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AN IMPROVED METHOD FOR SOLVING QUASILINEAR CONVECTION
DIFFUSION PROBLEMS ON A COARSE MESH

SARA POLLOCK

ABSTRACT. A method is developed for solving quasilinear convection diffusion prob-
lems starting on a coarse mesh where the data and solution-dependent coefficients are
unresolved, the problem is unstable and approximation properties do not hold. The
Newton-like iterations of the solver are based on the framework of regularized pseudo-
transient continuation where the proposed time integratoris a variation on the Newmark
strategy, designed to introduce controllable numerical dissipation and to reduce the fluc-
tuation between the iterates in the coarse mesh regime wherethe data is rough and the
linearized problems are badly conditioned and possibly indefinite. An algorithm and up-
dated marking strategy is presented to produce a stable sequence of iterates as boundary
and internal layers in the data are captured by adaptive meshpartitioning. The method
is suitable for use in an adaptive framework making use of local error indicators to de-
termine mesh refinement and targeted regularization. Derivation and q-linear local con-
vergence of the method is established, and numerical examples demonstrate the theory
including the predicted rate of convergence of the iterations.

1. INTRODUCTION

This paper builds on the framework of [21] and develops a nonlinear solver suitable
for use in adaptive methods for quasilinear elliptic problems. The method is developed
to stabilize the linearizations of nonlinear diffusion andconvection diffusion problems,
especially when there may be steep internal or boundary layers in the problem data. The
sequence of linear problems encountered by a Newton-like method under these circum-
stances takes the form of convection diffusion or reaction convection diffusion and the
sequence of approximate solutions is subject to spikes, overshoots and spurious oscilla-
tions in the convection-dominated regime.

The present approach builds on a regularized version of the pseudo-transient contin-
uation method as in for instance [1, 19, 6, 12, 7, 21] and the references therein, and on
each mesh refinement seeks a steady-state solution of the nonlinear evolution problem
∂/∂t(Ru) + g(u(t)) = 0, for positive semidefinite regularization termR in the inter-
est of solvingg(u) = 0. In this analysis, further stabilization is introduced into the
time discretization to address the problem of nonphysical oscillations. Time discretiza-
tions featuring controllable high-frequency numerical dissipation are well known in the
finite element analysis of structures as in for instance [20,16, 15, 17, 4], and a varia-
tion related to these methods referred to here as theσ-split Newmark update is presently
introduced. This method makes use of the controllable dissipation of the Newmark up-
date and further controls fluctuations between the iteratesby freezing a small fraction
the linearization about a point with favorable properties.Theσ-split Newmark method is
derived,q-linear local convergence with a predictable rate is established, and the method
is demonstrated on three variations of a model problem with steep internal layers.
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2 S. POLLOCK

The goal of the solver in the adaptive setting is to start on a coarse mesh where the
problem data is generally not resolved and produce a sequence of transitional states
which may not be accurate solutions to the coarse mesh problems, but do allowa poste-
riori error indicators to detect the layers present in the problemdata and refine the mesh
to be globally fine enough for stability and locally fine enough to achieve accuracy and
efficiency. The sequence of approximate problems can be classified into three phases, the
initial phase where the mesh is globally too coarse and quadrature error is high and many
features of the problem data remain undetected by the discretization, the pre-asymptotic
phase where the mesh is fine enough for stability but the problem data is only partially re-
solved, and the asymptotic regime where the standard existence, uniqueness and approx-
imation properties hold. In the coarse mesh regime the solver uses as much stabilization
as necessary to produce smooth transitional solutions; in the pre-asymptotic regime the
solver adaptively reduces the added stabilization increasing both accuracy and the con-
vergence rate as the data is resolved and the approximate problem becomes less rough;
in the asymptotic phase the solver limits to a standard Newton method where the initial
guess interpolated from the previous refinement is a good approximation to the solution
and the iterations converge quadratically.

The requirements of the adaptive method are that a local error indicator is computed
on each refinement and areasonablemarking strategy in the sense of [22] is employed
to determine the next mesh refinement. A modification of the standard adaptive marking
strategy is proposed in which the marked set is determined bytwo parts: one that refines
the elements with the largest indicators, and the other thatrefines a subset of the coarsest
elements of the mesh when the residual from the final Newton-like iteration is significant.
The method reported here improves on [21] both in terms of efficiency and in terms of
the strengths of near-singularities it is able to resolve.

The remained of the paper is organized as follows. Section 3 shows the derivation of
the pseudo-transient Newmark andσ-split Newmark methods, (2.8) and (2.9). Section 4
demonstrates localq-linear convergence of the residual for these methods, bothwith rate
q = 1 − 1/γ, with γ the parameter from the Newmark update. Section 5 describes a
basic algorithm to implement the solver in an adaptive method, and Section 6 contains
the results of numerical experiments using the described adaptive algorithm and (2.9).

The following notation is used in the remainder of the paper.The functiong(u) refers
to a specific problem or problem class andg(x) is used in the formal discussion of
Newton-like methods. Thenth iteration subordinate to thekth partitionTk is denoted
xnk , while xn is thenth iteration on a fixed partition andxk is the final iteration on the
kth mesh, taken as the approximate solution onTk. In defining the weak and bilinear
forms in the next section(u(x), v(x)) =

∫

Ω
u(x)v(x) dx, and similarly for vector-valued

functions.

2. TARGET PROBLEM CLASS

The nonlinear solver is developed to approximate solutionsto the nonlinear problem
g(u) = 0, for polygonal domainΩ andg : X → Y ∗ with g′(u) ∈ L(X, Y ∗) for real Ba-
nach spacesX andY , particularly whereg(u) takes the form of a quasilinear convection
diffusion or diffusion problem in divergence form

g(u) := −div(κ(u)∇u) + b(u) · ∇u− f(x) = 0 in Ω ⊂ R
2, u = 0 on∂Ω. (2.1)

or

g(u) := −div(κ(u)∇u)− f(x) = 0 in Ω ⊂ R
2, u = 0 on∂Ω. (2.2)
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Multiplication by a test function and integration by parts over the divergence term yields
the weak form of (2.1)

B(u, v) = (κ(u)∇u,∇v) + (b(u) · ∇u, v) for all V ∈ Y ∗, (2.3)

and linearizing aboutu atw ∈ X yields the bilinear form induced byg′(u)

B′(u;w, v) = (κ(u)∇w,∇v) + (κ′(u)w∇u,∇v) + (b(u) · ∇w, v) + (b′(u)w∇u, v).
(2.4)

For f ∈ L2(Ω) ∩ L∞(Ω) andκ(u) bounded away from zero withκ(s), κ′(s) andκ′′(s)
bounded as in [3], then (2.2) has a unique solutionu ∈ W 1,p(Ω), with 2 < p < ∞.
Both (2.1) and (2.2) fit into the context of [24] with the assumption thatκ(u) is bounded
andg′(u) : H1

0(Ω) → H−1(Ω) is an isomorphism, in which case the solutionu is an
isolated solution.

