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AN IMPROVED METHOD FOR SOLVING QUASILINEAR CONVECTION
DIFFUSION PROBLEMS ON A COARSE MESH

SARA POLLOCK

ABSTRACT. A method is developed for solving quasilinear convectidfusion prob-
lems starting on a coarse mesh where the data and solutemrdent coefficients are
unresolved, the problem is unstable and approximationgstigs do not hold. The
Newton-like iterations of the solver are based on the fraorkwf regularized pseudo-
transient continuation where the proposed time integiatawvariation on the Newmark
strategy, designed to introduce controllable numericsgdidation and to reduce the fluc-
tuation between the iterates in the coarse mesh regime wiedata is rough and the
linearized problems are badly conditioned and possiblgfinite. An algorithm and up-
dated marking strategy is presented to produce a stableseguof iterates as boundary
and internal layers in the data are captured by adaptive peeshioning. The method
is suitable for use in an adaptive framework making use ddllecror indicators to de-
termine mesh refinement and targeted regularization. B@sivand g-linear local con-
vergence of the method is established, and numerical exasndgimonstrate the theory
including the predicted rate of convergence of the iteretio

1. INTRODUCTION

This paper builds on the framework 6f [21] and develops aineal solver suitable
for use in adaptive methods for quasilinear elliptic profde The method is developed
to stabilize the linearizations of nonlinear diffusion aswhvection diffusion problems,
especially when there may be steep internal or boundarydagehe problem data. The
sequence of linear problems encountered by a Newton-likkadaunder these circum-
stances takes the form of convection diffusion or reactimmvection diffusion and the
sequence of approximate solutions is subject to spikessbwets and spurious oscilla-
tions in the convection-dominated regime.

The present approach builds on a regularized version ofskadgn-transient contin-
uation method as in for instance [1,/ 19/ 6] 12, 7, 21] and thexeaces therein, and on
each mesh refinement seeks a steady-state solution of ttieegamevolution problem
0/0t(Ru) + g(u(t)) = 0, for positive semidefinite regularization terfin the inter-
est of solvingg(u) = 0. In this analysis, further stabilization is introducedoirthe
time discretization to address the problem of nonphysisalllations. Time discretiza-
tions featuring controllable high-frequency numericasipation are well known in the
finite element analysis of structures as in for instance [18),15, 17/ 4], and a varia-
tion related to these methods referred to here asthglit Newmark update is presently
introduced. This method makes use of the controllable piggin of the Newmark up-
date and further controls fluctuations between the itefayeseezing a small fraction
the linearization about a point with favorable propertiBise o-split Newmark method is
derived,g-linear local convergence with a predictable rate is esthét, and the method
is demonstrated on three variations of a model problem wé@psinternal layers.
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The goal of the solver in the adaptive setting is to start onase mesh where the
problem data is generally not resolved and produce a sequaintransitional states
which may not be accurate solutions to the coarse mesh pnsblaut do allowa poste-
riori error indicators to detect the layers present in the proldata and refine the mesh
to be globally fine enough for stability and locally fine enbug achieve accuracy and
efficiency. The sequence of approximate problems can bsifiéasinto three phases, the
initial phase where the mesh is globally too coarse and @i error is high and many
features of the problem data remain undetected by the tiatien, the pre-asymptotic
phase where the mesh is fine enough for stability but the pnolita is only partially re-
solved, and the asymptotic regime where the standard egisteniqueness and approx-
imation properties hold. In the coarse mesh regime the sak&s as much stabilization
as necessary to produce smooth transitional solutionggipte-asymptotic regime the
solver adaptively reduces the added stabilization inangasoth accuracy and the con-
vergence rate as the data is resolved and the approximdikeprdbecomes less rough;
in the asymptotic phase the solver limits to a standard Newiethod where the initial
guess interpolated from the previous refinement is a goorbappation to the solution
and the iterations converge quadratically.

The requirements of the adaptive method are that a local edacator is computed
on each refinement andreasonablemarking strategy in the sense of [22] is employed
to determine the next mesh refinement. A modification of tarddrd adaptive marking
strategy is proposed in which the marked set is determinga/dyarts: one that refines
the elements with the largest indicators, and the otherdfiaes a subset of the coarsest
elements of the mesh when the residual from the final Newtkarnitkeration is significant.
The method reported here improves bnl[21] both in terms dfieffcy and in terms of
the strengths of near-singularities it is able to resolve.

The remained of the paper is organized as follows. SeCtidro@®s the derivation of
the pseudo-transient Newmark ameplit Newmark methods|, (2.8) and (R.9). Secfion 4
demonstrates locgtlinear convergence of the residual for these methods, \bibkirate
g = 1 — 1/, with v the parameter from the Newmark update. Sedtion 5 describes a
basic algorithm to implement the solver in an adaptive métlamd Sectiohl6 contains
the results of numerical experiments using the describegdtad algorithm and (219).

The following notation is used in the remainder of the pajpée functiong(u) refers
to a specific problem or problem class and:) is used in the formal discussion of
Newton-like methods. Theth iteration subordinate to thieh partition7, is denoted
xy, while 2™ is thenth iteration on a fixed partition ang, is the final iteration on the
kth mesh, taken as the approximate solutiorﬁ@n In defining the weak and bilinear
forms in the next sectiou(x = [, u(z)v(z) dz, and similarly for vector-valued
functions.

2. TARGET PROBLEM CLASS

The nonlinear solver is developed to approximate solutiortee nonlinear problem
g(u) = 0, for polygonal domaifi2 andg : X — Y* with ¢'(u) € L(X,Y™) for real Ba-
nach spaceX andY’, particularly wherey(u) takes the form of a quasilinear convection
diffusion or diffusion problem in divergence form

g(u) = —div(s(u)Vu) + b(u) - Vu — f(z) =0inQ C R*, u=00n0Q. (2.1)
or
g(u) = —div(k(u)Vu) — f(x) = 0in Q C R? u = 00nos. (2.2)
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Multiplication by a test function and integration by parteothe divergence term yields
the weak form of[(2J]1)

B(u,v) = (k(u)Vu, Vo) + (b(u) - Vu,v) forall vV e Y™, (2.3)
and linearizing about atw € X yields the bilinear form induced by (u)

B'(u;w,v) = (k(u)Vw, V) + (k' (v)wVu, Vo) + (b(u) - Vw,v) + (' (u)wVu,v).
(2.4)

For f € Ly(2) N Lo (2) andx(u) bounded away from zero with(s), '(s) andx”(s)
bounded as in’[3], them(2.2) has a unique solutiog W*(Q2), with 2 < p < oc.
Both (2.1) and[(2.2) fit into the context of [24] with the asqition thatx(u) is bounded
andg'(u) : H}(Q) — H~(Q) is an isomorphism, in which case the solutioiis an
isolated solution.

