1,108 research outputs found

    A Gradient Multiobjective Particle Swarm Optimization

    Get PDF
    An adaptive gradient multiobjective particle swarm optimization (AGMOPSO) algorithm, based on a multiobjective gradient (MOG) method, is developed to improve the computation performance. In this AGMOPSO algorithm, the MOG method is devised to update the archive to improve the convergence speed and the local exploitation in the evolutionary process. Attributed to the MOG method, this AGMOPSO algorithm not only has faster convergence speed and higher accuracy but also its solutions have better diversity. Additionally, the convergence is discussed to confirm the prerequisite of any successful application of AGMOPSO. Finally, with regard to the computation performance, the proposed AGMOPSO algorithm is compared with some other multiobjective particle swarm optimization (MOPSO) algorithms and two state-of-the-art multiobjective algorithms. The results demonstrate that the proposed AGMOPSO algorithm can find better spread of solutions and have faster convergence to the true Pareto-optimal front

    A convergence and diversity guided leader selection strategy for many-objective particle swarm optimization

    Get PDF
    Recently, particle swarm optimizer (PSO) is extended to solve many-objective optimization problems (MaOPs) and becomes a hot research topic in the field of evolutionary computation. Particularly, the leader particle selection (LPS) and the search direction used in a velocity update strategy are two crucial factors in PSOs. However, the LPS strategies for most existing PSOs are not so efficient in high-dimensional objective space, mainly due to the lack of convergence pressure or loss of diversity. In order to address these two issues and improve the performance of PSO in high-dimensional objective space, this paper proposes a convergence and diversity guided leader selection strategy for PSO, denoted as CDLS, in which different leader particles are adaptively selected for each particle based on its corresponding situation of convergence and diversity. In this way, a good tradeoff between the convergence and diversity can be achieved by CDLS. To verify the effectiveness of CDLS, it is embedded into the PSO search process of three well-known PSOs. Furthermore, a new variant of PSO combining with the CDLS strategy, namely PSO/CDLS, is also presented. The experimental results validate the superiority of our proposed CDLS strategy and the effectiveness of PSO/CDLS, when solving numerous MaOPs with regular and irregular Pareto fronts (PFs)

    Pseudo derivative evolutionary algorithm and convergence analysis

    Get PDF

    AMOBH: Adaptive Multiobjective Black Hole Algorithm

    Get PDF
    This paper proposes a new multiobjective evolutionary algorithm based on the black hole algorithm with a new individual density assessment (cell density), called “adaptive multiobjective black hole algorithm” (AMOBH). Cell density has the characteristics of low computational complexity and maintains a good balance of convergence and diversity of the Pareto front. The framework of AMOBH can be divided into three steps. Firstly, the Pareto front is mapped to a new objective space called parallel cell coordinate system. Then, to adjust the evolutionary strategies adaptively, Shannon entropy is employed to estimate the evolution status. At last, the cell density is combined with a dominance strength assessment called cell dominance to evaluate the fitness of solutions. Compared with the state-of-the-art methods SPEA-II, PESA-II, NSGA-II, and MOEA/D, experimental results show that AMOBH has a good performance in terms of convergence rate, population diversity, population convergence, subpopulation obtention of different Pareto regions, and time complexity to the latter in most cases

    A novel hybrid teaching learning based multi-objective particle swarm optimization

    Get PDF
    How to obtain a good convergence and well-spread optimal Pareto front is still a major challenge for most meta-heuristic multi-objective optimization (MOO) methods. In this paper, a novel hybrid teaching learning based particle swarm optimization (HTL-PSO) with circular crowded sorting (CCS), named HTL-MOPSO, is proposed for solving MOO problems. Specifically, the new HTL-MOPSO combines the canonical PSO search with a teaching-learning-based optimization (TLBO) algorithm in order to promote the diversity and improve search ability. Also, CCS technique is developed to improve the diversity and spread of solutions when truncating the external elitism archive. The performance of HTL-MOPSO algorithm was tested on several well-known benchmarks problems and compared with other state-of-the-art MOO algorithms in respect of convergence and spread of final solutions to the true Pareto front. Also, the individual contributions made by the strategies of HTL-PSO and CCS are analyzed. Experimental results validate the effectiveness of HTL-MOPSO and demonstrate its superior ability to find solutions of better spread and diversity, while assuring a good convergence

    A competitive mechanism based multi-objective particle swarm optimizer with fast convergence

    Get PDF
    In the past two decades, multi-objective optimization has attracted increasing interests in the evolutionary computation community, and a variety of multi-objective optimization algorithms have been proposed on the basis of different population based meta-heuristics, where the family of multi-objective particle swarm optimization is among the most representative ones. While the performance of most existing multi-objective particle swarm optimization algorithms largely depends on the global or personal best particles stored in an external archive, in this paper, we propose a competitive mechanism based multi-objective particle swarm optimizer, where the particles are updated on the basis of the pairwise competitions performed in the current swarm at each generation. The performance of the proposed competitive multi-objective particle swarm optimizer is verified by benchmark comparisons with several state-of-the-art multiobjective optimizers, including three multi-objective particle swarm optimization algorithms and three multi-objective evolutionary algorithms. Experimental results demonstrate the promising performance of the proposed algorithm in terms of both optimization quality and convergence speed
    corecore