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Abstract

In the past two decades, multi-objective optimization has attracted in-
creasing interests in the evolutionary computation community, and a vari-
ety of multi-objective optimization algorithms have been proposed on the
basis of different population based meta-heuristics, where the family of
multi-objective particle swarm optimization is among the most represen-
tative ones. While the performance of most existing multi-objective parti-
cle swarm optimization algorithms largely depends on the global or per-
sonal best particles stored in an external archive, in this paper, we propose
a competitive mechanism based multi-objective particle swarm optimizer,
where the particles are updated on the basis of the pairwise competitions
performed in the current swarm at each generation. The performance
of the proposed competitive multi-objective particle swarm optimizer is
verified by benchmark comparisons with several state-of-the-art multi-
objective optimizers, including three multi-objective particle swarm op-
timization algorithms and three multi-objective evolutionary algorithms.
Experimental results demonstrate the promising performance of the pro-
posed algorithm in terms of both optimization quality and convergence
speed.
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1. Introduction

In the real world, many optimization problems may involve multi-
ple conflicting objectives to be optimized simultaneously [10, 11, 14, 29,
30, 46, 49]. Such optimization problems are usually called multi-objective
optimization problems (MOPs), which are generally more challenging to
be solved than single-objective optimization problems (SOPs), since there
usually exist a set of solutions to be obtained as trade-offs between differ-
ent objectives for MOPs [39].

In the past two decades, multi-objective optimization has attracted in-
creasing interests in the evolutionary computation community, and a large
number of multi-objective optimization algorithms have been developed
on the basis of different population based meta-heuristics, such as genetic
algorithm [41], immune clone algorithm [31], differential evolution algo-
rithm [1], firefly algorithm [17] and neural network regression [9]. It is
worth noting that nature-inspired optimization algorithms have also been
extensively applied to solve other optimization problems, e.g., creation of
graphic characters [18], optimal outcome of evolutionary games [45] and
inventory control [34, 35, 36, 38]. Particle swarm optimization (PSO) [20],
as one of the most classical swarm intelligence algorithms, has been widely
applied to solve SOPs due to its simple implementation and fast conver-
gence. Moreover, as reported in some recent studies [5, 6, 25], PSO also
has good potential in solving MOPs.

In order to apply PSO to multi-objective optimization, there are at least
two fundamental issues to be addressed. The first issue is how to define
the personal and global best particles, given that there does not exist any
particle which can perform the best on all objectives of an MOP. Since the
personal and global best particles are used to guide the search direction
of particles in the swarm, they have considerable influence on the per-
formance of PSO algorithms, especially in solving MOPs [6]. The second
issue is how to balance convergence and diversity of the swarm. Since
the target of multi-objective optimization is to obtain a set of trade-off
solutions, diversity maintenance is particularly important. A PSO based
multi-objective algorithm is very likely to be trapped into local optimum
(or one of the many optima) of an MOP due to its fast convergence. There-
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fore, striking a balance between convergence and diversity is curial to the
performance of multi-objective PSO algorithms [23].

In the past ten years, a lot of multi-objective PSO algorithms have been
suggested by addressing the above two issues [24, 25, 28, 32, 43], which
can be roughly divided into two categories. The first category is to de-
fine the personal and global best particles based on the Pareto ranking
scheme [19]. Three representatives of this category are multi-objective
particle swarm optimization [5], improved multi-objective particle swarm
optimizer [32] and speed-constrained multi-objective PSO [25]. There are
also some multi-objective PSO algorithms proposed on the basis of some
enhanced ranking schemes, such as global margin ranking [22] and pref-
erence order ranking [42]. In these algorithms, an archive is maintained
to store elite particles determined by the ranking schemes and these elite
particles are used as candidates for personal and global best particles. The
second category adopts the decomposition strategy to transform MOPs
into a set of SOPs, such that the single-objective PSO algorithms can be
directly applied to multi-objective optimization. The first decomposition
based multi-objective PSO algorithm was suggested by Parsopoulos and
Vrahatis based on dynamic weighted aggregation [16, 27]. Recently, sev-
eral improved multi-objective PSO algorithms based on decomposition
were also reported in the literature [6, 23, 24, 28]. Generally, the multi-
objective PSO algorithms as mentioned above can achieve a good balance
between convergence and diversity for most MOPs, but still encounter
great challenges when tackling complex MOPs, especially for those with a
large number of local optima (e.g., DTLZ1 and DTLZ3 [8]).

To further enhance the robustness of PSO in solving MOPs, in this pa-
per we suggest a multi-objective PSO algorithm inspired by the recently
developed competitive swarm optimizer [2]. The competitive swarm op-
timizer is a variant of PSO and the main difference lies in the fact that
the search process is guided by the competitors in the current swarm in-
stead of the historical positions, i.e., the personal and global best particles.
Both theoretical analysis and empirical results have demonstrated that the
competitive swarm optimizer is able to achieve a better balance between
convergence and diversity than original PSO by adopting the competition
mechanism [2]. By taking advantage of such a competition mechanism,
in this paper, we propose a competitive mechanism based multi-objective
PSO, termed CMOPSO, where a competition mechanism based learning
strategy is designed to guide the search of PSO for multi-objective opti-
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mization. In summary, the main contributions of this paper are as follows.

(1) A competition mechanism based learning strategy is suggested for
the updating of particles in multi-objective PSO. In the proposed
strategy, pairwise competitions are randomly performed between
particles in the current swarm. The winner particle is used to guide
the particle by updating the velocity accordingly. Compared to the
updating strategies in existing multi-objective PSO algorithms, the
proposed competition mechanism based learning strategy achieves
better balance between convergence and diversity.