The discretized equation is, finduh ∈ Xh such thatB(uh, v) = 0 for all v ∈ Yh where
Xh ⊂ X andYh ⊂ Y are discrete finite element spaces with respect to triangulation Th,
where the family of triangulations{Th}0<h<1 is regular and quasi-uniform in the sense
of [5]. Existence, uniqueness and approximation properties of the discrete problems
induced by (2.1) and (2.2) are found in [3], [24] and the references therein, assuming the
mesh is fine enough. The problem is then to start on a coarse mesh; one that is not fine
enough in terms of data resolution, stability or approximation properties, and build one
that is. The goal of the solver is to navigate from a coarse to asufficiently fine mesh
where the approximation properties do hold, and to do so by building an both an efficient
adaptive mesh and a reasonable initial guess to start the Newton-like iterations on each
refinement along the way.

The linearization of (2.2) has the form of a convection-diffusion equation, and (2.4)
the linearized form of (2.1) has the form of a convection reaction diffusion equation
α(w, v) + β(w, v) + γ(w, v) with

α(w, v) := (κ(u)∇w,∇v) (2.5)

β(w, v) := (κ′(u)w∇u,∇v) + (b(u) · ∇w, v) (2.6)

γ(w, v) = (b′(u)w∇u, v). (2.7)

Using a standard Newton method to solve the nonlinear (2.3) with (2.4) generally does
not work when there are steep layers present in the problem data, and coarse mesh ap-
proximations of the problem are observed to be indefinite andill-conditioned, consistent
with the observations in [14]. Many of the problems encountered including formation of
spurious spikes, overshoots and instability are symptomatic of the corresponding linear
convection-dominated problems [9]. Techniques form from the finite element analysis
of structures [20, 16, 15, 17, 4] use numerical integrators featuring high-frequency dissi-
pation to capture lower frequency modes of the solution. Theapproach here investigates
the use of the Newmark update and a stabilized variation of itas the time-integrators of
a pseudo-transient continuation-like method as in [8, 1, 6,19, 21].

The next section develops the two following methods to improve the convergence of
the coarse-mesh iterates in the sequence of linearized problems. A positive semidefinite
R is used to target specific degrees of freedom for regularization, and the role ofR may
be seen either from the homotopy perspective as a modification of the path between
an initial u0 andu∗ that solvesg(u∗) = 0, or from the regularization viewpoint as a
penalty against certain characteristics of the iterates. In what follows,R is chosen based
on the Laplacian to penalize against high curvature, with degrees of freedom selected
for regularization based on ana posteriorierror indicator. The selective approach to
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regularization distinguishes the method presented here and in [21] from the method of
pseudo-transient continuation found elsewhere in the literature. Forγ ≥ 1, a Newmark
update generalizing a backward Euler discretization yields the iteration

(αnR + γ g′(xn))wn = −g(xn), xn+1 = xn + wn. (2.8)

The proposedσ-split Newmark update yields the iteration,

(αnR + γ {(1− σ)g′(x̄) + σg′(xn)})wn = −g(xn), xn+1 = xn + wn, (2.9)

and analysis and demonstration of this last method is the focus of the remainder of the
paper. Local convergence of (2.8) is discussed along the wayand local convergence
of (2.9) is established by a perturbation of that result. Themethod based on (2.9) was
also tested and found effective on a shiftedp-Laplacian

g(u) = −div
{(

ε+ |∇u− a|)p−2
)

(∇u− a)
}

− f, (2.10)

and the related

g(u) = −div

{(

b+
1

ε+ |∇u− a|2

)

(∇u− a)

}

− f, (2.11)

problems similar to those investigated in [2] and [13], which reside outside the current
target class but still benefit from the regularization techniques described here when start-
ing the adaptive method from a coarse mesh, especially if thecoefficientε << 1.

3. CONTINUATION METHODS

The homotopy or pseudo-transient continuation method of stabilizing the Newton-like
iterations for finding the solutionx∗ of g(x) = 0 is developed by discretizing the ODE

∂(Rx)

∂t
+ g(x(t)) = 0, x(0) = x0, (3.1)

with a positive semidefinite linear functionalR. In much of the literature,R is taken to
be the identity or a scaled version thereof [8, 19], and the references therein; however, the
theory is developed for positive-definite functionals other than the identity [1] where it is
referred to as the “s” method, and positive semi-definite functionals in [6, 21]. This idea
can be generalized to discretizing the ODE based on the normal equations formulation
of (3.1)

∂

∂t
R∗Rx+ g′(x(t))∗g(x(t)) = 0, x(0) = x0, (3.2)

with adjointR∗ the formal adjoint ofR andg′(x)∗ the formal adjoint ofg′(x). As shown
in [21], the discretization of (3.2) corresponds to the method of Tikhonov regularization.

As discussed in for instance [1, 8, 19, 6], lettingxn a finite dimensional approxima-
tion to x(tn) with ∆tn = tn+1 − tn, the standard method is to discretize (3.1) by a
backward-Euler approximation to∂/∂t(Rx) and a linearization ofg′(xn+1) aboutxn. In
the case of discretizing (3.2),g′(xn+1)∗ is approximated byg′(xn)∗. To increase stabil-
ity of the linearized system, other discretizations of (3.2) are presently considered. The
backward-Euler time discretization is replaced by the moregeneral Newmark update,
and the linearization ofg(xn+1) is split about two distinct points, one the latest iterate
and the other yielding a Jacobian with favorable properties.

By the original method of backward-Euler discretization and first order Taylor expan-
sion about the previous iterate, the resulting Newton-likeiteration is given by

(

1

∆tn
R + g′(xn)

)

wn = −g(xn). xn+1 = xn + wn. (3.3)
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This method increases the stability of the linear system forpositive definite and possibly
semi-definiteg′(u), but runs the risk of shifting the spectrum of the approximate Jacobian
towards zero, making the condition significantly worse in the case thatg′(u) is indefinite,
resulting in large fluctuations between the iterates. To cope with this situation which
occurs in the coarse mesh approximation of quasilinear problems, the iteration based on
the normal equations enforcing the shift of the spectrum away from zero is given by

(

1

∆tn
R∗R + g′(xn)∗g′(xn)

)

wn = −g′(xn)g(xn), xn+1 = xn + wn. (3.4)

This method is introduced in [21], where it is shown that (3.4) is also found by minimiz-
ing the Tikhonov functionalGα(w) for

Gα(w) = ‖g′(xn)w + g(xn)‖20 + αn‖Rw‖
2
0, (3.5)

with αn = 1/∆tn and‖ · ‖0 theL2 norm. As in [10], the necessary and sufficient con-
dition for the minimizerw isG′

α(w) = 0, yielding (3.4). While successfully increasing
the stability of the system, this method remains unsatisfactory due to the increased com-
plexity of solving the system based on the normal equations.A new method is now
introduced which adds stability while preserving the sparsity of the system. The cost,
as shown in Section 4 is trading the asymptotically quadratic convergence of (3.3) for
q-linear convergence. The proposed algorithm of Section 5 updates the parameterγ of
the Newmark method on each mesh refinement as the sequence of linear systems stabi-
lize until the method reduces to the original (3.3) for whichquadratic convergence of the
error is observed.