The discretized equation is, fing € X, such thatB(u,,v) = 0 for all v € Y}, where
X;, € X andY), C Y are discrete finite element spaces with respect to triatigold,,
where the family of triangulation§7;, }o<n<1 is regular and quasi-uniform in the sense
of [5]. Existence, uniqueness and approximation propemiethe discrete problems
induced by[(2.1) and (2.2) are found in [3], [24] and the refees therein, assuming the
mesh is fine enough. The problem is then to start on a coarde; imas that is not fine
enough in terms of data resolution, stability or approxioraproperties, and build one
that is. The goal of the solver is to navigate from a coarse safficiently fine mesh
where the approximation properties do hold, and to do so bBgtihg an both an efficient
adaptive mesh and a reasonable initial guess to start théoNdike iterations on each
refinement along the way.

The linearization of[(Z2]2) has the form of a convectionhfon equation, and (2.4)
the linearized form of[(2]1) has the form of a convection tieacdiffusion equation
a(w,v) + B(w,v) + y(w,v) with

a(w,v) = (k(u)Vw, Vo) (2.5)
B(w,v) = (k' (u)wVu, Vv) + (b(u) - Vw,v) (2.6)
Y(w,v) = (b'(v)wVu,v). (2.7)

Using a standard Newton method to solve the nonlireal (2it8) @.4) generally does
not work when there are steep layers present in the probléay dad coarse mesh ap-
proximations of the problem are observed to be indefiniteildsednditioned, consistent
with the observations in [14]. Many of the problems encoredencluding formation of
spurious spikes, overshoots and instability are symptcroéthe corresponding linear
convection-dominated problemis [9]. Techniques form friwa finite element analysis
of structures [20, 16, 15, 17, 4] use numerical integrateasuring high-frequency dissi-
pation to capture lower frequency modes of the solution. 8fproach here investigates
the use of the Newmark update and a stabilized variationas the time-integrators of
a pseudo-transient continuation-like method aslin/[8] 19¢21].

The next section develops the two following methods to imprihe convergence of
the coarse-mesh iterates in the sequence of linearizedbpnebA positive semidefinite
R is used to target specific degrees of freedom for regul@mizaand the role o may
be seen either from the homotopy perspective as a modificafidghe path between
an initial u° and u* that solvesg(u*) = 0, or from the regularization viewpoint as a
penalty against certain characteristics of the iteratesiHat follows,R is chosen based
on the Laplacian to penalize against high curvature, witreles of freedom selected
for regularization based on anposteriorierror indicator. The selective approach to
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regularization distinguishes the method presented heteraf21] from the method of
pseudo-transient continuation found elsewhere in thealiiee. Fory > 1, a Newmark
update generalizing a backward Euler discretization gidhe iteration

(R +vg'(@")w" = —g(z"), 2" =a"+uw". (2.8)
The proposed-split Newmark update yields the iteration,
(anR+~7{(1-0)g(Z) +0d (@)} w" = —g(z"), 2" =2"+w", (2.9)

and analysis and demonstration of this last method is thesfo€ the remainder of the
paper. Local convergence of (R.8) is discussed along theamdylocal convergence
of (2.9) is established by a perturbation of that result. ethod based on (2.9) was
also tested and found effective on a shiftedaplacian

g(u) = =div{(e + |Vu—a|)’7?) (Vu—a)} — f, (2.10)
and the related

. 1
g(u) = —div { <b + m) (VU - a)} - f, (211)

problems similar to those investigated in [2] ahd|[13], whieside outside the current
target class but still benefit from the regularization teghas described here when start-
ing the adaptive method from a coarse mesh, especially ddb#icients << 1.

3. CONTINUATION METHODS

The homotopy or pseudo-transient continuation methodatiilsting the Newton-like
iterations for finding the solution* of g(z) = 0 is developed by discretizing the ODE
M) s o) =0, a0) =" (3.1)
with a positive semidefinite linear function&l In much of the literatureR is taken to
be the identity or a scaled version thereof [8, 19], and tfexeaces therein; however, the
theory is developed for positive-definite functionals otitran the identity [1] where it is
referred to as the “s” method, and positive semi-definitefiomals in [6/ 211]. This idea
can be generalized to discretizing the ODE based on the neuoations formulation

of (3.1)
%R*Rx + 4 (z(t)*g(z(t)) =0, 2(0) =", (3.2)
with adjoint R* the formal adjoint ofR andg’(x)* the formal adjoint of)'(z). As shown
in [21], the discretization of (312) corresponds to the mdtbf Tikhonov regularization.
As discussed in for instancel [1,(8,/19, 6], lettina finite dimensional approxima-
tion to x(t,) with At¢, = ¢, — t,, the standard method is to discretize [3.1) by a
backward-Euler approximation &/ 9¢( R x) and a linearization of (z" ™) aboutz™. In
the case of discretizing (3.2),(z"')* is approximated by’(z")*. To increase stabil-
ity of the linearized system, other discretizations[of [&& presently considered. The
backward-Euler time discretization is replaced by the ngeeeral Newmark update,
and the linearization of(z"*!) is split about two distinct points, one the latest iterate
and the other yielding a Jacobian with favorable properties
By the original method of backward-Euler discretization &inst order Taylor expan-
sion about the previous iterate, the resulting Newtonili&eation is given by

(Alt R+ g’(x")) w" = —g(z"). 2" =" 4w (3.3)
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This method increases the stability of the linear systenpésitive definite and possibly
semi-definitey’(u), but runs the risk of shifting the spectrum of the approxertcobian
towards zero, making the condition significantly worse m¢hse thag’'(u) is indefinite,
resulting in large fluctuations between the iterates. Tceceph this situation which
occurs in the coarse mesh approximation of quasilinear@nud the iteration based on
the normal equations enforcing the shift of the spectrumydvean zero is given by