(2) A novel multi-objective PSO algorithm, called CMOPSO, is proposed
on the basis of the competition mechanism based learning strategy.
In CMOPSO, no additional storage is required to record the histori-
cal information in the search process, such that it does not need any
external archive. By contrast, most existing multi-objective PSO al-
gorithms often need to maintain an archive with a high computa-
tional cost, e.g., multi-objective PSO algorithms developed in [23, 25,
32, 43].

(3) The performance of the proposed CMOPSO is verified by comparing
it with six existing algorithms on 21 benchmark MOPs, including
three popular multi-objective PSO algorithms, namely, MPSOD [6],
MMOPSO [23], SMPSO [25] and three well-known multi-objective
evolutionary algorithms (MOEAs), namely, NSGA-II [7], MOEA/D
[47] and SPEA2 [53]. The experimental results demonstrate that the
proposed CMOPSO shows significantly better overall performance
than the compared algorithms, in terms of both quality of solution
set and convergence speed.

The rest of this paper is organized as follows. In Section 2, we review
a few multi-objective PSO algorithms and briefly introduce the compet-
itive swarm optimizer. The details of the proposed CMOPSO are given
in Section 3 and the performance of CMOPSO is verified in Section 4 by
comparing it with existing multi-objective PSO algorithms and MOEAs.
Finally, conclusion and future work are presented in Section 5.
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2. Related work

2.1. Existing multi-objective PSO algorithms
PSO is a well-known swarm intelligence paradigm originally inspired

by the behavior of bird flocking in nature, and later has been widely ap-
plied to solve SOPs [15, 26, 33, 37, 44]. Due to the high convergence speed
and simple implementation, recently, a number of multi-objective PSO al-
gorithms have also been proposed in the literature [5, 6, 23, 24, 25, 28,
32, 43]. In the following, we briefly review some representative multi-
objective PSO algorithms.

The first PSO based multi-objective algorithm was suggested by Coello
Coello et al. in [5]. In the algorithm, the concept of Pareto dominance
was suggested to determine the global and personal best particles, and an
archive was maintained to save the non-dominated particles as global best
particles. Although the multi-objective PSO algorithm has demonstrated
competitive performance in solving MOPs in comparison with traditional
MOEAs such as NSGA-II [7] and PAES [21], it has difficulties in solving
MOPs with complicated landscapes, e.g., those with multiple local fronts.
To address this issue, Sierra and Coello Coello [32] proposed an improved
PSO based multi-objective algorithm, where different mutation operators
were suggested for different subswarms divided by users in advance. Ex-
perimental results showed that the improved algorithm performs better
than the first multi-objective PSO algorithm on MOPs with multiple local
fronts.

Nebro et al. [25] developed a speed-constrained multi-objective PSO
algorithm, called SMPSO, where the velocities of all particles were lim-
ited in order to tackle MOPs with multimodal landscapes. As reported
in [25], most multi-objective PSO algorithms often suffer from an issue
called “swarm explosion” due to the fact that the velocities are too high
such that the particles tend to move towards the boundaries of the search
space. Therefore, the speed constraint is an effective strategy to enhance
the performance of PSO based multi-objective algorithms.

In contrast to the multi-objective PSO algorithms where the global and
personal best particles are determined by dominance relations, Peng and
Zhang proposed a multi-objective PSO algorithm by decomposing an MOP
into a number of SOPs [28]. The decomposition based multi-objective
PSO algorithm followed the framework of MOEA/D [47] and replaced
the genetic operators with the PSO based search approach. In the algo-
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rithm, an external archive was maintained to store the global best parti-
cle of each SOP. Motivated by the decomposition mechanism, Martinez
and Coello Coello [24] also proposed a multi-objective particle swarm op-
timizer, where a re-initialization strategy was suggested to maintain the
swarm diversity. Since the global best particles in the algorithm were se-
lected from the current swarm, it holds a lower computational cost than
most other multi-objective PSO algorithms which often need to maintain
an archive. However, as pointed out in [24], the multi-objective PSO al-
gorithm suggested in [24] may fail to find solutions covering the entire
Pareto fronts for some complex MOPs due to the lack of an archive. As
another decomposition based multi-objective PSO algorithm, Dai et al. [6]
proposed to divide the objective space into a set of sub-regions based on
a set of direction vectors, and at most one particle is maintained in each
sub-region.

There are also some other approaches proposed for enhancing swarm
diversity in multi-objective PSO algorithms. Zhan et al. [43] developed a
multi-objective PSO algorithm based on a coevolutionary technique. Dif-
ferent from most existing multi-objective PSO algorithms where multiple
objectives were considered as a whole, the algorithm in [43] provided a
simple and straightforward way to solve MOPs by letting each popula-
tion correspond with only one objective. In the algorithm, an external
shared archive was adopted to exchange information in different popula-
tions for enhancing the diversity to avoid local optima. Wang and Yen [12]
developed an adaptive multi-objective PSO algorithm, where the balance
between convergence and diversity was achieved by dynamically adjust-
ing the exploration and exploitation according to the feedback information
detected from the evolutionary environment by a parallel cell coordinate
system. Lin and Li [23] proposed a multi-objective PSO algorithm with
multiple search strategies, where the PSO based search approach was per-
formed on the particles in the swarm, and the genetic operators, namely,
simulated binary crossover [7] and polynomial mutation [54], were adopted
to update the particles in the external archive.

As reviewed above, one of the main concerns in existing multi-objective
PSO algorithms is how to effectively enhance swarm diversity for tack-
ling MOPs with local fronts or multimodal landscapes. In this paper, we
propose a competitive mechanism based multi-objective PSO algorithm
(termed CMOPSO), which is inspired from the recently proposed compet-
itive swarm optimizer [2]. In the proposed CMOPSO, the particles are
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updated on the basis of a competition mechanism based learning strategy
instead of the global and personal best particles, and thus there is no ex-
ternal archive maintained. The details of CMOPSO will be presented in
Section 3.

