99 research outputs found

    Graph-Based Distributed Control for Adaptive Multi-Robot Patrolling through Local Formation Transformation

    Get PDF
    Multi-robot cooperative navigation in real-world environments is essential in many applications, including surveillance and search-and-rescue missions. State-of-the-art methods for cooperative navigation are often tested in ideal laboratory conditions and not ready to be deployed in real- world environments, which are often cluttered with static and dynamic obstacles. In this work, we explore a graph-based framework to achieve control of real robot formations moving in a world cluttered with a variety of obstacles by introducing a new distributed algorithm for reconfiguring the formation shape. We systematically validate the reconfiguration algorithm using three real robots in scenarios of increasing complexity

    Cooperative Control of Multiple Wheeled Mobile Robots: Normal and Faulty Situations

    Get PDF
    Recently, cooperative control of multiple unmanned vehicles has attracted a great deal of attention from scientific, industrial, and military aspects. Groups of unmanned ground, aerial, or marine vehicles working cooperatively lead to many advantages in a variety of applications such as: surveillance, search and exploration, cooperative reconnaissance, environmental monitoring, and cooperative manipulation, respectively. During mission execution, unmanned systems should travel autonomously between different locations, maintain a pre-defined formation shape, avoid collisions of obstacles and also other team members, and accommodate occurred faults and mitigate their negative effect on mission execution. The main objectives of this dissertation are to design novel algorithms for single wheeled mobile robots (WMRs) trajectory tracking, cooperative control and obstacle avoidance of WMRs in fault-free situations. In addition, novel algorithms are developed for fault-tolerant cooperative control (FTCC) with integration of fault detection and diagnosis (FDD) scheme. In normal/fault-free cases, an integrated approach combining input-output feedback linearization and distributed model predictive control (MPC) techniques is designed and implemented on a team of WMRs to accomplish the trajectory tracking as well as the cooperative task. An obstacle avoidance algorithm based on mechanical impedance principle is proposed to avoid potential collisions of surrounding obstacles. Moreover, the proposed control algorithm is implemented to a team of WMRs for pairing with a team of unmanned aerial vehicles (UAVs) for forest monitoring and fire detection applications. When actuator faults occur in one of the robots, two cases are explicitly considered: i) if the faulty robot cannot complete its assigned task due to a severe fault, then the faulty robot has to get out from the formation mission, and an FTCC strategy is designed such that the tasks of the WMRs team are re-assigned to the remaining healthy robots to complete the mission with graceful performance degradation. Two methods are used to investigate this case: the Graph Theory, and formulating the FTCC problem as an optimal assignment problem; and ii) if the faulty robot can continue the mission with degraded performance, then the other team members reconfigure the controllers considering the capability of the faulty robot. Thus, the FTCC strategy is designed to re-coordinate the motion of each robot in the team. Within the proposed scheme, an FDD unit using a two-stage Kalman filter (TSKF) to detect and diagnose actuator faults is presented. In case of using any other nonlinear controller in fault-free case rather than MPC, and in case of severe fault occurrence, another FTCC strategy is presented. First, the new reconfiguration is formulated by an optimal assignment problem where each healthy WMR is assigned to a unique place. Second, the new formation can be reconfigured, while the objective is to minimize the time to achieve the new formation within the constraints of the WMRs' dynamics and collision avoidance. A hybrid approach of control parametrization and time discretization (CPTD) and particle swarm optimization (PSO) is proposed to address this problem. Since PSO cannot solve the continuous control inputs, CPTD is adopted to provide an approximate piecewise linearization of the control inputs. Therefore, PSO can be adopted to find the global optimum solution. In all cases, formation operation of the robot team is based on a leader-follower approach, whilst the control algorithm is implemented in a distributed manner. The results of the numerical simulations and real experiments demonstrate the effectiveness of the proposed algorithms in various scenarios

    Cooperative Control of Multiple Wheeled Mobile Robots: Normal and Faulty Situations