3.1. Time discretization by the Newmark method. The Newmark method [20] dis-
cretizes the time derivativėu = ∂u/∂t by

xn+1 − xn = ∆tn
{

(1− γ)ẋn + γẋn+1
}

. (3.6)

For γ = 1, (3.6) reduces to the backward Euler discretization described above. As
discussed in [20] this time integrator is second order accurate forγ = 1/2 and introduces
nonphysical damping of the high frequency modes forγ > 1/2 proportional toγ −
1/2. More sophisticatedα andθ collocation methods as in [16, 15, 4] incorporating the
Newmark update are designed to further control numerical dissipation across targeted
frequencies. In the current context the improved resolution and risk of overshoot of these
methods designed with two time derivatives in mind is potentially of interest but their
implementation in a pseudo-transient continuation setting is beyond the scope of this
article. For stabilizing the transitional states of the sequence of coarse-mesh problems,
damping of the high-frequency oscillations is the desirable property and more important
than a higher order of accuracy.

Solving (3.6) forẋn+1

ẋn+1 =
xn+1 − xn

γ∆tn
−

(1− γ)

γ
ẋn. (3.7)

ApplyingRẋn = −g(xn) andRẋn+1 = −g(xn+1) to (3.7)

1

γ∆t
R(xn+1 − xn) =

(1− γ)

γ
g(xn)− g(xn+1) (3.8)

Linearizingg(xn+1) aboutxn, obtain the Newton-like iteration
(

1

∆tn
R + γ g′(xn)

)

wn = −g(xn), xn+1 = xn + wn. (3.9)
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For γ > 1 this method comparatively scales down the influence of the right-hand side
data; the danger is still allowing and arguably increasing the likeliness of shifting an
indefinite left-hand side operator spectrum towards zero. By the same approach, the
iteration based on the normal equations is given by

(

1

∆tn
R∗R + γg′(xn)∗g′(xn)

)

wn = −g′(xn)g(xn), xn+1 = xn + wn. (3.10)

Due to the overdamping effect of setting the parameterγ > 1/2, the iterations (3.9)
and (3.10) stabilize the solution in some situations where the iteration (3.4) is infeasible.
Similarly to (3.4)- (3.5), the solutionwn of (3.10) is seen to be the minimizer of the
generalized Tikhonov-type functional

Gα(w) = ‖g′(xn)w +
1

γ
g(xn)‖20 +

αn

γ
‖Rw‖20, (3.11)

with αn = 1/∆tn.

3.2. The Newmark update with σ-splitting. The Newark discretization of the previ-
ous section successfully introduces high-frequency dissipation increasing the stability of
the linearized system but suffers the same drawback as the backward-Euler discretization
requiring the formulation based on the normal equations in the case of a possibly indef-
inite Jacobian to control highly unstable sequences of iterates. Theσ-split Newmark
update runs without the use of the normal equations: effectively freezing a small fraction
of the Jacobian at a point with favorable properties dramatically reduces the fluctuations
between iterates in the coarse mesh regime where boundary and internal layers are only
partially resolved.

As seen in the derivation, the method can be thought of as splitting the linearization of
g′(xn+1) about two points, or more precisely as approximating∆xn by a combination of
ẋn+1, ẋn and∆ẋn where the first is used in the backward-Euler update, the firsttwo are
used in the Newmark update with the second adding control of numerical dissipation; and
the third is introduced here to reduce the fluctuation of the Jacobian outside the domain
of convergence of the Newton-like iterations. The method isderived as follows, and is
demonstrated in Section 6 to work without the use of the normal equations in situations
where other methods including those involving the normal equations are seen to fail.

Starting with the Newmark update (3.6), each of the time derivative terms on the right
is split into two parts

xn+1 − xn = ∆tn{(1− γ)σẋn + (1− γ)(1− σ)ẋn + γσ ẋn+1 + γ(1− σ)ẋn+1}

= ∆tn{(1− γσ)ẋn + γ(1− σ)(ẋn+1 − ẋn) + γσ ẋn+1}. (3.12)

Solving forẋn+1 and applying the relationRẋn+1 = −g(xn+1)

1

γσ∆tn
R∆xn −

(1− σ)

σ
R(ẋn+1 − ẋn) =

(1− γσ)

γσ
ẋn − g(xn+1). (3.13)

Applying the relationRẋn = −g(xn) on the left and linearizingg(xn+1) aboutxn on the
right

(

1

γσ∆tn
R + g′(xn)

)

∆xn +
(1− σ)

σ
(g(xn+1)− g(xn)) =

−1

γσ
g(xn). (3.14)
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Linearizing bothg(xn+1) andg(xn) about fixedx̄, g(xn+1) − g(xn) = g′(x̄)∆xn. Ap-
plying this and multiplying through byγσ

(

1

∆tn
R + γ{(1− σ)g′(x̄) + σg′(xn)}

)

∆xn = −g(xn). (3.15)

Equation (3.15) is the basis for theσ-split Newmark update. It contains four parame-
ters:αn = 1/∆tn, γ, σ andx̄; while some guidance is provided, a detailed analysis of
these parameters will be addressed in subsequent work by theauthor. In the current re-
sultsx̄ = 0 is used, and̄x = x0 the solution from the previous refinement interpolated
onto the current mesh has also been observed to work;αn is chosen as in [21] for the
backward-Euler discretization,γ ≥ 1 may be set adaptively, increased to add stability
then decreased to speed convergence; andσ ≥ σ0 ∈ (0, 1) is adaptively sent towards one
based on the norm of the latest residual on each Newton-like iteration. It is observed in
numerical experiments thatσ should be close to one, and as seen in Section 4 this is a
necessary for the asymptoticq-linear convergence at the rateq = 1− 1/γ, in agreement
with the rate found using the Newmark discretization without theσ-splitting.

4. LOCAL CONVERGENCE

Local convergence of the residual is established for both algorithms (2.8) based on the
Newmark update, and (2.9) based on the Nemark update withσ-splitting of the Jacobian.
The second result follows as a perturbation of the first forσ close to unity, relying on
a weaker set of assumptions. Both results require the same Lipschitz condition on the
Jacobian. Denote the open ball aboutx byB(x, ε) = {y

∣

∣‖x− y‖ < ε}.

Assumption 4.1. There existωL, ε > 0 so that for allx, y ∈ B(x∗, ε)

‖g′(x)− g′(y)‖ ≤ ωL‖x− y‖ for all x, y ∈ B(x∗, ε).