1
(At 'R+ g’(:c")*g’(x">) w" = —g'(z")g(a"), " =a"+uw"  (3.4)
This method is introduced in [21], where it is shown that)3s4also found by minimiz-
ing the Tikhonov functionadr,, (w) for

Ga(w) = |lg'(a")w + g(a™)[[§ + | R[5, (3.5)

with o, = 1/At, and|| - ||o the L, norm. As in [10], the necessary and sufficient con-
dition for the minimizerw is G/, (w) = 0, yielding (3.4). While successfully increasing
the stability of the system, this method remains unsatisfgcue to the increased com-
plexity of solving the system based on the normal equatichsiew method is now
introduced which adds stability while preserving the siparsf the system. The cost,
as shown in Section 4 is trading the asymptotically quad@invergence of (3.3) for
g-linear convergence. The proposed algorithm of Sedtiondatgs the parameterof
the Newmark method on each mesh refinement as the sequemceasfdystems stabi-
lize until the method reduces to the origirlal (3.3) for whigladratic convergence of the
error is observed.

3.1. Time discretization by the Newmark method. The Newmark method [20] dis-
cretizes the time derivative = Ju/0t by

" — 2" = At {(1— )" 4+ it} (3.6)

Fory = 1, (3.8) reduces to the backward Euler discretization desdriabove. As
discussed in [20] this time integrator is second order ateuory = 1/2 and introduces
nonphysical damping of the high frequency modes~or- 1/2 proportional toy —
1/2. More sophisticated and# collocation methods as in [16, 15, 4] incorporating the
Newmark update are designed to further control numericadiplation across targeted
frequencies. In the current context the improved resahuiad risk of overshoot of these
methods designed with two time derivatives in mind is pogdigtof interest but their
implementation in a pseudo-transient continuation sgtisnbeyond the scope of this
article. For stabilizing the transitional states of theusatce of coarse-mesh problems,
damping of the high-frequency oscillations is the desegalybperty and more important
than a higher order of accuracy.

Solving [3.6) fori™ !
n+1 n
.n+1_x -z _(1_7>n
" = AL 5 ", (3.7)
Applying Ri™ = —g(z™) andRi" ™! = —g(z"™!) to (3.7)
L n+l _ .m\ _ (1_ry> ny _ n+1
B - = S — g (3:8)

Linearizingg(z"™) aboutz™, obtain the Newton-like iteration

1
(At R+ vg’(x")) w" = —g(z"), 2"t =2" +uw" (3.9)
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For~ > 1 this method comparatively scales down the influence of thlet#hand side
data; the danger is still allowing and arguably increasimg ltkeliness of shifting an
indefinite left-hand side operator spectrum towards zerg.tH& same approach, the
iteration based on the normal equations is given by

1
(At R'R+ vg/(x”)*g’(ﬂf“)> w' = —g'(a")g(a"), 2" =a"+w".  (3.10)
Due to the overdamping effect of setting the parameter 1/2, the iterations[(319)
and [3.10) stabilize the solution in some situations whieedteration[(3.4) is infeasible.
Similarly to (3.4)- [3.5), the solution™ of (3.10) is seen to be the minimizer of the
generalized Tikhonov-type functional

1 o,
Go(w) = ||g'(2™)w + ;g(x")Hﬁ + 7IIRwH3, (3.11)
with a,, = 1/At,,.

3.2. The Newmark update with o-splitting. The Newark discretization of the previ-
ous section successfully introduces high-frequency pliggin increasing the stability of
the linearized system but suffers the same drawback as thevbed-Euler discretization
requiring the formulation based on the normal equationkéncase of a possibly indef-
inite Jacobian to control highly unstable sequences odtiést Ther-split Newmark
update runs without the use of the normal equations: effegtireezing a small fraction
of the Jacobian at a point with favorable properties dracafi reduces the fluctuations
between iterates in the coarse mesh regime where boundauptannal layers are only
partially resolved.

As seen in the derivation, the method can be thought of atisglthe linearization of
¢'(z"1) about two points, or more precisely as approximathg by a combination of
2" #" and Az™ where the first is used in the backward-Euler update, thetficstare
used in the Newmark update with the second adding contralmianical dissipation; and
the third is introduced here to reduce the fluctuation of geobian outside the domain
of convergence of the Newton-like iterations. The methodeisved as follows, and is
demonstrated in Sectidn 6 to work without the use of the nbagaations in situations
where other methods including those involving the normakgigns are seen to fail.

Starting with the Newmark update (8.6), each of the timevagisie terms on the right
is split into two parts

2" — 2" = At {(1 = y)oi" + (1 —y)(1 — 0)i" + yo i" T + (1 — 0)2" "}
= At {(1 —y0)i" + (1 — o) (&"*! — ") + yo "}, (3.12)

Solving forz"*! and applying the relatioRz" ™! = —g(z"*!)

1 n (1_0) -n+1 -n\ __ (1_70)n n+1
po RAx . R(% ") = pom " —g(x"). (3.13)
Applying the relation?i™ = —g(z") on the left and linearizing(z"*!) aboutz™ on the
right
1-o0)

1
(70At R+ g’(x")) Az" + (

(9(a™) — g(a™)) = ;—jgw). (3.14)
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Linearizing bothg(z"™!) andg(x™) about fixedz, g(z"*1) — g(z") = ¢'(z)Ax"™. Ap-
plying this and multiplying through byo

(g R+ 0 =@+ og @M} ) Aa” = —gla”). @19
Equation [(3.15) is the basis for tlesplit Newmark update. It contains four parame-
ters: o,, = 1/At,, 7,0 andz; while some guidance is provided, a detailed analysis of
these parameters will be addressed in subsequent work lauther. In the current re-
sultsz = 0 is used, and: = 2 the solution from the previous refinement interpolated
onto the current mesh has also been observed to works chosen as in [21] for the
backward-Euler discretization, > 1 may be set adaptively, increased to add stability
then decreased to speed convergencepandr, € (0, 1) is adaptively sent towards one
based on the norm of the latest residual on each Newtontgkation. It is observed in
numerical experiments thatshould be close to one, and as seen in Seéfion 4 this is a
necessary for the asymptotidinear convergence at the rate= 1 — 1/, in agreement
with the rate found using the Newmark discretization withitve o-splitting.