    Get PDF
    Recently, cooperative control of multiple unmanned vehicles has attracted a great deal of attention from scientific, industrial, and military aspects. Groups of unmanned ground, aerial, or marine vehicles working cooperatively lead to many advantages in a variety of applications such as: surveillance, search and exploration, cooperative reconnaissance, environmental monitoring, and cooperative manipulation, respectively. During mission execution, unmanned systems should travel autonomously between different locations, maintain a pre-defined formation shape, avoid collisions of obstacles and also other team members, and accommodate occurred faults and mitigate their negative effect on mission execution. The main objectives of this dissertation are to design novel algorithms for single wheeled mobile robots (WMRs) trajectory tracking, cooperative control and obstacle avoidance of WMRs in fault-free situations. In addition, novel algorithms are developed for fault-tolerant cooperative control (FTCC) with integration of fault detection and diagnosis (FDD) scheme. In normal/fault-free cases, an integrated approach combining input-output feedback linearization and distributed model predictive control (MPC) techniques is designed and implemented on a team of WMRs to accomplish the trajectory tracking as well as the cooperative task. An obstacle avoidance algorithm based on mechanical impedance principle is proposed to avoid potential collisions of surrounding obstacles. Moreover, the proposed control algorithm is implemented to a team of WMRs for pairing with a team of unmanned aerial vehicles (UAVs) for forest monitoring and fire detection applications. When actuator faults occur in one of the robots, two cases are explicitly considered: i) if the faulty robot cannot complete its assigned task due to a severe fault, then the faulty robot has to get out from the formation mission, and an FTCC strategy is designed such that the tasks of the WMRs team are re-assigned to the remaining healthy robots to complete the mission with graceful performance degradation. Two methods are used to investigate this case: the Graph Theory, and formulating the FTCC problem as an optimal assignment problem; and ii) if the faulty robot can continue the mission with degraded performance, then the other team members reconfigure the controllers considering the capability of the faulty robot. Thus, the FTCC strategy is designed to re-coordinate the motion of each robot in the team. Within the proposed scheme, an FDD unit using a two-stage Kalman filter (TSKF) to detect and diagnose actuator faults is presented. In case of using any other nonlinear controller in fault-free case rather than MPC, and in case of severe fault occurrence, another FTCC strategy is presented. First, the new reconfiguration is formulated by an optimal assignment problem where each healthy WMR is assigned to a unique place. Second, the new formation can be reconfigured, while the objective is to minimize the time to achieve the new formation within the constraints of the WMRs' dynamics and collision avoidance. A hybrid approach of control parametrization and time discretization (CPTD) and particle swarm optimization (PSO) is proposed to address this problem. Since PSO cannot solve the continuous control inputs, CPTD is adopted to provide an approximate piecewise linearization of the control inputs. Therefore, PSO can be adopted to find the global optimum solution. In all cases, formation operation of the robot team is based on a leader-follower approach, whilst the control algorithm is implemented in a distributed manner. The results of the numerical simulations and real experiments demonstrate the effectiveness of the proposed algorithms in various scenarios

    Hiding Leader's Identity in Leader-Follower Navigation through Multi-Agent Reinforcement Learning

    Get PDF
    Leader-follower navigation is a popular class of multi-robot algorithms where a leader robot leads the follower robots in a team. The leader has specialized capabilities or mission critical information (e.g. goal location) that the followers lack which makes the leader crucial for the mission's success. However, this also makes the leader a vulnerability - an external adversary who wishes to sabotage the robot team's mission can simply harm the leader and the whole robot team's mission would be compromised. Since robot motion generated by traditional leader-follower navigation algorithms can reveal the identity of the leader, we propose a defense mechanism of hiding the leader's identity by ensuring the leader moves in a way that behaviorally camouflages it with the followers, making it difficult for an adversary to identify the leader. To achieve this, we combine Multi-Agent Reinforcement Learning, Graph Neural Networks and adversarial training. Our approach enables the multi-robot team to optimize the primary task performance with leader motion similar to follower motion, behaviorally camouflaging it with the followers. Our algorithm outperforms existing work that tries to hide the leader's identity in a multi-robot team by tuning traditional leader-follower control parameters with Classical Genetic Algorithms. We also evaluated human performance in inferring the leader's identity and found that humans had lower accuracy when the robot team used our proposed navigation algorithm