Assumption 4.2. (c.f. Assumptions 2.2-2.3 of[6], and Assumptions 4.1 and 4.4 of[21]).
There existsβ > 0 so that for positive semidefiniteR, γ > 1, and for all0 < αn < αM ,
then for allx ∈ B(x∗, ε):

1) αnR + γ g′(x) is invertible.
2) ‖(αnR + γ g′(x))−1‖ ≤Mγ .
3) ‖(αnR)(αnR + γ g′(x))−1‖ ≤ 1

1+βγ/αn
.

First, q-linear convergence of the residual is established with rate q = 1 − 1/γ, for
γ > 1. Linear and asymptotic quadratic convergence for the caseγ = 1 is shown
in [21], following from convergence of the error. In the present discussion, convergence
of the error is neither used nor shown: it is observed in numerical experiments that the
residual decreases at the predicted rate over iterations where‖xn+1 − xn‖ may not yet
be decreasing; in contrast, for the caseγ = 1 the same quantity displays asymptoti-
cally quadratic convergence to zero together with the residual. The following proof is a
variation of Theorem 2.12 of [7], where Assumptions 4.1 and 4.2 replace the affine con-
travariant Lipschitz condition used in that version of the Newton-Mysovskikh Theorem
for the standard Newton method.

Theorem 4.3. Let αn ≤ ‖g(xn)‖ ≤ αM and let Assumptions 4.1 and 4.2 hold. Define
the open setS by

S =

{

x ∈ B(x∗, ε)
∣

∣

∣
‖g(x)‖ <

2βγ

2 + βγ2ωLM2
γ

}

, (4.1)
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and supposexn ∈ S; then by iteration(2.8), xn+1 ∈ S, and the sequence of residuals
convergesq-linearly to zero with asymptotic rateq = 1− 1/γ.

Proof. Let ∆xn = xn+1 − xn. Then iteration (2.8) is given by

(αnR + γ g′(xn))∆xn = −g(xn), xn+1 = xn +∆xn. (4.2)

By the integral mean-value theorem

g(xn + λ∆xn) = g(xn) +

∫ λ

0

g′(xn + t∆xn)∆xn dt

= g(xn) + λg′(xn)∆xn +

∫ λ

0

(g′(xn + t∆xn)− g′(xn))∆xn dt

=

(

1−
λ

γ

)

g(xn) +

(

λ

γ

)

αnR (αnR + γg′(xn))
−1
g(xn)

+

∫ λ

0

(g′(xn + t∆xn)− g′(xn))∆xn dt (4.3)

Applying Assumption 4.2 (3) to the second term and the Lipschitz condition 4.1 to the
third term of (4.3)

‖g(xn + λ∆xn)‖ ≤

(

1−
λ

γ

)

‖g(xn)‖+
λ

γ(1 + βγ/αn)
‖g(xn)‖+

λ2ωL

2
‖∆xn‖2.

(4.4)

By the iteration (4.2) and Assumption 4.2 (2),‖∆x‖2 ≤M2
γ‖g(x

n)‖2, yielding

‖g(xn + λ∆xn)‖ ≤ ‖g(xn)‖

((

1−
λ

γ

)

+
λαn

γ(αn + βγ)
+
ωLλ

2M2
γ

2
‖g(xn)‖

)

.

(4.5)

By the assumptionαn ≤ ‖g(xn)‖, and forλ ∈ [0, 1]

‖g(xn + λ∆xn)‖ ≤ ‖g(xn)‖

((

1−
λ

γ

)

+

(

λ

γ

)(

1

βγ
+
γωLM

2
γ

2

)

‖g(xn)‖

)

, (4.6)

for eachλ ∈ [0, 1] such thatxn+t∆xn ∈ S for all t ∈ [0, λ]. By the logic of [7] Theorem
2.12, proceed by contradiction and assumexn+1 /∈ S; then there is a smallestλ̄ ∈ (0, 1]
with g(xn + λ̄∆xn) ∈ ∂S. For thatλ̄

‖g(xn + λ̄∆xn)‖ ≤ ‖g(xn)‖

((

1−
λ

γ

)

+

(

λ

γ

)(

1

βγ
+
γωLM

2
γ

2

)

‖g(xn)‖

)

< ‖g(xn)‖, (4.7)

a contradiction. This showsxn+1 ∈ S. To establish the rate of convergence, setλ = 1
in 4.6.

‖g(xn+1)‖ ≤ ‖g(xn)‖

((

1−
1

γ

)

+

(

1

γ

)(

1

βγ
+
γωLM

2
γ

2

)

‖g(xn)‖

)

, (4.8)

which shows both that‖g(xn+1)‖ < ‖g(xn)‖ and the asymptoticq-linear rate ofq =
1− 1/γ as‖g(xn)‖ → 0 . �

Remark 4.4. It is observed that the method converges with the predicted rate when the
iteratesxn /∈ S as given by(4.1). The lapse in the theory appears to be the bound on
‖xn‖ which apparently converges within a smaller set as comparedto the residual.
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The asymptotic convergence of theσ-split algorithm is addressed in the next theo-
rem as a perturbation of Theorem 4.3. While it is not necessary in the proof forg′(x̄)
to be positive definite,̄x is ideally chosen so thatg′(x̄) improves the condition of the
approximate Jacobian, allowing Assumptions 4.5 to hold with better constants than 4.2.

Assumption 4.5. (c.f. Assumption 4.2). There existβ > 0 so that for0 < σ0 ≤ σ ≤ 1,
fixed x̄, positive semidefiniteR, γ > 1, and for all 0 < αn < αM , then for allx ∈
B(x∗, ε):

1) αnR + γ{(1− σ)g′(x̄)− σg′(x)} is invertible.
2) ‖(αnR + γ{(1− σ)g′(x̄)− σg′(x)})−1‖ ≤ Mγσ.
3) ‖(αnR)(αnR + γ{1− σ)g(x̄)− σg′(x)})−1‖ ≤ 1

1+βγ/αn
.

As with Assumption 4.2 (3), the third clause agrees with the similar stability bound
of [6] Assumption 2.3, withαn replaced byαn/γ. Local convergence of theσ-split
Newmark algorithm is established with the same asymptotic rate as in the previous result.

Theorem 4.6. Letαn ≤ ‖g(xn)‖ ≤ αM and let Assumptions 4.1 and 4.5 hold. Defineσ
by

σ = max

{

σ0, 1−
‖g(xn)‖

K0

}

, (4.9)

for a givenK0. Then there existsδ1 > 0 such that forxn in the open setS given by

S =
{

x ∈ B(x∗, ε)
∣

∣

∣
‖g(x)‖ < δ1

}

, (4.10)

andxn+1 defined by iteration(2.9), it hold thatxn+1 ∈ S, and the sequence of residuals
convergesq-linearly to zero with asymptotic rateq = 1− 1/γ.