2.2. Competitive swarm optimizer
The competitive swarm optimizer is a variant of PSO proposed by

Cheng and Jin in [2] for dealing with SOPs. In the competitive swarm
optimizer, the particles are updated via a competition mechanism instead
of using the global and personal best particles, thus substantially improv-
ing the swarm diversity to avoid premature convergence. To be specific, in
the competitive swarm optimizer, particles are pairwise randomly selected
from the current swarm for competition and the loser in the competition is
updated by learning from the winner, while the winner is directly passed
to the swarm of next generation.

It is assumed that there are N particles in the swarm P (t), where t is
the generation index. Each particle has an n-dimensional position, Xi(t) =
(xi,1(t), xi,2(t), . . . , xi,n(t)) and n-dimensional velocity vector, Vi(t) = (vi,1(t),
vi,2(t), . . . , vi,n(t)). In the k-th round of the competition in generation t, the
positions and the velocities of the winner and loser are denoted as Xw,k(t),
Xl,k(t), Vw,k(t) and Vl,k(t), respectively, where k = 1, 2, . . . , N/2. Accord-
ingly, after the k-th competition the loser’s velocity will be updated using
the following learning strategy:

Vl,k(t+ 1) = R1(k, t)Vl,k

+R2(k, t)(Xw,k(t)−Xl,k(t))

+ ϕR3(k, t)(Xk(t)−Xl,k(t))

(1)

As a result, the position of the loser can be updated on the basis of the new
velocity:

Xl,k(t+ 1) = Xl,k(t) + Vl,k(t+ 1) (2)

where R1(k, t), R2(k, t), R3(k, t) are random numbers generated uniformly
in the range [0,1], Xk(t) is the mean position of all particles in the swarm
and ϕ is a parameter for controlling the influence of Xk(t).

7
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Algorithm 1: General framework of CMOPSO
Input: N (swarm size)
Output: P (final positions)

1: P ← RandomInitialize(N);
2: V ← RandomInitialize(N);
3: while termination criterion not fulfilled do
4: P ′ ← CompetitionBasedLearning(P, V );
5: P ← EnvironmentalSelection(P, P ′);
6: end while
7: return P

3. The proposed CMOPSO

In this section, we first present the framework of the proposed CMOPSO,
and then elaborate the details of the competition mechanism based learn-
ing strategy suggested in CMOPSO for multi-objective PSO algorithms.

3.1. The framework of CMOPSO
As presented in Algorithm 1, the proposed CMOPSO has a very simple

framework, where the main loop consists of two main components: the
competition mechanism based learning strategy and the environmental
selection. For simplicity, we directly adopt the environmental selection as
suggested in SPEA2 [53], while the details of the competition mechanism
based learning strategy are presented as follows.

3.2. The competition mechanism based learning strategy
The proposed competition mechanism based learning strategy consists

of three components, namely, elite particle selection, pairwise competition
and particle learning. Algorithm 2 presents the pseudo code of the com-
petition mechanism based learning strategy. In what follows, we give the
details of each component respectively.

Since the elite particle set is used to provide candidate particles to be
used in the pairwise competitions to guide the search of the swarm, the
particles in it should maintain good balance between convergence and di-
versity. For simplicity, in this paper, the elite particles are selected via the
non-dominated sorting and crowding distance based ranking as adopted

8
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Algorithm 2: CompetitionBasedLearning(P, V )

Input: P (current positions), V (current velocities);
L (elite particle set), γ (size of elite particle set);

Output: P ′ (new positions)
1: P ′ ← ∅;
2: /*Elite Particles Selection*/
3: L← Select γ particles from P according to the front index and the

crowding distance of each particle;
4: for each particle pi ∈ P do
5: randomly choose two elite particles a, b from L;
6: /*Pairwise Competition*/
7: calculate the angle θ1 between a and pi, and θ2 between b and pi;
8: if θ1 < θ2 then
9: pw ← a;

10: else
11: pw ← b;
12: end if
13: /*Particle Learning*/
14: v′i ← update the velocity of particle pi using formula 3;
15: p′i ← update the position of particle pi using formula 4;
16: P ′ ← P ′ ∪ {p′};
17: end for
18: /*Mutation*/
19: P ′ ← PolynomialMutation (P ′);
20: return P ′

in NSGA-II [7]. Specifically, the non-dominated sorting [50] is first per-
formed on the swarm P to obtain the fronts F1, F2, . . . , Fk, where k is the
maximum index of fronts. Then, the minimum number t is found such
that |F1 ∪ F2 ∪ . . . ∪ Ft| ≥ γ, where γ is the number of elite particles to
be selected. Finally, all particles belonging to F1 ∪ F2 ∪ . . . ∪ Ft−1 are se-
lected as the elite particles and the remaining particles are selected from
Ft according to the crowding distance of each particle in Ft.

It is worth noting that, since the elite particles are selected from the cur-
rent swarm at each generation, the proposed CMOPSO does not need any
additional external archive, whereas most existing multi-objective PSO al-
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Figure 1: An example illustrating the pairwise competition between two randomly se-
lected elite particles. In this example, p is a particle to be updated, a and b are two ran-
domly selected competitors from elite particle set. θ1 is the angle between p and a, and θ2
is the angle between p and b. Consequently, particle a wins the competition since θ1 < θ2.

gorithms often contain an archive to store the global and personal best
partilces. In addition, the elite particle set size γ can be used to control the
convergence speed of the proposed CMOPSO. For MOPs, a small value of
γ can lead to the premature convergence, whereas a large value will retard
the convergence speed of the algorithm. A detailed discussion on γ will
be given in Section 4.