4. LOCAL CONVERGENCE

Local convergence of the residual is established for batbriahms [2.8) based on the
Newmark update, and (2.9) based on the Nemark updatewsfilitting of the Jacobian.
The second result follows as a perturbation of the firstofamose to unity, relying on
a weaker set of assumptions. Both results require the sapsehiiz condition on the
Jacobian. Denote the open ball abouty B(z,¢) = {y ||z — y| < ¢}.

Assumption 4.1. There existv;,, e > 0 so that for allx,y € B(z*,¢)
lg'(z) = g'(WIl < wille =yl forall 2,y € B(a",e).

Assumption 4.2. (c.f. Assumptions 2.2-2.3 [], and Assumptions 4.1 and 4.4[af]).
There exist$ > 0 so that for positive semidefinite, v > 1, and for all0 < «,, < ayy,
then for allz € B(z*,¢):

1) o, R+ v ¢'(z) is invertible.
2) [(anR + g ()7 < M,

3) [[(anR)(anR +7¢' (@) < e

First, ¢-linear convergence of the residual is established witagat 1 — 1/, for
~ > 1. Linear and asymptotic quadratic convergence for the ease 1 is shown
in [21], following from convergence of the error. In the peasdiscussion, convergence
of the error is neither used nor shown: it is observed in nicakexperiments that the
residual decreases at the predicted rate over iteratioesaffh™ ! — z™|| may not yet
be decreasing; in contrast, for the case= 1 the same quantity displays asymptoti-
cally quadratic convergence to zero together with the tedidThe following proof is a
variation of Theorem 2.12 of [7], where Assumptiénd 4.1 [aiitirdplace the affine con-
travariant Lipschitz condition used in that version of thewton-Mysovskikh Theorem
for the standard Newton method.

Theorem 4.3. Leta,, < ||g(z™)|| < ap and let Assumptioris 4.1 ahd ¥4.2 hold. Define
the open sef by

2
S= {x e B@',9) |lly@)ll < 77— +5£ZLM2}’ (4.1)
Y
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and suppose” < S, then by iteration(2.8), 2z"*! € S, and the sequence of residuals
convergeg-linearly to zero with asymptotic rate= 1 — 1/~.

Proof. Let Az™ = 2"+ — z". Then iteration[(2)8) is given by
(anR+7vd (2™) Az™ = —g(z™), 2" = 2"+ Az™ 4.2)
By the integral mean-value theorem

A

g(x™ + NAzx") = g(a™) + / g (z" + tAx™)Az"™ dt
= g(2") + A\ (") Az"™ + /0 (¢ (2" + tAx™) — ¢'(2")) Ax" dt
= (1-2) 06+ (2) anhentt2g @) ol

A
+ / (¢'(z" + tAx™) — ¢’ (™)) Ax™ dt (4.3)
0

Applying Assumptioi 4.2 (3) to the second term and the Liigatondition[4.1 to the
third term of [4.B)

lota + 3801 < (1= 2 lota) + —r 5l +

)\20)[,
2

AP
(4.4)

2, yielding

)\an wL)\QMQ n

o S o).

(4.5)

By the iteration[(4.2) and Assumptidn #.2 (2 x||* < MZ||g(z"™)

lota" + 280" < gGa) ((1-2) +

By the assumption,, < ||g(z™)]|, and forA € [0, 1]

n n n )\ )\ 1 7wLM2 n
lota + 380 < o)) ((1-2) + (2) (5 + 2575 ) o) . @)
g v/) \By 2
foreach) € [0,1] suchthat™ +tAz™ € Sforallt € [0, \]. By the logic of [7] Theorem
2.12, proceed by contradiction and assurfie' ¢ S; then there is a smalleate (0, 1]

with g(z™ + AAz") € 9S. For thath

lotan + 3809 < Bl ( (1-2) + (2) (5 + 2525 o)
< lg(@")]], 4.7)

a contradiction. This shows*"! € S. To establish the rate of convergence, ket 1
inf4.86.

ot < 1o (1) + (2) (5 + 255 et . @

which shows both thatg(z"™)|| < ||g(=™)| and the asymptotig-linear rate ofg =
1—1/vas|g(z)] — 0. O

Remark 4.4. Itis observed that the method converges with the prediadeeiwhen the
iteratesz™ ¢ S as given by(d.1). The lapse in the theory appears to be the bound on
||=™|| which apparently converges within a smaller set as comptoéhe residual.
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The asymptotic convergence of thesplit algorithm is addressed in the next theo-
rem as a perturbation of Theorém14.3. While it is not necgsisathe proof forg'(z)
to be positive definitez is ideally chosen so that (z) improves the condition of the
approximate Jacobian, allowing Assumptiéns 4.5 to holdh Wwétter constants than 4.2.

Assumption 4.5. (c.f. Assumption 412). There exist> 0 so that for0 < oy < o < 1,
fixed z, positive semidefinit&®, v > 1, and for all0 < «,, < ay,, then for allz €
B(z*,¢):

1) a,R+~{(1 —0)d(z) —og'(x)} is invertible.
2) |[(n B +{(1 = 0)g'(Z) = og'(x)}) 7| < M.
3) (anR)(an R+ {1 = 0)g(z) = og' () ) 7' < 7577

v/am

As with Assumptiori 4.2 (3), the third clause agrees with fihglar stability bound
of [6] Assumption 2.3, withn,, replaced by, /~. Local convergence of the-split
Newmark algorithm is established with the same asymptateas in the previous result.

Theorem 4.6. Leta,, < ||g(z")|| < ays and let Assumptioris 4.1 ahd 4.5 hold. Define
by
lg(z")]l

a:max{ao, I—T} , (4.9
0

for a givenKj,. Then there exist§ > 0 such that forz™ in the open sef given by
s ={zeB@,2)|lg@) <6} (4.10)

andz"*! defined by iteratiof2.9), it hold thatz"*! € S, and the sequence of residuals
convergeg-linearly to zero with asymptotic rate= 1 — 1/~.