Proof. Let ∆xn = xn+1 − xn. Then iteration (2.9) is given by

(αnR + γ{(1− σ)g′(x̄) + σg′(xn)})∆xn = −g(xn), xn+1 = xn +∆xn. (4.11)

Much of the proof parallels Theorem 4.3, and is summarized here. Starting with the
integral mean-value theorem

g(xn + λ∆xn) = g(xn) +

∫ λ

0

g′(xn + t∆xn)∆xn dt

= g(xn) + λg′(xn)∆xn +

∫ λ

0

(g′(xn + t∆xn)− g′(xn))∆xn dt.

(4.12)

By iteration (4.11)

g′(xn)∆xn = −
1

γσ
g(xn)−

1

γσ
αnR∆x

n −
1− σ

σ
g′(x̄)∆xn. (4.13)

Bounding the second term on the right of (4.13) by Assumptions 4.5 (3)

‖αnR∆x
n‖ = ‖αnR (αnR + γ{(1− σ)g′(x̄) + σg′(xn)})

−1
g(xn)‖

≤
1

1 + βγ/αn

‖g(xn)‖, (4.14)
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and by Assumptions 4.1 and 4.5 (2), then applyingαn ≤ ‖g(xn)‖ andλ ∈ [0, 1]

‖g(xn + λ∆xn)‖ ≤ ‖g(xn)‖

{(

1−
λ

γσ

)

+
(1− σ)

σ
λMγσ‖g

′(x̄)‖+

(

λ

γσ

)

1

(1 + βγ/αn)

+
ωLλ

2M2
γσ

2
‖g(xn)‖

}

≤ ‖g(xn)‖

{(

1−
λ

γσ

)

+
(1− σ)

σ
λMγσ‖g

′(x̄)‖

+

(

λ

βγ2σ

)

‖g(xn)‖+
λωLM

2
γσ

2
‖g(xn)‖

}

. (4.15)

Applying (4.9) to the quantity(1 − σ)/σ under the assumption1 − ‖g(xn)‖/K0 ≥ σ0
and expanding in orders of‖g(xn)‖/K0 < 1,

1− σ

σ
=

‖g(xn)‖

K0

1

(1− ‖g(xn)‖/K0)
=

‖g(xn)‖

K0

(

1 +O

(

‖g(xn)‖

K0

))

=
‖g(xn)‖

K0

+O

(

‖g(xn)‖

K0

)2

. (4.16)

Similarly

1

σ
= 1 +

‖g(xn)‖

K0

+O

(

‖g(xn)‖

K0

)2

. (4.17)

Applying (4.16) and (4.17) to (4.15), then for any fixedP > 3

‖g(xn + λ∆xn)‖ ≤ ‖g(xn)‖

{(

1−
λ

γ

)

+
λ

Pγ
‖g(xn)‖

×P

(

K0(βγ
2ωLM

2
γσ/2 + 1) + βγ(Mγσ‖g(x̄)‖ − 1)

K0βγ

)

+O(‖g(xn)‖2)

}

.

(4.18)

Supposing

‖g(xn)‖ ≤ δ0 :=
K0βγ/P

K0(βγ2ωLM2
γσ/2 + 1) + βγ(Mγσ‖g(x̄)‖ − 1)

, (4.19)

it follows that

‖g(xn + λ∆xn)‖ ≤ ‖g(xn)‖

(

1−
(P − 1)

P

λ

γ
+O(‖g(xn)‖2

)

, (4.20)

so there existsδ1 ∈ (0, δ0] for which‖g(xn)‖ < δ1 implies

‖g(xn + λ∆xn)‖ < ‖g(xn)‖

(

1−
(P − 2)

P

λ

γ

)

. (4.21)

The result follows by the same logic as in the proof of Theorem4.3. �

Remark 4.7. It is observed in some problems that the residual‖g(xn)‖ can decrease at
a rate slightly better than the one predicted whenσ 6= 1, whereas forσ = 1 the rate is
as predicted.
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5. ALGORITHM

The solver using theσ-Newmark iteration (2.9) may be implemented in an adap-
tive method according to the following basic algorithm. To exploit both the stability
of method (2.9) and the quadratic convergence of (3.3), the parametersγ andR are up-
dated on each refinement, and the parametersα andσ are updated on each iteration of
the solver. The main steps of the adaptive method are as follows with the exit criteria
and parameter updates specified below. An example of a targeted regularization termR
based ona posteriorierror indicators is given in Section 6.

Algorithm 5.1 (Basic algorithm for (2.9)). Start with initial x0, γ, σ0. On partition
Tk, k = 0, 1, 2, . . .

1) ComputeR, g′(x̄).
2) Setα0 = ‖g(x0)‖.
3) While Exit criteria 5.2 are not met on iterationn− 1:

(i) Setσ according to(4.9).
(ii) Solve(αnR + γ{σg′(xn) + (1− σ)g′(x̄)})∆xn = g(xn).

(iii) Updatexn+1 = xn +∆xn.
(iv) Updateαn.

4) Updateγ for partition Tk+1 according to(5.3)

Criteria 5.2 (Exit criteria). Given a user set tolerancetol, an accepted rate of conver-
gence given byqacc = 1 − 1/(Mγ) for some constantM , e.g.,M = 2, and a maximum
number of iterations either chosen as a constant or based on the predicted rate of con-
vergence, exit the solver on partitionTk after calculating iteratexn+1 when one of the
conditions holds.

1) ‖g(xn+1)‖ ≤ tol.
2) (i) ‖g(xn+1)‖ < ‖g(xn)‖, AND

(ii) ‖g(xn)‖ < min{‖g(x0)‖, ‖g(xk−1)‖}, AND
(iii) ‖g(xn+1)‖/‖g(xn)‖ < qacc, AND
(iv) ‖g(xn+1)‖/‖g(xn)‖ > ‖g(xn)‖/‖g(xn−1)‖.

3) Maximum number of iterations exceeded.

In terms of the three phases of the solution process in [21], the final asymptotic regime
is characterized by the iterations terminating by Criteria5.2 (1); iterations in the pre-
asympototic regime terminate with Criteria 5.2 (2); and iterations terminate with a mix
of Criteria 5.2 (2) and (3) in the initial phase.

The second exit criterion 5.2 (2) merits some explanation, as it allows the iteration to
end once reduction of the residual has slowed indicating theiterate has a attained a rea-
sonably stable configuration from which a good prediction about where to refine the mesh
may be determined. The first two clauses require the residualis decreasing, and has de-
creased below the level given by the previous iterate with atleast as much decrease from
the initial iteration on the current partition and the residual from the previous partition, if
it is well defined. The third criterion requires error reduction at or close to the predicted
rate, and the last that the error reduction between iteratesis slowing down. These four
criteria together assure the sequence of transitional states is not getting further in the
sense of the solver’s residual from a converged solution, and prevent situations such as
spikes propagating indefinitely across a sequence of partitions. While spikes, overshoots
or other undesirable characteristics may propagate through several refinements, such so-
lutions will eventually not reduce the residual at the specified rate. When the adaptive
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mesh is fine enough, these characteristics are observed to smooth out, and otherwise the
solver eventually fails and the solution is reset and started again on a finer mesh.