After the elite particle set is created, pairwise competitions are per-
formed among the particles in it, and the winners will be used to guide
the moving directions of particles in the current swarm. For each pairwise
competition, given a particle p in the swarm, two elite particles a and b are
randomly selected from the elite particle set. The angles between a, b and p
are calculated respectively, and the elite particle with a smaller angle wins
the competition, such that the particle p will learn from the elite particle
which is closer to the convergence direction of it. Figure 1 presents an il-
lustrative example of the pairwise competition in the proposed CMOPSO,
where a and b are two randomly selected competitors from the elite par-
ticle set and p is a particle in the swarm to be updated. As shown in the
figure, the competitor a will become the winner since angle θ1 between a
and p is smaller than angle θ2 between b and p, and thus a will be used to
update p.

10
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Once the winner is determined, the position and velocity of particle p
can be updated via learning the winner. Let vi and pi be the velocity and
position of the i-th particle in the swarm, 1 ≤ i ≤ N . The updated velocity
v′i and position p′i of the i-th particle are calculated using the following
equations as suggested in competitive swarm optimizer [2]:

v′i = R1vi +R2(pw − pi), (3)

p′i = pi + v′i, (4)

where R1, R2 ∈ [0, 1] are two randomly generated vectors and pw is the
position of the winner. Finally, similar to most existing multi-objective
PSO algorithms [23, 25], the polynomial mutation [54] is also performed.

4. Experimental studies

In this section, we verify the performance of CMOPSO by comparing it
with three existing multi-objective PSO algorithms, MPSOD [6], MMOPSO
[23] and SMPSO [25], and three popular MOEAs, NSGA-II [7], MOEA/D
[47] and SPEA2 [53]. A total of 21 benchmark MOPs from three test suits,
ZDT [52], DTLZ [8] and WFG [13] are used to evaluate the performance of
the algorithms, where ZDT1 to ZDT4 and ZDT6 are bi-objective problems
and two-/three-objective DTLZ and WFG test problems are considered.
For bi-objective problems, the number of decision variables is set to 30 in
ZDT1 to ZDT3, to 10 in ZDT4 and ZDT6, to 6 in DTLZ1, to 21 in DTLZ7,
to 11 in DTLZ2 to DTLZ6 and all WFG problems. For three-objective prob-
lems, the number of decision variables is fixed to 12 in DTLZ2 to DTLZ6
and all WFG test problems, to 7 in DTLZ1 and to 22 in DTLZ7.

The inverted generational distance (IGD) metric [48, 51] is adopted to
evaluate the performance of the compared algorithms, and roughly 5000
points uniformly sampled on the Pareto fronts are used in the calculation
of IGD for each test problem. The IGD is a metric for evaluating the quality
of obtained solution set in terms of both convergence and distribution. The
smaller the IGD value, the better the quality of solution set obtained by an
algorithm.

For fair comparisons, all parameters of the compared algorithms are
set to the recommended values as in their original papers. The population
size is set to N = 100 for all compared algorithms. The parameter γ in the
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proposed CMOPSO is set to 10 for each test problem in the experiments.
The number of generations is adopted as the termination criterion for all
considered algorithms. For DTLZ3, the maximal number of generations is
set to 1,000, and to 300 for the rest test problems. On each test instance,
30 independent runs are conducted and the median value is reported. All
the experimental results are obtained on a PC with an Intel Core i5 4590
3.30GHz CPU and Microsoft Windows 7 operating system. The source
codes of NSGA-II, SPEA2 and MOEA/D are provided in PlatEMO [40],
and the source codes of MPSOD, SMPSO and MMOPSO are obtained from
the authors of the original papers.

4.1. Comparisons with existing multi-objective PSO algorithms
Table 1 presents the mean and standard deviation of IGD values of

the four PSO based multi-objective algorithms on ZDT1 to ZDT4, ZDT6,
DTLZ1 to DTLZ7 and WFG1 to WFG9. Moreover, the Wilconxon rank
sum test is adopted at a significance level of 0.05, where the symbols ’+’,
’-’ and ’≈’ indicate that the result is significantly better, significantly worse
and statistically similar to that obtained by CMOPSO, respectively.

It can be observed that the proposed CMOPSO performs better than
the three compared multi-objective PSO algorithms, SMPSO, MPSOD and
MMOPSO on the benchmark test problems. On all 37 test instances under
consideration, the CMOPSO achieved statistically significantly better IGD
value on 18 test instances, MPSOD on 6 test instances, MMOPSO on 8 test
instances and SMPSO on 1 test instance. There are also 4 test instances
on which both the proposed CMOPSO and MPSOD obtained significantly
better IGD value than the other two compared algorithms. It can also be
seen that the proposed CMOPSO is suited to solving test problems with
multiple local fronts. On DTLZ1 and DTLZ3 with two objectives, the pro-
posed CMOPSO can obtain a set of non-dominated solutions which can
well approximate the whole Pareto front and maintain with a good dis-
tribution. This can also be observed from Figure 2, which plots the non-
dominated solution sets associated with the best IGD value among 30 runs
for the CMOPSO and the three compared multi-objective PSO algorithms
on 2-objective DTLZ3 in objective space.

For three-objective DTLZ1, the proposed CMOPSO can still achieve a
competitive performance, but it seems that the performance of CMOPSO
has considerably deteriorated on three-objective DTLZ3. The main rea-
son is attributed to the fact that the three-objective DTLZ3 considered here
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Table 1: IGD values of the proposed CMOPSO and three multi-objective PSO algorithms on ZDT, DTLZ and WFG
test problems, where the best mean value on each test instance is highlighted in a gray background. Each column
presents the IGD values of an algorithm on different problems. The experimental results in the table demonstrate the
superiority of the proposed CMOPSO over the three compared multi-objective PSO algorithms.

