240 research outputs found

    Adaptive Markov random fields for joint unmixing and segmentation of hyperspectral image

    Get PDF
    Linear spectral unmixing is a challenging problem in hyperspectral imaging that consists of decomposing an observed pixel into a linear combination of pure spectra (or endmembers) with their corresponding proportions (or abundances). Endmember extraction algorithms can be employed for recovering the spectral signatures while abundances are estimated using an inversion step. Recent works have shown that exploiting spatial dependencies between image pixels can improve spectral unmixing. Markov random fields (MRF) are classically used to model these spatial correlations and partition the image into multiple classes with homogeneous abundances. This paper proposes to define the MRF sites using similarity regions. These regions are built using a self-complementary area filter that stems from the morphological theory. This kind of filter divides the original image into flat zones where the underlying pixels have the same spectral values. Once the MRF has been clearly established, a hierarchical Bayesian algorithm is proposed to estimate the abundances, the class labels, the noise variance, and the corresponding hyperparameters. A hybrid Gibbs sampler is constructed to generate samples according to the corresponding posterior distribution of the unknown parameters and hyperparameters. Simulations conducted on synthetic and real AVIRIS data demonstrate the good performance of the algorithm

    Collaborative sparse regression using spatially correlated supports - Application to hyperspectral unmixing

    Get PDF
    This paper presents a new Bayesian collaborative sparse regression method for linear unmixing of hyperspectral images. Our contribution is twofold; first, we propose a new Bayesian model for structured sparse regression in which the supports of the sparse abundance vectors are a priori spatially correlated across pixels (i.e., materials are spatially organised rather than randomly distributed at a pixel level). This prior information is encoded in the model through a truncated multivariate Ising Markov random field, which also takes into consideration the facts that pixels cannot be empty (i.e, there is at least one material present in each pixel), and that different materials may exhibit different degrees of spatial regularity. Secondly, we propose an advanced Markov chain Monte Carlo algorithm to estimate the posterior probabilities that materials are present or absent in each pixel, and, conditionally to the maximum marginal a posteriori configuration of the support, compute the MMSE estimates of the abundance vectors. A remarkable property of this algorithm is that it self-adjusts the values of the parameters of the Markov random field, thus relieving practitioners from setting regularisation parameters by cross-validation. The performance of the proposed methodology is finally demonstrated through a series of experiments with synthetic and real data and comparisons with other algorithms from the literature

    Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

    Get PDF
    Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustard's unmixing tutorial [1] to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.Comment: This work has been accepted for publication in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensin

    A REVIEW ON MULTIPLE-FEATURE-BASED ADAPTIVE SPARSE REPRESENTATION (MFASR) AND OTHER CLASSIFICATION TYPES

    Get PDF
    A new technique Multiple-feature-based adaptive sparse representation (MFASR) has been demonstrated for Hyperspectral Images (HSI's) classification. This method involves mainly in four steps at the various stages. The spectral and spatial information reflected from the original Hyperspectral Images with four various features. A shape adaptive (SA) spatial region is obtained in each pixel region at the second step. The algorithm namely sparse representation has applied to get the coefficients of sparse for each shape adaptive region in the form of matrix with multiple features. For each test pixel, the class label is determined with the help of obtained coefficients. The performances of MFASR have much better classification results than other classifiers in the terms of quantitative and qualitative percentage of results. This MFASR will make benefit of strong correlations that are obtained from different extracted features and this make use of effective features and effective adaptive sparse representation. Thus, the very high classification performance was achieved through this MFASR technique

    Bayesian nonlinear hyperspectral unmixing with spatial residual component analysis

    Get PDF
    This paper presents a new Bayesian model and algorithm for nonlinear unmixing of hyperspectral images. The model proposed represents the pixel reflectances as linear combinations of the endmembers, corrupted by nonlinear (with respect to the endmembers) terms and additive Gaussian noise. Prior knowledge about the problem is embedded in a hierarchical model that describes the dependence structure between the model parameters and their constraints. In particular, a gamma Markov random field is used to model the joint distribution of the nonlinear terms, which are expected to exhibit significant spatial correlations. An adaptive Markov chain Monte Carlo algorithm is then proposed to compute the Bayesian estimates of interest and perform Bayesian inference. This algorithm is equipped with a stochastic optimisation adaptation mechanism that automatically adjusts the parameters of the gamma Markov random field by maximum marginal likelihood estimation. Finally, the proposed methodology is demonstrated through a series of experiments with comparisons using synthetic and real data and with competing state-of-the-art approaches
    corecore