One of the main improvements of (2.9) over the regularized method of [21] is the
generation of more stable sequences of transitional iterates through the pre-asympototic
phase. The sequence of pre-asymptotic approximate problems only partially resolve the
data and as internal layers are uncovered over several refinements the condition of these
problems is generally bad. The high-frequency dissipationof the Newmark strategy com-
bined with the stabilization of the iterates produced by theσ-splitting allow sequences
of solutions to propagate through this regime and the mesh tobe marked via error indi-
cators leading to the accurate solution of the problem on otherwise coarser meshes than
possible if starting the solver on a mesh that is uniformly fine enough to resolve the data.
In order to make use of the stability and dissipation properties of larger values ofγ = γk
as well as the asymptotically quadratic convergence if the iterations are stable forγ = 1,
the following minimal guidelines are presented, based on the termination criteria above.

Update 5.3 (Newmark parameterγ). . Generally, if the predicted error reduction rate is
achieved,γ should be reduced; and if the iteration fails, more stability is needed andγ
should be increased.

(1) Exit criterium 5.2 (1): Ifγk > 1 set1 ≤ γk+1 < γk.
(2) Exit criterium 5.2 (2): If‖g(xn+1)‖/‖g(xn)‖ is within tolerance of1− 1/γk, set

1 ≤ γk+1 < γk.
(3) Exit criterium 5.2 (3): Setγk+1 > γk.

In practice, the residual tends to get reduced below tolerance onceγ = 1. In the
results of Section 6,γ is decreased by two when the target rate is achieved, decreased by
one if a stable rate lower than predicted is achieved, increased by one when the solver
fails, and by two if the maximum number of iteration is exceeded while the iterations are
converging below the acceptable rate. An initialγ0 should be chosen large enough to see
error reduction on the initial mesh, and not significantly larger.

The regularization parameterαn = 1/∆tn is updated by the method described in [21],
repeated here for convenience. In accordance with the convergence Theorems 4.3 and 4.6,
this strategy assuresαn ≤ ‖g(xn)‖ so long as the residual is decreasing.

Update 5.4 (Tikhonov regularization parameterα). Setβ0 = 1. For n ≥ 1,

αn = βn‖g(x
n)‖, with βn =

‖g(xn)‖

‖g(xn−1)‖
.

To reduce rapid fluctuation ofβn, correct to ensureβn−1/2 ≤ βn ≤ 1 in the case that
‖g(xn)‖ < ‖g(xn−1)‖ andβn ≤ 2βn−1 if ‖g(xn)‖ > ‖g(xn−1)‖.

5.1. Marking strategy. An a posteriorierror indicatorηT , T ∈ Tk is assumed avail-
able to determine adaptive mesh refinement and as one option for determining a targeted
regularization termR. In the current results, standard local residual-based element indi-
cators as in for instance [23, 11] are used for both of these purposes, further described
in Section 6. Other approaches to solver- and problem-specific regularization and mesh
refinement are currently under investigation by the author.

The goal of the marking strategy is to build a mesh that is globally fine enough for
stability, and locally as fine as necessary to achieve the desired accuracy. To improve the
efficiency of the method by increasing the stability of the transitional states in the pre-
asymptotic phase, the following marking strategy is presented. Based on exit criteria 5.2
there are three possible outcomes of the nonlinear solve on refinementTk.
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1) Exit criterium 5.2 (1): The iteratexk has residual‖g(xk)‖ ≤ tol.
2) Exit criterium 5.2 (2): The iteratexk has residual‖g(xk)‖ > tol.
3) Exit criterium 5.2 (3): The solver failed andxk is reset to zero.

In the case of 5.2 (3), the coarsest set of elements in the meshare refined. Failure of
the solver reflects aglobal rather than alocal problem. Starting on a sufficiently coarse
mesh, several resets are expected.

In the case of 5.2 (2) the error indicatorsηT are computed, and the mesh is refined
both according to the elements with the largest local indicators, and according to the
coarsest elements with the largest local indicators. This strategy allows local refinement
to take place in order to capture boundary and internal layers to attain eventual accuracy
and efficiency while also building the adaptive mesh fine enough to achieve stability.
In meshes that are too coarse to resolve the data and where theapproximate problem
may have coefficients based on highly inaccurate approximate solutions, nonphysical
overshoots often develop in the iterates; while the error indicators in the vicinity of these
spikes may be high, refining primarily in these regions exacerbates the problem. As in
case 5.2 (3), a large residual‖g(uk)‖ predicts a global issue with the mesh. However,
valuable information about the near-singularities in the problem data can be predicted
from the non-converged iterates, so some local refinement can build a more efficient
mesh.

In the case of 5.2 (1) the error indicators are computed, and the mesh is refined with re-
spect to the largest local indicators. Anyreasonablemarking procedure [22] for cases 5.2
(1)-(2) may be applied; in particular for case 5.2 (2) both the element with the largest lo-
cal indicator must be marked, as well as the coarsest elementwith the largest local indi-
cator. In the current results, the Dörfler marking strategyis used with parameterθ, which
for case 5.2 (2) is split intoθ = θC + θF and the marked setsMF ⊂ Tk andMC ⊂ Tk

are chosen by sets of least cardinality with

∑

T∈MF

η2T ≥ θF
∑

T∈Tk

η2T ,
∑

T∈MC

η2T ≥ θC
∑

T∈Tk

η2T , (5.1)

and the marked setM = MF ∪MC . In case 5.2 (1),θF = θ andθC = 0. An heuristic
choice ofΦ(θ) = θC is given in Section 6.

6. NUMERICAL EXAMPLES

The nonlinear solver (2.9) is demonstrated on three problems with different struc-
ture in their internal layers. In Example 6.2 results are reported for a model nonlinear
convection-diffusion problem of the formg(u) = 0 which has a smooth sinusoidal solu-
tion. The first variation on the model problem, Example 6.3 demonstrates the algorithm
on the same differential operator with the problem data chosen to generate a higher fre-
quency solution. Example 6.4 shows the results for a relatednonlinear diffusion problem
with two concentric internal layers. The adaptive finite element method is implemented
using the finite element library FETK [18] and a direct solveris used on each linear sys-
tem. Both trial and test spaces are taken as the linear finite element spaceVk consisting
of Lagrange finite elementsP1 over partitionTk that satisfy the homogeneous Dirichlet
boundary conditions.
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The locala posterioriresidual-based indicator, and corresponding jump-based indica-
tor for elementT ∈ Tk with hT the element diameter are given by

ζ2T (v) = hT‖JT (v)‖
2
L2(∂T ) (6.1)

η2T (v) = η2Tk(v, T ) := h2T‖g(v)‖
2
L2(T ) + ζ2T (v), (6.2)

JT (v) := J[κ(v)∇v · nK∂T , with jumpJφK∂T := limt→0 φ(x+ tn)− φ(x− tn), wheren
is the appropriate outward normal defined on∂T . The error estimator on partitionTk is
given by thel2 sum of indicatorsη2Tk =

∑

T∈Tk
η2T , and similarly forζTk .