Proof. Let Az™ = 2" — z". Then iteration[(219) is given by
(R +{(1 = 0)g'(z) + 0g'(z")}) A" = —g(z"), "' =2"+Az". (4.11)

Much of the proof parallels Theoreim 4.3, and is summarized.h&tarting with the
integral mean-value theorem

A
g(z" + NAz"™) = g(2") + / g (" + tAx™)Ax" dt
0
A

= g(z") + \¢'(2")Az" + /0 (¢'(a™ + tAx™) — ¢'(2™)) A" dt.

(4.12)
By iteration [4.11)
g (z™)Az" = —ig(x") — ioanAx” _1= Ug/(f)Ax”. (4.13)
Yo Yo
Bounding the second term on the right[of (4.13) by Assumst@b (3)
lon RAZ" || = [l R (R +H{(1 = 0)g'(Z) + 0g'(«™)}) " g(a™)|
1
lg(z")]], (4.14)

S -
1+ Bvy/om
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and by Assumptiorls 4.1 abd #.5 (2), then applying< ||g(z")|| andX € [0, 1]
A 1— A 1
lote + 3801 < o) { (1 2 ) + CSDnanaly @l + ()

1+ By/an)
WL)\z 2
2 gl
<lo{(1- )+ & ; VTP
A n Awr M.
# (5 ) Iota+ 2255 g | (@.15)

Applying (4.9) to the quantityl — o) /o under the assumption— ||g(z")||/ Ko > o9
and expanding in orders @f;(z")||/ Ko < 1,

1—o _ llg(=")] 1 _ g lg (=)l
o Ko (I-lg@l/Ke) Ky <1+O( Ko ))

_ gl lg (")l
o +(9< o ) (4.16)
Similarly
I ol lg ()]}
2oyl +o( o ) . (4.17)
Applying (4.16) and[(4.17) té (4.15), then for any fixed> 3

lg(e” + AAa™)]| < [lg(a™)] {(1 - 3) + 2 lofa)]

, <K0(Bv2wLM3(,/2 1+ B0l - 1 )

" 0<||g<x">||2>}

KoBvy
(4.18)
Supposing
Kofpvy/P
)| < o = 4.19
IOl =0 = e pry+ mon -y ¢
it follows that
P—-1)\
lota + 380 < o)) (1= E22 v olgen?) . @20
so there exists; € (0, dy) for which ||g(z™)|| < d; implies
P—-2)\
lote" + 280 < )] (1~ E522) @.21)
7
The result follows by the same logic as in the proof of Thedfe® O

Remark 4.7. It is observed in some problems that the residigl:")|| can decrease at
a rate slightly better than the one predicted wheg? 1, whereas forwr = 1 the rate is
as predicted.
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5. ALGORITHM

The solver using the--Newmark iteration[(2]9) may be implemented in an adap-
tive method according to the following basic algorithm. Tleit both the stability
of method [[2.B) and the quadratic convergencé of (3.3), #nametersy and R are up-
dated on each refinement, and the parametexsdo are updated on each iteration of
the solver. The main steps of the adaptive method are asvioNath the exit criteria
and parameter updates specified below. An example of a ¢éargegularization ternk
based ora posteriorierror indicators is given in Sectign 6.

Algorithm 5.1 (Basic algorithm for[(2]9)) Start with initial 2°, , oo. On partition
Ti k=0,1,2,...

1) ComputeR, ¢'(z).
2) Setag = [|g(2°)].
3) While Exit criterid 5.2 are not met on iteration— 1:

(i) Seto according to(4.9).

(i) Solve(a, R+ vy{ogd'(z") + (1 — 0)g'(Z)})Az"™ = g(a™).
(iii) Update 2"t = 2™ + Az™.
(iv) Updatea,,.

4) Updatey for partition 75, according to(5.3)

Criteria 5.2 (Exit criteria). Given a user set tolerancel, an accepted rate of conver-
gence given by,.. = 1 — 1/(M~) for some constant/, e.g.,M = 2, and a maximum

number of iterations either chosen as a constant or basedhemptedicted rate of con-
vergence, exit the solver on partitiofy after calculating iterater™** when one of the

conditions holds.

1) [lg(a"*)]| < tol.

2) () [lg(a™ )]l < llg(a™)], AND
(i) [lg(a)]| < min{lg(e)]]. lg(e_1)]1}, AND
(i) [lg(x™ V[ /]lg(x")]| < dacer AND

@) (@D /llg™)ll > [lg(=1l/lg(z" 1)
3) Maximum number of iterations exceeded.

In terms of the three phases of the solution process in [B&[ihal asymptotic regime
is characterized by the iterations terminating by Crit&ria (1); iterations in the pre-
asympototic regime terminate with Critefials.2 (2); andatmns terminate with a mix
of Criteria[5.2 (2) and (3) in the initial phase.

The second exit criteridn 3.2 (2) merits some explanatierit allows the iteration to
end once reduction of the residual has slowed indicatingi¢inate has a attained a rea-
sonably stable configuration from which a good predictiomalvhere to refine the mesh
may be determined. The first two clauses require the resiga@creasing, and has de-
creased below the level given by the previous iterate witbagt as much decrease from
the initial iteration on the current partition and the resitifrom the previous patrtition, if
it is well defined. The third criterion requires error redantat or close to the predicted
rate, and the last that the error reduction between iterstelewing down. These four
criteria together assure the sequence of transitionasstatnot getting further in the
sense of the solver’s residual from a converged solutiod,pravent situations such as
spikes propagating indefinitely across a sequence ofipadit\While spikes, overshoots
or other undesirable characteristics may propagate threegeral refinements, such so-
lutions will eventually not reduce the residual at the sfiedirate. When the adaptive
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mesh is fine enough, these characteristics are observedtiswut, and otherwise the
solver eventually fails and the solution is reset and stieagain on a finer mesh.

One of the main improvements df (2.9) over the regularizethot of [21] is the
generation of more stable sequences of transitional @ethrough the pre-asympototic
phase. The sequence of pre-asymptotic approximate prelgaiy partially resolve the
data and as internal layers are uncovered over severalmefinte the condition of these
problemsis generally bad. The high-frequency dissipaifdhe Newmark strategy com-
bined with the stabilization of the iterates produced by dksplitting allow sequences
of solutions to propagate through this regime and the mesle tmarked via error indi-
cators leading to the accurate solution of the problem oaratise coarser meshes than
possible if starting the solver on a mesh that is uniformlg #mough to resolve the data.
In order to make use of the stability and dissipation propeuf larger values of = ~;
as well as the asymptotically quadratic convergence iftérations are stable for= 1,
the following minimal guidelines are presented, based ertehmination criteria above.