Problem Obj. SMPSO MMOPSO MPSOD CMOPSO

ZDT1

2

4.84e-3(1.26e-4)− 4.54e-3(9.03e-5)− 3.82e-3(3.96e-6)≈ 3.82e-3(2.15e-5)
ZDT2 4.79e-3(1.10e-4)− 2.91e-2(1.07e-1)− 3.82e-3(2.18e-5)+ 3.86e-3(1.62e-5)
ZDT3 5.09e-3(1.11e-4)− 5.20e-3(1.36e-4)− 9.90e-3(4.22e-5)− 4.50e-3(2.83e-5)
ZDT4 1.25e-0(5.81e-1)− 8.09e-3(2.98e-3)+ 1.87e+1(3.12e-0)− 3.70e-2(4.59e-2)
ZDT6 3.67e-3(1.03e-4)− 3.62e-3(6.53e-5)− 3.09e-3(8.53e-7)≈ 3.09e-3(2.61e-5)

DTLZ1 2.04e-0(2.36e-0)− 2.22e-3(8.94e-5)+ 1.06e-0(3.14e-1)− 4.44e-2(7.83e-2)
DTLZ2 5.12e-3(1.97e-4)− 4.92e-3(1.76e-4)− 4.15e-3(3.08e-5)+ 4.40e-3(3.61e-5)
DTLZ3 1.67e+1(2.29e+1)− 4.97e-3(1.81e-4)− 5.02e-0(1.46e-0)− 4.24e-3(1.71e-4)
DTLZ4 2 3.49e-1(3.74e-1)− 4.92e-3(1.67e-4)− 4.12e-3(6.04e-5)+ 4.41e-3(7.58e-5)
DTLZ5 5.07e-3(1.78e-4)− 5.03e-3(1.62e-4)− 4.13e-2(3.58e-5)− 4.40e-3(5.66e-5)
DTLZ6 5.16e-3(2.63e-4)− 5.01e-3(1.39e-4)+ 3.96e-3(1.74e-6)+ 4.09e-3(1.83e-5)
DTLZ7 1.95e-1(2.21e-1)− 3.43e-2(1.11e-1)− 6.57e-2(1.64e-5)− 4.43e-3(4.01e-5)
WFG1 1.12e+0(3.83e-2)− 3.26e-1(4.10e-2)+ 1.35e-0(4.81e-2)− 9.62e-1(6.74e-2)
WFG2 1.89e-2(3.44e-3)− 1.17e-2(2.67e-4)− 4.32e-2(4.14e-3)− 1.12e-2(2.33e-4)
WFG3 1.75e-2(6.78e-4)− 1.43e-2(4.84e-4)− 2.07e-2(2.33e-3)− 1.32e-2(2.49e-4)
WFG4 4.95e-2(4.72e-4)− 1.70e-2(5.47e-4)+ 4.09e-2(1.37e-3)− 3.88e-2(7.95e-3)
WFG5 2 6.67e-2(7.25e-4)− 6.49e-2(3.37e-3)− 6.54e-2(1.64e-3)− 6.46e-2(3.41e-4)
WFG6 2.02e-2(3.10e-3)− 2.57e-2(6.65e-3)− 2.53e-2(3.58e-3)− 1.72e-2(3.01e-3)
WFG7 1.63e-2(4.12e-4)− 1.59e-2(6.68e-4)− 1.88e-2(8.91e-4)− 1.38e-2(2.38e-4)
WFG8 1.01e-1(2.16e-3)+ 1.09e-1(1.26e-3)+ 1.13e-1(2.79e-3)+ 1.16e-1(1.78e-3)
WFG9 2.61e-2(1.38e-3)− 2.21e-2(1.03e-3)+ 2.67e-2(1.46e-3)− 2.50e-2(2.07e-3)
DTLZ1 3.41e-0(3.28e-0)− 7.62e-2(9.44e-2)− 9.68e-1(1.38e-1)− 4.43e-2(7.83e-2)
DTLZ2 5.12e-2(2.13e-4)− 6.89e-2(1.18e-3)− 5.47e-2(8.48e-5)− 4.33e-3(4.34e-5)
DTLZ3 8.73e-0(1.42e+1)− 6.87e-2(1.17e-3)+ 8.01e-0(2.86e-0)− 1.23e-0(9.68e-1)
DTLZ4 3 2.99e-1(3.67e-1)− 6.88e-2(1.20e-3)− 5.47e-2(1.58e-4)− 4.41e-3(7.58e-5)
DTLZ5 5.12e-3(1.78e-4)− 5.90e-3(1.57e-4)− 3.43e-2(1.80e-3)− 4.32e-3(3.97e-5)
DTLZ6 5.13e-3(2.97e-4)− 5.73e-3(2.66e-4)− 3.11e-2(7.71e-3)− 4.16e-3(2.49e-5)
DTLZ7 1.80e-1(2.18e-1)− 7.93e-2(2.03e-3)− 1.25e-1(2.27e-3)− 4.43e-2(4.43e-5)
WFG1 1.52e-0(1.78e-2)− 8.29e-1(6.54e-2)+ 1.58e-0(3.82e-2)≈ 1.58e-0(2.50e-2)
WFG2 2.11e-1(1.62e-2)− 2.04e-1(8.98e-3)− 3.66e-1(7.14e-2)− 1.56e-1(7.49e-3)
WFG3 1.29e-1(1.57e-2)+ 8.52e-2(1.03e-2)+ 2.57e-1(8.71e-3)− 1.50e-1(1.04e-2)
WFG4 3.08e-1(5.46e-3)− 2.97e-1(5.59e-3)− 2.59e-1(1.29e-3)≈ 2.59e-1(3.61e-3)
WFG5 3 2.84e-1(7.94e-3)− 2.82e-1(5.07e-3)− 2.53e-2(4.88e-4)+ 2.35e-1(2.49e-3)
WFG6 3.04e-1(1.51e-2)− 2.98e-1(1.38e-2)− 2.64e-2(4.01e-3)+ 2.41e-1(7.72e-3)
WFG7 2.96e-1(6.93e-3)− 2.79e-1(5.89e-3)− 2.56e-1(1.94e-3)− 2.26e-1(3.20e-3)
WFG8 4.51e-1(1.60e-2)− 3.64e-1(4.71e-3)− 3.32e-1(4.18e-3)≈ 3.32e-1(5.33e-3)
WFG9 2.69e-1(6.06e-3)− 2.77e-1(6.55e-2)− 2.45e-1(7.47e-4)− 2.17e-1(2.24e-3)
+/− / ≈ 2/35/0 10/27/0 7/25/5
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Figure 2: The non-dominated solution sets associated with the best IGD value among 30
runs obtained by the proposed CMOPSO and three compared multi-objective PSO algo-
rithms on bi-objective DTLZ3. (a) The non-dominated solution sets obtained by SMPSO;
(b) The non-dominated solution sets obtained by MMOPSO; (c) The non-dominated
solution sets obtained by MPSOD; (d) The non-dominated solution sets obtained by
CMOPSO. The experimental results show that the proposed CMOPSO outperforms the
three compared multi-objective PSO algorithms in terms of both convergence and diver-
sity on bi-objective DTLZ3.