On each mesh partitionTk the penalty matrixR = Rk is a localized version of the
Laplacian stiffness matrix denotedRglobal. LetDloc a diagonal matrix of zeros and ones,
vj a vertex of subordinate to partitionTk, andζT = ζT (u

0). Then set

ψ̃k =
√

medianT∈Tk(ζT ), andψk =

{

ψ̃
1/2
k , if ψ̃k > 1,

ψ̃, otherwise,

and

Dloc
jj =

{

0, if ζT ≤ ψk for each element that containsvj as a vertex,
1, otherwise.

(6.3)

Then setRk = DlocRglobalDloc.

Remark 6.1. In [21] a similar strategy is applied using the full indicatorηT as opposed
to theζT the jump-term alone. This modification was made to select degrees of freedom to
penalize against curvature that show the greatest disparity in curvature as predicted by
the jump term. The role of the selection functionψ is to regularize based on spikes in the
indicators leaving the stable dof unregularized to speed convergence. As the algorithm
approaches the asymptotic phase the selection processψ becomes unimportant because
αn ≤ ‖g(xn)‖ → 0.

In these results the Dörfler parametersθC + θF = θ with θ = 0.6, for refinementk+1
is determined according to

θC = Φ(θ) = θ

(

1

2
+

1

π
arctan(‖g(uk)‖/100− π/2)

)

. (6.4)

This form ofΦ(θ) is chosen to ensure a significant fraction of the marked set isfrom the
coarse mesh until the residual drops below a given threshold. In the following examples
the parameter for settingσ by formula (4.9) areσ ≥ σ0 = 0.9 andK0 = 2000. The
tolerance for the nonlinear solver istol = 10−7.

Example 6.2 (Nonlinear convection diffusion). Consider the nonlinear convection dif-
fusion equation onΩ = [0, 1]× [0, 1],

g(u) := −div(κ(u)∇u) + b(u) · ∇u− f(x, y) = 0 ∈ Ω, u = 0 on∂Ω. (6.5)

The nonlinear diffusion coefficient is given by

κ(s) = k +
1

((ǫ+ (s− a)2)
, with a = 0.5, andk = 1. (6.6)

The nonlinear convection term is given by

b(s) = ((s− a), (s− a)2)T , (6.7)

and loadf(x, y) chosen so the exact solutionu(x, y) = sin πx sin πy.



A SOLVER FOR NONLINEAR CONVECTION DIFFUSION 15

Existence of isolated solutions of (6.5)-(6.7) is discussed in Section 2 following [24],
assuming the mesh is fine enough. This problem without the convection term is investi-
gated in [21], withε = 10−3; the method here has been observed to run to convergence
from a mesh of 144 elements withε = 8 × 10−5, and was tested on smaller values ofε;
however the size of the resulting meshes were unwieldy for test-problems. Data on the
iterations in the pre-asymptotic regime is presented here for ε = 2 × 10−4 starting on a
mesh of 144 elements, withγ = 10 and run until convergence; and forε = 6× 10−4 run
well into the asymptotic regime. In the pre-asymptotic casethe iterations are terminated
by exit criteria 5.2 (2), and in most cases whereγ is reduced it is reduced by one as the
iterates are converging at a rate better than predicted. On refinements20, 21 and28 the
final iterates are converging at or close to the predicted rate q = 1 − 1/γ, andγ is re-
duced by two. Table 1 summarizes the computation showing thefinal residual‖g(uk)‖,
the final ratio‖g(un+1)‖/‖g(un)‖, the final value ofσ and the Newmark parameterγ.

Of note is the range in magnitude over which the residual shows monotonic and in
fact predictable and stable decrease. On level 7, the first partition in the pre-asymptotic
regime, the residual is reduced from an initial‖g(u0)‖ = 1564.5, to a final‖g(u9)‖ =
871.1, usingσ = σ0 = 0.9 on each iteration. The final pre-asymptotic solve reduces the
residual from‖g(u0)‖ = 4.6, to ‖g(u4)‖ = 1.4, with σ > 0.996 and approaching one.
On level 7 for whichγ = 20, the ratio of consecutive residuals stabilizes well below the
predicted rate whereas in level 28, the predicted rate1 − 1/γ, with γ = 3, is achieved.
Most of the pre-asymptotic solves exit after 3-4 iterations, and two of the solves take up
to 9; generally the higher number of iterations correspondsto qualitative changes in the
iterates such as the smoothing of spikes and changes in curvature illustrated for instance
in the solution snapshots in Figure 3.

Settingε = 6 × 10−4, a milder version of the same problem illustrates the reduction
in the error from the initial through the pre-asymptotic andinto the asymptotic regime
which in this case runs from levels2 to 19. The computation is again started on a mesh
of 144 elements withγ = 10. Figure 1 shows a logarithmic plot of theH1 error against
the number of elementsn compared withn−1/2. The increase in the error and estimator
for the first several refinements demonstrates the sequencesof partitions capturing the
internal layer in the problem data; the first mesh in Figure 1 and corresponding solution
in Figure 2 show the representative behavior as this occurs;the flatness at the top of
the solution is characteristic of the penalization by the Laplacian against curvature. The
second mesh of Figure 1 and corresponding solution of Figure3 show the approximate
solution as the internal layer is better resolved, but spurious nonphysical oscillations are
still apparent in the iterates; this mesh further illustrates the characteristic of the layer
getting captured by the mesh, but not uniformly. The final mesh of Figure 2 and solution
of Figure 3 are representative of the end of the asymptotic regime where the mesh now
refines to capture the layer with increasingly uniform resolution and the solution has
the overall correct shape. Within several iteration the approximate solution looks like a
sinusoid and the Newton-like iterations solve to tolerance. It is noted in Figure 1 that
the error is stable for the first several iterations in the asymptotic regime while the error
estimator reduces at a steady rate; presumably this occurs due to the presence of another
nearby solution of (6.5). A similar phenomenon is observed in [13] in examples where
the monotonicity is violated and the solution is known only to be locally unique.