Update 5.3 (Newmark parametey). . Generally, if the predicted error reduction rate is
achieved;y should be reduced; and if the iteration fails, more stapilg needed ang
should be increased.

(1) Exit criteriumB5.2 (1): Ify, > 1setl < ypp1 < Vi

(2) Exit criteriumB.2 (2): If|lg(="V|/|lg(x™)|| is within tolerance oft — 1/~;, set
I < k1 < Ve

(3) Exit criterium5.2 (3): Setj1 > Y-

In practice, the residual tends to get reduced below toberamcey = 1. In the
results of Sectiohl6y is decreased by two when the target rate is achieved, decregs
one if a stable rate lower than predicted is achieved, ise@dy one when the solver
fails, and by two if the maximum number of iteration is exceg@vhile the iterations are
converging below the acceptable rate. An initigshould be chosen large enough to see
error reduction on the initial mesh, and not significantlgéa.

The regularization parametey, = 1/At,, is updated by the method described.in/[21],
repeated here for convenience. In accordance with the cgenvee Theorenis 4.3 and 4.6,
this strategy assures, < ||g(z")|| so long as the residual is decreasing.

Update 5.4 (Tikhonov regularization paramete). Set5, = 1. Forn > 1,

an = Bllg(z")[l, with 5, = %'

To reduce rapid fluctuation of,,, correct to ensures,_1/2 < 3, < 1in the case that
lg(@™)|| < llg(z")]| and B, < 28,1 if [lg(z™)|| > [lg(z" ).

5.1. Marking strategy. An a posteriorierror indicatorny, T € 7T, is assumed avail-
able to determine adaptive mesh refinement and as one optidetermining a targeted
regularization ternRR. In the current results, standard local residual-basedei¢indi-
cators as in for instance [23,]11] are used for both of thespgses, further described
in Sectior 6. Other approaches to solver- and problem-peegularization and mesh
refinement are currently under investigation by the author.

The goal of the marking strategy is to build a mesh that is glgldine enough for
stability, and locally as fine as necessary to achieve thieedkezccuracy. To improve the
efficiency of the method by increasing the stability of thensitional states in the pre-
asymptotic phase, the following marking strategy is prestrBased on exit criteria 3.2
there are three possible outcomes of the nonlinear solveforement7,.
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1) Exit criterium5.2 (1): The iterate, has residual g(z)|| < tol.
2) Exit criterium5.2 (2): The iterate, has residualg(zy)|| > tol.
3) Exit criterium[5.2 (3): The solver failed ang is reset to zero.

In the case df 512 (3), the coarsest set of elements in the arestefined. Failure of
the solver reflects global rather than docal problem. Starting on a sufficiently coarse
mesh, several resets are expected.

In the case of 512 (2) the error indicatofs are computed, and the mesh is refined
both according to the elements with the largest local indisa and according to the
coarsest elements with the largest local indicators. Tthegegy allows local refinement
to take place in order to capture boundary and internal $algeattain eventual accuracy
and efficiency while also building the adaptive mesh fine ghoto achieve stability.
In meshes that are too coarse to resolve the data and wheappheximate problem
may have coefficients based on highly inaccurate approrimalutions, nonphysical
overshoots often develop in the iterates; while the errdicators in the vicinity of these
spikes may be high, refining primarily in these regions exaates the problem. As in
casd 5.R (3), a large residug}(us)|| predicts a global issue with the mesh. However,
valuable information about the near-singularities in tihebpem data can be predicted
from the non-converged iterates, so some local refinemenbaodd a more efficient
mesh.

In the case df5]2 (1) the error indicators are computed, ledhesh is refined with re-
spect to the largest local indicators. Amasonablanarking procedure [22] for cases 5.2
(1)-(2) may be applied; in particular for cdsel5.2 (2) bothélement with the largest lo-
cal indicator must be marked, as well as the coarsest elemtnthe largest local indi-
cator. In the current results, the Dorfler marking strategysed with paramet#r, which
for casd 5.2 (2) is splitintéd = 0. + 0 and the marked sets1r C T, and M C Ty
are chosen by sets of least cardinality with

>omr=0> . D> np=0c Y 0, (5.1)

TeMp TeT, TeMc TeT

and the marked se¥! = Mr U M. Incasé 5.2 (19 = 6 andf- = 0. An heuristic
choice of®(f) = 6. is given in Sectiofl6.

6. NUMERICAL EXAMPLES

The nonlinear solver (2.9) is demonstrated on three prabletth different struc-
ture in their internal layers. In Example_ 6.2 results areortggl for a model nonlinear
convection-diffusion problem of the forig(«) = 0 which has a smooth sinusoidal solu-
tion. The first variation on the model problem, Exaniplé 6.81destrates the algorithm
on the same differential operator with the problem dataehas generate a higher fre-
quency solution. Example 6.4 shows the results for a relaednear diffusion problem
with two concentric internal layers. The adaptive finitenedmt method is implemented
using the finite element library FETK [18] and a direct soligaused on each linear sys-
tem. Both trial and test spaces are taken as the linear fileiteemt spacé’, consisting
of Lagrange finite elemeni®, over partition7; that satisfy the homogeneous Dirichlet
boundary conditions.



14 S. POLLOCK

The locala posterioriresidual-based indicator, and corresponding jump-baskda-
tor for elementl” € 7, with hr the element diameter are given by

¢r(v) = hrllJr ()17, om) (6.1)
nr(v) =7, (v, T) = hzllg()l L) + 7 (v), (6.2)

Jr(v) = [[k(v)Vv - n]or, with jump [¢]or = lim;_o ¢(x + tn) — ¢(z — tn), wheren
is the appropriate outward normal defineda@f. The error estimator on partition, is
given by thel; sum of indicators)z, = >~ n7, and similarly for¢r, .

