34 research outputs found

    The effect of the color filter array layout choice on state-of-the-art demosaicing

    Get PDF
    Interpolation from a Color Filter Array (CFA) is the most common method for obtaining full color image data. Its success relies on the smart combination of a CFA and a demosaicing algorithm. Demosaicing on the one hand has been extensively studied. Algorithmic development in the past 20 years ranges from simple linear interpolation to modern neural-network-based (NN) approaches that encode the prior knowledge of millions of training images to fill in missing data in an inconspicious way. CFA design, on the other hand, is less well studied, although still recognized to strongly impact demosaicing performance. This is because demosaicing algorithms are typically limited to one particular CFA pattern, impeding straightforward CFA comparison. This is starting to change with newer classes of demosaicing that may be considered generic or CFA-agnostic. In this study, by comparing performance of two state-of-the-art generic algorithms, we evaluate the potential of modern CFA-demosaicing. We test the hypothesis that, with the increasing power of NN-based demosaicing, the influence of optimal CFA design on system performance decreases. This hypothesis is supported with the experimental results. Such a finding would herald the possibility of relaxing CFA requirements, providing more freedom in the CFA design choice and producing high-quality cameras

    Universal Demosaicking of Color Filter Arrays

    Get PDF
    A large number of color filter arrays (CFAs), periodic or aperiodic, have been proposed. To reconstruct images from all different CFAs and compare their imaging quality, a universal demosaicking method is needed. This paper proposes a new universal demosaicking method based on inter-pixel chrominance capture and optimal demosaicking transformation. It skips the commonly used step to estimate the luminance component at each pixel, and thus, avoids the associated estimation error. Instead, we directly use the acquired CFA color intensity at each pixel as an input component. Two independent chrominance components are estimated at each pixel based on the interpixel chrominance in the window, which is captured with the difference of CFA color values between the pixel of interest and its neighbors. Two mechanisms are employed for the accurate estimation: distance-related and edge-sensing weighting to reflect the confidence levels of the inter-pixel chrominance components, and pseudoinverse-based estimation from the components in a window. Then from the acquired CFA color component and two estimated chrominance components, the three primary colors are reconstructed by a linear color transform, which is optimized for the least transform error. Our experiments show that the proposed method is much better than other published universal demosaicking methods.National Key Basic Research Project of China (973 Program) [2015CB352303, 2011CB302400]; National Natural Science Foundation (NSF) of China [61071156, 61671027]SCI(E)[email protected]; [email protected]; [email protected]; [email protected]

    Efficient training procedures for multi-spectral demosaicing

    Get PDF
    The simultaneous acquisition of multi-spectral images on a single sensor can be efficiently performed by single shot capture using a mutli-spectral filter array. This paper focused on the demosaicing of color and near-infrared bands and relied on a convolutional neural network (CNN). To train the deep learning model robustly and accurately, it is necessary to provide enough training data, with sufficient variability. We focused on the design of an efficient training procedure by discovering an optimal training dataset. We propose two data selection strategies, motivated by slightly different concepts. The general term that will be used for the proposed models trained using data selection is data selection-based multi-spectral demosaicing (DSMD). The first idea is clustering-based data selection (DSMD-C), with the goal to discover a representative subset with a high variance so as to train a robust model. The second is an adaptive-based data selection (DSMD-A), a self-guided approach that selects new data based on the current model accuracy. We performed a controlled experimental evaluation of the proposed training strategies and the results show that a careful selection of data does benefit the speed and accuracy of training. We are still able to achieve high reconstruction accuracy with a lightweight model

    Spatial gradient consistency for unsupervised learning of hyperspectral demosaicking: Application to surgical imaging

    Full text link
    Hyperspectral imaging has the potential to improve intraoperative decision making if tissue characterisation is performed in real-time and with high-resolution. Hyperspectral snapshot mosaic sensors offer a promising approach due to their fast acquisition speed and compact size. However, a demosaicking algorithm is required to fully recover the spatial and spectral information of the snapshot images. Most state-of-the-art demosaicking algorithms require ground-truth training data with paired snapshot and high-resolution hyperspectral images, but such imagery pairs with the exact same scene are physically impossible to acquire in intraoperative settings. In this work, we present a fully unsupervised hyperspectral image demosaicking algorithm which only requires exemplar snapshot images for training purposes. We regard hyperspectral demosaicking as an ill-posed linear inverse problem which we solve using a deep neural network. We take advantage of the spectral correlation occurring in natural scenes to design a novel inter spectral band regularisation term based on spatial gradient consistency. By combining our proposed term with standard regularisation techniques and exploiting a standard data fidelity term, we obtain an unsupervised loss function for training deep neural networks, which allows us to achieve real-time hyperspectral image demosaicking. Quantitative results on hyperspetral image datasets show that our unsupervised demosaicking approach can achieve similar performance to its supervised counter-part, and significantly outperform linear demosaicking. A qualitative user study on real snapshot hyperspectral surgical images confirms the results from the quantitative analysis. Our results suggest that the proposed unsupervised algorithm can achieve promising hyperspectral demosaicking in real-time thus advancing the suitability of the modality for intraoperative use

    The Department of Electrical and Computer Engineering Newsletter

    Get PDF
    Summer 2017 News and notes for University of Dayton\u27s Department of Electrical and Computer Engineering.https://ecommons.udayton.edu/ece_newsletter/1010/thumbnail.jp

    2PFC (Two Pixels, Full Color): Image Sensor Demosaicing and Characterization

    Get PDF
    We propose a modification to the standard Bayer CFA and photodiode structure for CMOS image sensors, which we call 2PFC (Two Pixels, Full Color). The blue and red filters of the Bayer pattern are replaced by a magenta filter. Under each magenta filter are two stacked, pinned photodiodes; the diode nearest the surface absorbs mostly blue light and the deeper diode absorbs mostly red light. The magenta filter absorbs green light, improving color separation between the blue and red diodes. We first present a frequency-based demosaicing method, which takes advantage of the new 2PFC geometry. Due to the spatial arrangement of red, green, and blue pixels, luminance and chrominance are very well separated in the Fourier space, allowing for computationally inexpensive linear filtering. In comparison with state-of-the-art demosaicing methods for the Bayer CFA, we show that our sensor and demosaicing method outperform the others in terms of color aliasing, PSNR, and zipper effect. As demosaicing alone does not determine image quality, we also analyze the whole system performance in terms of resolution and noise

    Recent Advances in Image Restoration with Applications to Real World Problems

    Get PDF
    In the past few decades, imaging hardware has improved tremendously in terms of resolution, making widespread usage of images in many diverse applications on Earth and planetary missions. However, practical issues associated with image acquisition are still affecting image quality. Some of these issues such as blurring, measurement noise, mosaicing artifacts, low spatial or spectral resolution, etc. can seriously affect the accuracy of the aforementioned applications. This book intends to provide the reader with a glimpse of the latest developments and recent advances in image restoration, which includes image super-resolution, image fusion to enhance spatial, spectral resolution, and temporal resolutions, and the generation of synthetic images using deep learning techniques. Some practical applications are also included
    corecore