is much more challenging than the three-objective DTLZ1 due to a large
number of 1110 − 1 local fronts, whereas the DTLZ1 contains a number of
115−1 local fronts. It is worth noting that the MMOPSO performs the best
on DTLZ1 and DTLZ3 due to the fact that it has adopted the crossover
and mutation operators in MOEAs in addition to the updating strategies
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Figure 3: Convergence trajectories of the four compared multi-objective PSO algorithms
on ZDT1 and ZDT3, averaging over 30 runs. (a) Convergence trajectory of the four com-
pared multi-objective PSO algorithms on ZDT1; (b) Convergence trajectory of the four
compared multi-objective PSO algorithms on ZDT3. The experimental results indicate
the promising convergence speed of the proposed CMOPSO in comparison with the three
multi-objective PSO algorithms on ZDT1 and ZDT3.

of PSO. Generally speaking, compared with existing multi-objective PSO
algorithms, the proposed CMOPSO demonstrates the overall best perfor-
mance, especially on MOPs with local fronts.

In addition to the quality of solution set, another important perfor-
mance metric of a multi-objective PSO algorithm is its convergence speed.
In the following, we verify the convergence speed of the proposed CMOPSO
by comparing it with existing multi-objective PSO algorithms. Figure 3
plots the convergence trajectories of the proposed CMOPSO and three
compared multi-objective PSO algorithms on ZDT1 and ZDT3, averag-
ing over 30 runs. It can be observed that the proposed CMOPSO has a
promising convergence speed, which confirms that the pairwise compe-
tition suggested in CMOPSO is able to well balance the convergence and
diversity.

From the above empirical results, we can conclude that the proposed
CMOPSO is promising in comparison with existing multi-objective PSO
algorithms in solving MOPs, especially for solving those with local fronts.
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4.2. Comparison with existing MOEAs
Table 2 presents the mean and standard deviation of IGD values of

NSGA-II, MOEA/D, SPEA2 and CMOPSO on ZDT1 to ZDT4 and ZDT6,
DTLZ1 to DTLZ7 and WFG1 to WFG9, where the Wilconxon rank sum test
is also adopted and the best mean for each test instance is highlighted with
a gray background. As evidenced by the results, the proposed CMOPSO
has also achieved promising overall performance on the benchmark test
problems in comparison with existing popular MOEAs, where it has ob-
tained statistically significantly best performance on 18 out of 37 test in-
stances. Besides, the performance of CMOPSO on MOPs with local fronts
is also comparable with the compared MOEAs. For bi-objective DTLZ3,
CMOPSO performs the best among the four algorithms. As for DTLZ1
with two and three objectives, the CMOPSO also achieves a competitive
performance despite that the IGD value is slightly worse. However, the
CMOPSO is significantly outperformed by the compared MOEAs on three-
objective DTLZ3, which is due to the fact that the genetic operators are
more suitable than PSO operator for solving MOPs with local fronts. This
is the main reason that some researchers have suggested to adopt genetic
operators in existing multi-objective PSO algorithms, such as MMOPSO [23].

In the following, we compare the convergence speed of the proposed
CMOPSO and the three MOEAs. Figure 4 plots the convergence trajecto-
ries of the four algorithms on ZDT1 and ZDT3, averaging over 30 runs. As
shown in the figure, the proposed CMOPSO shows the fastest convergence
speed, which enables it to converge to the Pareto fronts of ZDT1 and ZDT3
even after a very small number of generations. As further observations,
Figures 5 and 6 present the non-dominated solution sets associated with
the best IGD value among 30 runs obtained by the CMOPSO and three
MOEAs after 50 generations on ZDT1 and ZDT3, respectively. It can be
clearly seen that the proposed CMOPSO can obtain a set of non-dominated
solutions evenly distributed on the Pareto fronts of ZDT1 and ZDT3 after
50 generations, whereas the compared MOEAs, namely, NSGA-II, MOEA/D
and SPEA2, are still far from convergence.

4.3. Parameter analysis
In the proposed CMOPSO, there is an important parameter γ which

controls the size of elite particle set. This parameter has some influence on
the performance of the proposed CMOPSO by balancing the convergence
and diversity of the swarm. A much small elite particle set may cause
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Table 2: IGD values of the proposed CMOPSO and three MOEAs on ZDT, DTLZ and WFG test problems, where the
best mean value on each test instance is highlighted in a gray background. Each column presents the IGD values of
an algorithm on different problems. The experimental results in the table show the competitiveness of the proposed
CMOPSO in comparison with the three popular MOEAs.