On each mesh partitiof, the penalty matrix? = R, is a localized version of the
Laplacian stiffness matrix denotde’***. Let D'c a diagonal matrix of zeros and ones,
v; a vertex of subordinate to partitiofi, and¢z = (r(u’). Then set

71/2 e 7
b yfmedan G, ane - { 4

P, otherwise

and

Dloc _ { 0, if ¢r <1y for each element that containsas a vertex
Wy

1 1, otherwise (6.3)

Then setR;, = D'oc Ryiobal ploc,

Remark 6.1. In [21] a similar strategy is applied using the full indicatgy as opposed
to the(r the jump-term alone. This modification was made to selecedsgf freedom to
penalize against curvature that show the greatest dispamiturvature as predicted by
the jump term. The role of the selection functiors to regularize based on spikes in the
indicators leaving the stable dof unregularized to speetdveayence. As the algorithm
approaches the asymptotic phase the selection pragdmsomes unimportant because
an < [lg(z")|| = 0.

In these results the Dorfler parametérst 6 = 6 with = 0.6, for refinement + 1
is determined according to

Oc =®(0) =10 (% + % arctan(||g(ug)||/100 — 7r/2)) . (6.4)

This form of ®(#) is chosen to ensure a significant fraction of the marked d$ains the
coarse mesh until the residual drops below a given threslholtie following examples
the parameter for setting by formula [4.9) ares > o7 = 0.9 and K, = 2000. The
tolerance for the nonlinear solvertig = 107",

Example 6.2 (Nonlinear convection diffusion)Consider the nonlinear convection dif-
fusion equation o2 = [0, 1] x [0, 1],

g(u) = —div(k(u)Vu) + b(u) - Vu — f(z,y) =0 € Q, u=00no2. (6.5)
The nonlinear diffusion coefficient is given by
1
((e+ (s —a)?)
The nonlinear convection term is given by
b(s) = ((s —a), (s — a)*)", (6.7)

and loadf(z,y) chosen so the exact solutiof, y) = sin 7z sin 7y.

k(s) =k + , Witha = 0.5, andk = 1. (6.6)
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Existence of isolated solutions &f (6.5)-(6.7) is discdsiseSectior 2 following[[24],
assuming the mesh is fine enough. This problem without theemtion term is investi-
gated in[[21], withe = 10~2; the method here has been observed to run to convergence
from a mesh of 144 elements with= 8 x 10, and was tested on smaller valuespf
however the size of the resulting meshes were unwieldy &irgeoblems. Data on the
iterations in the pre-asymptotic regime is presented hmre £ 2 x 10~ starting on a
mesh of 144 elements, with= 10 and run until convergence; and for= 6 x 10~* run
well into the asymptotic regime. In the pre-asymptotic dasdterations are terminated
by exit criteria 5.2 (2), and in most cases whers reduced it is reduced by one as the
iterates are converging at a rate better than predicted.efirement=0, 21 and28 the
final iterates are converging at or close to the predicteglgat 1 — 1/, and~ is re-
duced by two. TablEl1 summarizes the computation showingrtheresiduall|g(uy)|,
the final ratio|| g(u")||/]lg(u™)||, the final value ofr and the Newmark parameter

Of note is the range in magnitude over which the residual shmnotonic and in
fact predictable and stable decrease. On level 7, the firstipa in the pre-asymptotic
regime, the residual is reduced from an initig{u®)|| = 1564.5, to a final|g(u?)| =
871.1, usinge = oy = 0.9 on each iteration. The final pre-asymptotic solve reduces th
residual from||g(u®)|| = 4.6, to ||g(u?)|| = 1.4, with o > 0.996 and approaching one.
On level 7 for whichy = 20, the ratio of consecutive residuals stabilizes well bellogy t
predicted rate whereas in level 28, the predicted tatel /v, with v = 3, is achieved.
Most of the pre-asymptotic solves exit after 3-4 iteratiarsd two of the solves take up
to 9; generally the higher number of iterations correspdadgialitative changes in the
iterates such as the smoothing of spikes and changes inteteniustrated for instance
in the solution snapshots in Figure 3.

Settinge = 6 x 10~*, a milder version of the same problem illustrates the rednct
in the error from the initial through the pre-asymptotic antb the asymptotic regime
which in this case runs from levelsto 19. The computation is again started on a mesh
of 144 elements withy = 10. Figure[l shows a logarithmic plot of tHé* error against
the number of elements compared withh—'/2. The increase in the error and estimator
for the first several refinements demonstrates the sequengestitions capturing the
internal layer in the problem data; the first mesh in Figured eorresponding solution
in Figure[2 show the representative behavior as this octbesflatness at the top of
the solution is characteristic of the penalization by thplaaian against curvature. The
second mesh of Figufé 1 and corresponding solution of Fi§wsieow the approximate
solution as the internal layer is better resolved, but susrnonphysical oscillations are
still apparent in the iterates; this mesh further illustsathe characteristic of the layer
getting captured by the mesh, but not uniformly. The finalmafd=igure 2 and solution
of Figurel3 are representative of the end of the asymptogiicme where the mesh now
refines to capture the layer with increasingly uniform radoh and the solution has
the overall correct shape. Within several iteration therapmate solution looks like a
sinusoid and the Newton-like iterations solve to toleranitds noted in Figurél that
the error is stable for the first several iterations in theng#ptic regime while the error
estimator reduces at a steady rate; presumably this ocaar®dhe presence of another
nearby solution ofi(6]5). A similar phenomenon is observefl8] in examples where
the monotonicity is violated and the solution is known omiyoe locally unique.

Example 6.3 (Higher frequency solution)A variation of Examplé 612 is considered
where the problem is given b@.5)@.7), with e = 6 x 10, and the loadf(x,y)
chosen so the exact solutionis= sin(27x) sin(27y).
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u7L+1
Level | ol | ot | o |
7 871.1 0.90 09 |20
8 786.8 0.93 : 20
9 647.0 0.94 19
10 535.0 0.94 18
11 445.0 0.93 17
12 368.3 0.93 16
13 305.2 0.93 15
14 275.7 0.92 : 14
15 231.3 0.92 09 |13
16 165.6 0.91 0.909]| 12
17 137.7 0.90 0.924| 11
18 122.1 0.90 0.932| 10
19 98.4 0.88 0.944| 9
20 75.0 0.87 0.957| 8
21 59.0 0.83 0.964| 6
22 44.0 0.75 0.971| 4
23 23.5 0.67 0.983| 3
24 14.1 0.90 0.990| 3
25 7.7 0.71 0.995| 3
26 4.8 0.68 0.997| 3
27 2.5 0.67 0.998| 3
28 1.4 0.67 0.999| 3
29 1.9e-08| 8.1e-03 1 1

TABLE 1. Summary of data from the pre-asymptotic regime for Exam-
ple[6.2 withs = 2 x 1074,

10°

104 E

108 F

FIGURE 1. H' error (below) and error estimator (above) agaimst/>
wheren is the number of elements, for Example]6.2 witk 6 x 1072,
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FIGURE 2. Mesh for ExamplE6]2 with = 6 x 10~ after 6, 12 and 18
adaptive refinements from an initial mesh with 144 elements.

