a comprehensive formalism for the error analysis of vector-valued partial differential equations on manifolds. Our primary focus is on uniformly bounded commuting projections on manifolds: these projections map from Sobolev de Rham complexes onto finite element de Rham complexes, commute with the differential operators, and satisfy uniform bounds in Lebesgue norms. They enable the Galerkin theory of Hilbert complexes for a large range of intrinsic finite element methods on manifolds. However, these intrinsic finite element methods are generally not computable and thus primarily of theoretical interest. This leads to our second point: estimating the geometric variational crime incurred by transitioning to computable approximate problems. Lastly, our third point addresses how to estimate the approximation error of the intrinsic finite element method in terms of the mesh size. If the solution is not continuous, then such an estimate is achieved via modified Cl\'ement or Scott-Zhang interpolants that facilitate a broken Bramble--Hilbert lemma.Comment: Contribution to ENUMATH Proceedings 2023. 8 page

    An odyssey into local refinement and multilevel preconditioning III: Implementation and numerical experiments

    Get PDF
    In this paper, we examine a number of additive and multiplicative multilevel iterative methods and preconditioners in the setting of two-dimensional local mesh refinement. While standard multilevel methods are effective for uniform refinement-based discretizations of elliptic equations, they tend to be less effective for algebraic systems, which arise from discretizations on locally refined meshes, losing their optimal behavior in both storage and computational complexity. Our primary focus here is on Bramble, Pasciak, and Xu (BPX)-style additive and multiplicative multilevel preconditioners, and on various stabilizations of the additive and multiplicative hierarchical basis (HB) method, and their use in the local mesh refinement setting. In parts I and II of this trilogy, it was shown that both BPX and wavelet stabilizations of HB have uniformly bounded condition numbers on several classes of locally refined two- and three-dimensional meshes based on fairly standard (and easily implementable) red and red-green mesh refinement algorithms. In this third part of the trilogy, we describe in detail the implementation of these types of algorithms, including detailed discussions of the data structures and traversal algorithms we employ for obtaining optimal storage and computational complexity in our implementations. We show how each of the algorithms can be implemented using standard data types, available in languages such as C and FORTRAN, so that the resulting algorithms have optimal (linear) storage requirements, and so that the resulting multilevel method or preconditioner can be applied with optimal (linear) computational costs. We have successfully used these data structure ideas for both MATLAB and C implementations using the FEtk, an open source finite element software package. We finish the paper with a sequence of numerical experiments illustrating the effectiveness of a number of BPX and stabilized HB variants for several examples requiring local refinement

    Multigrid methods for discrete elliptic problems on triangular surfaces

    Get PDF
    We construct and analyze multigrid methods for discretized self-adjoint elliptic problems on triangular surfaces in R3. The methods involve the same weights for restriction and prolongation as in the case of planar triangulations and therefore are easy to implement. We prove logarithmic bounds of the convergence rates with constants solely depending on the ellipticity, the smoothers and on the regularity of the triangles forming the triangular surface. Our theoretical results are illustrated by numerical computations

    An improved method for solving quasilinear convection diffusion problems on a coarse mesh

    Get PDF
    A method is developed for solving quasilinear convection diffusion problems starting on a coarse mesh where the data and solution-dependent coefficients are unresolved, the problem is unstable and approximation properties do not hold. The Newton-like iterations of the solver are based on the framework of regularized pseudo-transient continuation where the proposed time integrator is a variation on the Newmark strategy, designed to introduce controllable numerical dissipation and to reduce the fluctuation between the iterates in the coarse mesh regime where the data is rough and the linearized problems are badly conditioned and possibly indefinite. An algorithm and updated marking strategy is presented to produce a stable sequence of iterates as boundary and internal layers in the data are captured by adaptive mesh partitioning. The method is suitable for use in an adaptive framework making use of local error indicators to determine mesh refinement and targeted regularization. Derivation and q-linear local convergence of the method is established, and numerical examples demonstrate the theory including the predicted rate of convergence of the iterations.Comment: 21 pages, 8 figures, 1 tabl

    Multilevel Solvers for Unstructured Surface Meshes

    Get PDF
    Parameterization of unstructured surface meshes is of fundamental importance in many applications of digital geometry processing. Such parameterization approaches give rise to large and exceedingly ill-conditioned systems which are difficult or impossible to solve without the use of sophisticated multilevel preconditioning strategies. Since the underlying meshes are very fine to begin with, such multilevel preconditioners require mesh coarsening to build an appropriate hierarchy. In this paper we consider several strategies for the construction of hierarchies using ideas from mesh simplification algorithms used in the computer graphics literature. We introduce two novel hierarchy construction schemes and demonstrate their superior performance when used in conjunction with a multigrid preconditioner

    Semilinear mixed problems on Hilbert complexes and their numerical approximation

    Full text link
    Arnold, Falk, and Winther recently showed [Bull. Amer. Math. Soc. 47 (2010), 281-354] that linear, mixed variational problems, and their numerical approximation by mixed finite element methods, can be studied using the powerful, abstract language of Hilbert complexes. In another recent article [arXiv:1005.4455], we extended the Arnold-Falk-Winther framework by analyzing variational crimes (a la Strang) on Hilbert complexes. In particular, this gave a treatment of finite element exterior calculus on manifolds, generalizing techniques from surface finite element methods and recovering earlier a priori estimates for the Laplace-Beltrami operator on 2- and 3-surfaces, due to Dziuk [Lecture Notes in Math., vol. 1357 (1988), 142-155] and later Demlow [SIAM J. Numer. Anal., 47 (2009), 805-827], as special cases. In the present article, we extend the Hilbert complex framework in a second distinct direction: to the study of semilinear mixed problems. We do this, first, by introducing an operator-theoretic reformulation of the linear mixed problem, so that the semilinear problem can be expressed as an abstract Hammerstein equation. This allows us to obtain, for semilinear problems, a priori solution estimates and error estimates that reduce to the Arnold-Falk-Winther results in the linear case. We also consider the impact of variational crimes, extending the results of our previous article to these semilinear problems. As an immediate application, this new framework allows for mixed finite element methods to be applied to semilinear problems on surfaces.Comment: 22 pages; v2: major revision, particularly sharpening of error estimates in Section
    corecore