Problem Obj. NSGA-II MOEA/D SPEA2 CMOPSO

ZDT1

2

4.55e-3(1.75e-4)− 8.18e-3(6.02e-3)− 3.88e-3(8.32e-5)− 3.82e-3(2.15e-5)
ZDT2 4.74e-3(2.38e-4)− 9.09e-3(6.93e-3)− 3.89e-3(1.12e-4)− 3.86e-3(1.62e-5)
ZDT3 3.46e-2(4.09e-2)− 1.73e-2(9.19e-3)− 7.83e-3(2.91e-4)− 4.50e-3(2.83e-5)
ZDT4 5.93e-3(1.32e-3)+ 2.63e-2(1.83e-3)+ 5.07e-3(2.19e-5)+ 3.70e-2(4.59e-2)
ZDT6 3.68e-3(1.29e-4)− 6.47e-3(1.22e-3)− 3.15e-3(9.14e-5)− 3.09e-3(2.61e-5)

DTLZ1 2.21e-3(1.10e-4)+ 2.75e-3(8.28e-4)+ 2.24e-3(4.81e-4)+ 4.44e-2(7.83e-2)
DTLZ2 5.08e-3(2.06e-4)− 3.99e-3(2.53e-7)+ 4.18e-3(4.65e-5)+ 4.40e-3(3.61e-5)
DTLZ3 5.31e-3(6.27e-4)− 4.56e-3(6.74e-3)− 4.48e-2(4.91e-4)− 4.24e-3(1.71e-4)
DTLZ4 2 2.96e-2(2.54e-1)− 2.25e-1(3.44e-1)+ 7.79e-2(2.25e-1)− 4.41e-3(7.58e-5)
DTLZ5 5.01e-3(1.38e-4)− 3.96e-3(1.31e-7)+ 4.18e-3(3.94e-5)+ 4.40e-3(5.66e-5)
DTLZ6 4.95e-3(1.76e-4)− 3.96e-3(3.71e-8)+ 4.10e-3(3.61e-5)− 4.09e-3(1.83e-5)
DTLZ7 5.20e-3(1.56e-4)− 1.83e-1(2.17e-1)− 4.79e-3(8.62e-5)− 4.43e-3(4.01e-5)
WFG1 1.69e-1(4.68e-2)+ 4.62e-1(5.99e-2)+ 1.72e-1(5.29e-2)+ 9.62e-1(6.74e-2)
WFG2 1.25e-2(6.34e-4)− 6.57e-2(3.59e-3)− 1.13e-2(4.42e-4)− 1.12e-2(2.33e-4)
WFG3 1.53e-2(7.71e-4)− 2.22e-2(2.53e-3)− 1.32e-2(6.35e-4)≈ 1.32e-2(2.49e-4)
WFG4 1.56e-2(6.52e-4)+ 2.75e-2(2.45e-3)+ 1.37e-2(3.29e-4)+ 3.88e-2(7.95e-3)
WFG5 2 6.56e-2(1.21e-3)− 7.16e-2(2.04e-3)− 6.52e-2(1.63e-3)− 6.46e-2(3.41e-4)
WFG6 8.02e-2(1.66e-2)− 1.09e-1(2.47e-2)− 7.61e-2(2.33e-2)− 1.72e-2(3.01e-3)
WFG7 1.69e-2(8.96e-4)− 2.63e-2(4.42e-3)− 1.38e-2(3.11e-4)≈ 1.38e-2(2.38e-4)
WFG8 1.11e-1(1.40e-3)+ 1.23e-1(7.68e-3)− 1.01e-1(2.15e-3)+ 1.16e-1(1.78e-3)
WFG9 2.95e-2(3.79e-2)− 4.85e-2(2.99e-2)− 1.97e-2(2.25e-3)+ 2.50e-2(2.07e-3)
DTLZ1 2.69e-2(1.06e-3)+ 2.75e-3(8.28e-4)+ 2.20e-2(1.14e-4)+ 4.43e-2(7.83e-2)
DTLZ2 5.02e-3(2.88e-3)− 3.96e-2(1.02e-7)− 4.18e-3(5.02e-5)+ 4.33e-3(5.84e-4)
DTLZ3 7.54e-2(7.43e-3)+ 5.78e-2(7.41e-3)+ 5.36e-2(7.12e-4)+ 1.23e-0(9.68e-1)
DTLZ4 3 2.96e-2(1.34e-1)− 2.60e-1(2.71e-1)− 7.79e-2(2.25e-1)− 4.41e-3(7.58e-3)
DTLZ5 5.06e-3(1.76e-4)− 3.10e-2(9.54e-5)− 4.15e-3(3.47e-5)+ 4.32e-3(3.97e-5)
DTLZ6 5.06e-3(2.09e-4)− 3.12e-2(3.10e-5)− 4.19e-3(3.01e-5)− 4.16e-3(2.49e-5)
DTLZ7 5.24e-3(1.66e-4)+ 1.83e-1(2.17e-3)− 4.73e-2(3.22e-3)− 4.43e-2(4.43e-5)
WFG1 4.19e-1(5.37e-2)+ 5.68e-1(7.88e-2)+ 3.88e-1(6.14e-2)+ 1.58e-0(2.50e-2)
WFG2 1.94e-1(8.65e-3)− 9.23e-1(1.38e-2)− 1.59e-1(9.27e-3)− 1.56e-1(7.49e-3)
WFG3 1.01e-1(1.37e-2)+ 1.71e-1(5.01e-2)− 1.13e-1(9.28e-3)+ 1.50e-1(6.12e-3)
WFG4 2.73e-1(1.05e-2)− 2.33e-1(3.67e-3)+ 2.20e-1(2.43e-3)+ 2.59e-1(3.61e-3)
WFG5 3 2.76e-1(8.95e-3)− 2.36e-1(2.06e-3)− 2.31e-1(3.49e-3)+ 2.35e-1(2.49e-3)
WFG6 3.11e-1(1.54e-2)− 2.74e-1(1.49e-2)− 2.43e-1(1.21e-2)− 2.41e-1(7.72e-3)
WFG7 2.81e-1(1.12e-2)− 2.70e-1(2.18e-2)− 2.28e-1(3.32e-3)− 2.26e-1(3.20e-3)
WFG8 3.73e-1(9.08e-3)− 3.01e-1(7.08e-3)+ 3.03e-1(4.77e-3)+ 3.32e-1(5.33e-3)
WFG9 2.74e-1(1.12e-2)− 2.67e-1(3.52e-2)− 2.23e-1(2.33e-2)− 2.17e-1(2.24e-3)
+/− / ≈ 10/27/0 13/24/0 17/18/2
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Figure 4: Convergence trajectories of the proposed CMOPSO and three MOEAs, NSGA-
II, MOEA/D and SPEA2 on ZDT1 and ZDT3, averaging over 30 runs. (a) Convergence
trajectory of the four compared multi-objective PSO algorithms on ZDT1; (b) Conver-
gence trajectory of the four compared multi-objective PSO algorithms on ZDT3. The ex-
perimental results indicate the competitive convergence speed of the proposed CMOPSO
in comparison with the three popular MOEAs on ZDT1 and ZDT3.