FIGURE 3. Snapshots of the finite element solution for Exarhple 6t wi
e = 6 x 107* in the pre-asymptotic regime after 6, 12 and 18 adaptive
refinements from an initial mesh with 144 elements.

Local uniqueness of the solution follows from [24], assugrtime mesh is fine enough.
This example features two disjoint internal layers in thelgem data, one about each
positive peak of the sinusoid. The decrease in the residulk pre-asymptotic regime
closely resembles the data presented in Table 1 for ExdmpleFore = 6 x 1074,
the pre-asymptotic phase for this example runs from levets26 as opposed t@ to
19 for the sinusoid with a single peak; and the mesh in Exam@er@intains a maxi-
mum meshsize of = 8.6 x 10~%, whereas in Example8.2, the asymptotic meshsize is
h = 3.5 x 1073, indicating two more coarse mesh refinements are taken bdiztathe
iterates. This is to be expected due to the decrease in widtieacorresponding lay-
ers. Mesh partitions and snapshots of the pre-asymptetités are shown in Figures 4
and3. The characteristic flatness of the peaks due to thdizstian against curvature
is again observed in the first two iterates, shown respdgtatehe8th and12th adaptive
refinements, and resolved by tbend, as seen on the right. The iterates show a qual-
itatively different behavior than the nonphysical ostitas of Examplé 612; here, the
downward peaks which should have the same magnitude as Werdipeaks start as
shallow and extend to their full depth as the refinementsnessy

Example 6.4 (Concentric layers)Consider the nonlinear diffusion problem éh =
[0, 1] x [0, 1] with two concentric internal layers.

g(u) = —div(k(u)Vu) — f(z,y) =0 € Q, u=00n01Q, (6.8)
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FIGURE 4. Mesh for Example 613 with = 6 x 10~ after 8, 14 and 22
adaptive refinements from an initial mesh with 144 elements.

FIGURE 5. Snapshots of the finite element solution for Exarhple 6tB wi
e = 6 x 107* in the pre-asymptotic regime after 8, 14 and 22 adaptive
refinements from an initial mesh with 144 elements.

with the nonlinear diffusion coefficient given by
1 1

c+G-a?) (et -0

k(s) =k + , Witha = 0.5, ¢ = 0.8 andk = 1.

(6.9)
The loadf(z, y) is chosen so the exact solutiafiz, y) = sin(7x) sin(7y).

Local uniqueness of the solution again follows from|[24kwasing the mesh is fine
enough. Similarly to the error decrease in the first exaniptire[6 shows a temporary
leveling off of the error while the estimator decreases aeady rate at the beginning of
the asymptotic phase indicating the presence of a nearbti@ol The discontinuity in
the error estimator and corresponding jump in the error estduthe final coarse mesh
refinement where the solution is reset at adaptive levelfg,\@hich the mesh maintains
a maximum meshsize df = 1.7 x 1073, half the meshsize of Exam@dle 6.2. Once in
the pre-asymptotic regime the internal layers are progrelysesolved and the residual
drops below tolerance converging at a quadratic rate when1, at adaptive level 37.
Due to the aforementioned flattening of the iterates indingeithe solver’s stabilization,
the approximate solutions gradually increase in heighhagegularization parameters
are reduced; as such, the inner internal layer centered-at0.8, is uncovered later
than the outer layer centeredwat= 0.5. This phenomenon is illustrated in the adaptive
meshes at level35, 30 and35 shown in Figuré 7. The corresponding iterates shown
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10°

104 F

103 F

102 L

10° 104 10°

FIGURE 6. H' error (below) and error estimator (above) agaimst/?
wheren is the number of elements, for Examplel6.4 witk 6 x 1074,

N INVINZ N7 N INZINAINZ TN LN

ROK
NN
IXIXIZIN

NN
XIXIZIN,

DO XXX /INIXIXIXIXIXIN]

FIGURE 7. Mesh for ExamplE6l4 with = 6 x 10~ after 25, 30 and 35
adaptive refinements from an initial mesh with 144 elements.

FIGURE 8. Snapshots of the finite element solution for Exarhple 6t4 wi
e = 6 x 10~*in the pre-asymptotic regime after 25, 30 and 35 adaptive
refinements from an initial mesh with 144 elements.

in Figure[8 display the characteristic spikes between therdayer and the boundary
similar to those in Example 6.2, and in this case the peakesthusoid progressively
resolves the curvature in two flatter regions.
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7. CONCLUSION

The o-split Newmark method of regularized pseudo-transientinaation is intro-
duced to solve the nonlinear convection diffusion problgfm) = 0 starting from a
coarse mesh where the problem data is not yet resolved. Tt®dis derived and local
g-linear convergence in agreement with the observed rattabkshed. An algorithm is
presented to fit the solver into a standard adaptive metmtissdemonstrated on three
variations of a problem with steep internal layers. The meétimcluding the adaptive
update of the solver’s parameters on each refinement builttssoframework presented
in [21], and is designed to effectively stabilize lineatiaas over rough problem data
where spikes, overshoots and spurious oscillations otkerprevent the sequence of
transitional solutions from approaching an accurate appration. The results here are
an improvement first in terms of efficiency of the new solveialifunctions without
the use of the normal equations; and second by an improveaf s&it criteria for the
solver which works together with an updated marking strategmprove the stability
of the method through the pre-asymptotic coarse mesh rediittienately this yields a
more efficient route to the asymptotic regime where the gmoldata is resolved and ap-
proximation properties hold. Future work will address &egl local regularization and
parameter selection of the nonlinear solver, and more gétygres of nonlinearites.
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