Example 6.3 (Higher frequency solution). A variation of Example 6.2 is considered
where the problem is given by(6.5)-(6.7), with ε = 6 × 10−4, and the loadf(x, y)
chosen so the exact solution isu = sin(2πx) sin(2πy).
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Level ‖g(uk)‖
‖g(un+1)‖
‖g(un)‖ σk γk

...
7 871.1 0.90 0.9 20
8 786.8 0.93 20
9 647.0 0.94

...
19

10 535.0 0.94 18
11 445.0 0.93 17
12 368.3 0.93 16
13 305.2 0.93 15
14 275.7 0.92

... 14
15 231.3 0.92 0.9 13
16 165.6 0.91 0.909 12
17 137.7 0.90 0.924 11
18 122.1 0.90 0.932 10
19 98.4 0.88 0.944 9
20 75.0 0.87 0.957 8
21 59.0 0.83 0.964 6
22 44.0 0.75 0.971 4
23 23.5 0.67 0.983 3
24 14.1 0.90 0.990 3
25 7.7 0.71 0.995 3
26 4.8 0.68 0.997 3
27 2.5 0.67 0.998 3
28 1.4 0.67 0.999 3
29 1.9e-08 8.1e-03 1 1
...

TABLE 1. Summary of data from the pre-asymptotic regime for Exam-
ple 6.2 withε = 2× 10−4.

10 3 10 4 10 5
10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

10 5
H1 Error Reduction

|u-u k | 1

ηk

n -1/2

FIGURE 1. H1 error (below) and error estimator (above) againstn−1/2

wheren is the number of elements, for Example 6.2 withε = 6× 10−4.
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FIGURE 2. Mesh for Example 6.2 withε = 6 × 10−4 after 6, 12 and 18
adaptive refinements from an initial mesh with 144 elements.

FIGURE 3. Snapshots of the finite element solution for Example 6.2 with
ε = 6 × 10−4 in the pre-asymptotic regime after 6, 12 and 18 adaptive
refinements from an initial mesh with 144 elements.

Local uniqueness of the solution follows from [24], assuming the mesh is fine enough.
This example features two disjoint internal layers in the problem data, one about each
positive peak of the sinusoid. The decrease in the residual in the pre-asymptotic regime
closely resembles the data presented in Table 1 for Example 6.2. Forε = 6 × 10−4,
the pre-asymptotic phase for this example runs from levels4 to 26 as opposed to2 to
19 for the sinusoid with a single peak; and the mesh in Example 6.3 maintains a maxi-
mum meshsize ofh = 8.6 × 10−4, whereas in Example 6.2, the asymptotic meshsize is
h = 3.5 × 10−3, indicating two more coarse mesh refinements are taken to stabilize the
iterates. This is to be expected due to the decrease in width of the corresponding lay-
ers. Mesh partitions and snapshots of the pre-asymptotic iterates are shown in Figures 4
and 5. The characteristic flatness of the peaks due to the penalization against curvature
is again observed in the first two iterates, shown respectively at the8th and12th adaptive
refinements, and resolved by the22nd, as seen on the right. The iterates show a qual-
itatively different behavior than the nonphysical oscillations of Example 6.2; here, the
downward peaks which should have the same magnitude as the upward peaks start as
shallow and extend to their full depth as the refinements progress.

Example 6.4 (Concentric layers). Consider the nonlinear diffusion problem onΩ =
[0, 1]× [0, 1] with two concentric internal layers.

g(u) := −div(κ(u)∇u)− f(x, y) = 0 ∈ Ω, u = 0 on∂Ω, (6.8)
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FIGURE 4. Mesh for Example 6.3 withε = 6 × 10−4 after 8, 14 and 22
adaptive refinements from an initial mesh with 144 elements.

FIGURE 5. Snapshots of the finite element solution for Example 6.3 with
ε = 6 × 10−4 in the pre-asymptotic regime after 8, 14 and 22 adaptive
refinements from an initial mesh with 144 elements.

with the nonlinear diffusion coefficient given by

κ(s) = k +
1

((ǫ+ (s− a)2)
+

1

((ǫ+ (s− c)2)
, with a = 0.5, c = 0.8 andk = 1.

(6.9)

The loadf(x, y) is chosen so the exact solutionu(x, y) = sin(πx) sin(πy).

Local uniqueness of the solution again follows from [24], assuming the mesh is fine
enough. Similarly to the error decrease in the first example,Figure 6 shows a temporary
leveling off of the error while the estimator decreases at a steady rate at the beginning of
the asymptotic phase indicating the presence of a nearby solution. The discontinuity in
the error estimator and corresponding jump in the error is due to the final coarse mesh
refinement where the solution is reset at adaptive level 22, after which the mesh maintains
a maximum meshsize ofh = 1.7 × 10−3, half the meshsize of Example 6.2. Once in
the pre-asymptotic regime the internal layers are progressively resolved and the residual
drops below tolerance converging at a quadratic rate whenγ = 1, at adaptive level 37.
Due to the aforementioned flattening of the iterates inducedby the solver’s stabilization,
the approximate solutions gradually increase in height as the regularization parameters
are reduced; as such, the inner internal layer centered atu = 0.8, is uncovered later
than the outer layer centered atu = 0.5. This phenomenon is illustrated in the adaptive
meshes at levels25, 30 and35 shown in Figure 7. The corresponding iterates shown
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FIGURE 6. H1 error (below) and error estimator (above) againstn−1/2

wheren is the number of elements, for Example 6.4 withε = 6× 10−4.

FIGURE 7. Mesh for Example 6.4 withε = 6× 10−4 after 25, 30 and 35
adaptive refinements from an initial mesh with 144 elements.

FIGURE 8. Snapshots of the finite element solution for Example 6.4 with
ε = 6 × 10−4 in the pre-asymptotic regime after 25, 30 and 35 adaptive
refinements from an initial mesh with 144 elements.

in Figure 8 display the characteristic spikes between the outer layer and the boundary
similar to those in Example 6.2, and in this case the peak of the sinusoid progressively
resolves the curvature in two flatter regions.
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7. CONCLUSION

The σ-split Newmark method of regularized pseudo-transient continuation is intro-
duced to solve the nonlinear convection diffusion problemg(u) = 0 starting from a
coarse mesh where the problem data is not yet resolved. The method is derived and local
q-linear convergence in agreement with the observed rate is established. An algorithm is
presented to fit the solver into a standard adaptive method, and is demonstrated on three
variations of a problem with steep internal layers. The method including the adaptive
update of the solver’s parameters on each refinement builds on the framework presented
in [21], and is designed to effectively stabilize linearizations over rough problem data
where spikes, overshoots and spurious oscillations otherwise prevent the sequence of
transitional solutions from approaching an accurate approximation. The results here are
an improvement first in terms of efficiency of the new solver which functions without
the use of the normal equations; and second by an improved setof exit criteria for the
solver which works together with an updated marking strategy to improve the stability
of the method through the pre-asymptotic coarse mesh regime. Ultimately this yields a
more efficient route to the asymptotic regime where the problem data is resolved and ap-
proximation properties hold. Future work will address targeted local regularization and
parameter selection of the nonlinear solver, and more general types of nonlinearites.
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