premature convergence due to the loss of swarm diversity, but a much
large elite particle set, on the other hand, often leads to a lower learning
efficiency and thus reduces the convergence speed. Therefore, we perform
the sensitivity analysis of the parameter γ in this subsection.

Figure 7 presents the IGD values of the proposed CMOPSO with dif-
ferent sizes of elite particle set on DTLZ1, DTLZ2, DTLZ3 and DTLZ7
with two and three objectives, averaging over 30 runs, where DTLZ1 and
DTLZ3 are two representative MOPs with local fronts, DTLZ2 has a sim-
ple continuous Pareto front, and DTLZ7 has a disconnected Pareto front.
It can be observed that the performance of CMOPSO is relatively sensitive
to the size of elite particle set on MOPs with local fronts, especially in the
case of three objectives. For both bi-objective and three-objective DTLZ1
and DTLZ3, the proposed CMOPSO achieved the best performance when
the size of elite particle set is set to 10. By contrast, the proposed CMOPSO
demonstrates more robust performance to the settings of γ on DTLZ2 and
DTLZ7, which are without local fronts. Therefore, a size of 10 is usually
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Figure 5: The non-dominated solution sets associated with the best IGD value among 30
runs obtained by the proposed CMOPSO and three MOEAs with a maximum number of
generations of 50 on ZDT1. (a) The non-dominated solution set obtained by NSGA-II on
ZDT1; (b) The non-dominated solution set obtained by MOEA/D on ZDT1; (c) The non-
dominated solution set obtained by SPEA2 on ZDT1; (d) The non-dominated solution
set obtained by CMOPSO on ZDT1. The experimental results show that the proposed
CMOPSO can well converge to the whole Pareto front of ZDT1 within a small number of
generations.

suggested for elite particle set in the proposed CMOPSO to solve MOPs.
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Figure 6: The non-dominated solution sets associated with the best IGD value among 30
runs obtained by the proposed CMOPSO and three MOEAs with a maximum number of
generations of 50 on ZDT3. (a) The non-dominated solution set obtained by NSGA-II on
ZDT3; (b) The non-dominated solution set obtained by MOEA/D on ZDT3; (c) The non-
dominated solution set obtained by SPEA2 on ZDT3; (d) The non-dominated solution
set obtained by CMOPSO on ZDT3. The experimental results show that the proposed
CMOPSO can well converge to the whole Pareto front of ZDT3 in within a small number
of generations.

5. Conclusion and remark

In this paper, we have proposed a competitive mechanism based multi-
objective particle swarm optimizer (CMOPSO) inspired from the recently
proposed competitive swarm optimizer [2]. In CMOPSO, a competition
mechanism based learning strategy has been suggested for updating the
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Figure 7: The IGD values of the proposed CMOPSO with different sizes of elite particle
set on DTLZ1, DTLZ2, DTLZ3 and DTLZ7 with two and three objectives. (a) The IGD
values of the proposed CMOPSO with different sizes of elite particle set on DTLZ1 and
DTLZ3 with two and three objectives; (b) The IGD values of the proposed CMOPSO with
different sizes of elite particle set on DTLZ2 and DTLZ7 with two and three objectives.
The experimental results demonstrate that 10 is often a good setting for the size of elite
particle set on DTLZ1 and DTLZ3.

particles, where each particle is made to learn from the winner of each
pairwise competition. Since the competitions are performed among the
elite particles selected from the current swarm, there is no external archive
maintained for saving global or personal best particles. Experimental re-
sults on a variety of benchmark MOPs have demonstrated the promising
performance of the proposed CMOPSO, in comparison with several exist-
ing multi-objective PSO algorithms and popular MOEAs.

In the future, it is interesting to investigate the pairwise competition
mechanism by further exploring its potential in solving more complicated
MOPs, e.g., those with a large number of local fronts [4]. In addition, the
scalability of competition mechanism suggested in CMOPSO [3] to large-
scale MOPs also deserves to be instigated, since competitive swarm opti-
mizer has demonstrated its competitiveness in solving large-scale SOPs.
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