    Multi-Robot Coalition Formation for Distributed Area Coverage

    Get PDF
    The problem of distributed area coverage using multiple mobile robots is an important problem in distributed multi-robot sytems. Multi-robot coverage is encountered in many real world applications, including unmanned search & rescue, aerial reconnaissance, robotic demining, inspection of engineering structures, and automatic lawn mowing. To achieve optimal coverage, robots should move in an efficient manner and reduce repeated coverage of the same region that optimizes a certain performance metric such as the amount of time or energy expended by the robots. This dissertation especially focuses on using mini-robots with limited capabilities, such as low speed of the CPU and limited storage of the memory, to fulfill the efficient area coverage task. Previous research on distributed area coverage use offline or online path planning algorithms to address this problem. Some of the existing approaches use behavior-based algorithms where each robot implements simple rules and the interaction between robots manifests in the global objective of overall coverage of the environment. Our work extends this line of research using an emergent, swarming based technique where robots use partial coverage histories from themselves as well as other robots in their vicinity to make local decisions that attempt to ensure overall efficient area coverage. We have then extended this technique in two directions. First, we have integreated the individual-robot, swarming-based technique for area coverage to teams of robots that move in formation to perform area coverage more efficiently than robots that move individually. Then we have used a team formation technique from coalition game theory, called Weighted Voting Game (WVG) to handle situations where a team moving in formation while performing area coverage has to dynamically reconfigure into sub-teams or merge with other teams, to continue the area coverage efficiently. We have validated our techniques by testing them on accurate models of e-puck robots in the Webots robot simulation platform, as well as on physical e-puck robots

    Formation Control for a Fleet of Autonomous Ground Vehicles: A Survey

    Get PDF
    Autonomous/unmanned driving is the major state-of-the-art step that has a potential to fundamentally transform the mobility of individuals and goods. At present, most of the developments target standalone autonomous vehicles, which can sense the surroundings and control the vehicle based on this perception, with limited or no driver intervention. This paper focuses on the next step in autonomous vehicle research, which is the collaboration between autonomous vehicles, mainly vehicle formation control or vehicle platooning. To gain a deeper understanding in this area, a large number of the existing published papers have been reviewed systemically. In other words, many distributed and decentralized approaches of vehicle formation control are studied and their implementations are discussed. Finally, both technical and implementation challenges for formation control are summarized

    Collision Free Navigation of a Multi-Robot Team for Intruder Interception

    Full text link
    In this report, we propose a decentralised motion control algorithm for the mobile robots to intercept an intruder entering (k-intercepting) or escaping (e-intercepting) a protected region. In continuation, we propose a decentralized navigation strategy (dynamic-intercepting) for a multi-robot team known as predators to intercept the intruders or in the other words, preys, from escaping a siege ring which is created by the predators. A necessary and sufficient condition for the existence of a solution of this problem is obtained. Furthermore, we propose an intelligent game-based decision-making algorithm (IGD) for a fleet of mobile robots to maximize the probability of detection in a bounded region. We prove that the proposed decentralised cooperative and non-cooperative game-based decision-making algorithm enables each robot to make the best decision to choose the shortest path with minimum local information. Then we propose a leader-follower based collision-free navigation control method for a fleet of mobile robots to traverse an unknown cluttered environment where is occupied by multiple obstacles to trap a target. We prove that each individual team member is able to traverse safely in the region, which is cluttered by many obstacles with any shapes to trap the target while using the sensors in some indefinite switching points and not continuously, which leads to saving energy consumption and increasing the battery life of the robots consequently. And finally, we propose a novel navigation strategy for a unicycle mobile robot in a cluttered area with moving obstacles based on virtual field force algorithm. The mathematical proof of the navigation laws and the computer simulations are provided to confirm the validity, robustness, and reliability of the proposed methods

    Robust Formation Control for Networked Robotic Systems Using Negative Imaginary Dynamics

    Get PDF
    This paper proposes a consensus-based formation tracking scheme for multi-robot systems utilizing the Negative Imaginary (NI) theory. The proposed scheme applies to a class of networked robotic systems that can be modelled as a group of single integrator agents with stable uncertainties connected via an undirected graph. NI/SNI property of networked agents facilitates the design of a distributed Strictly Negative Imaginary (SNI) controller to achieve the desired formation tracking. A new theoretical proof of asymptotic convergence of the formation tracking trajectories is derived based on the integral controllability of a networked SNI systems. The proposed scheme is an alternative to the conventional Lyapunov-based formation tracking schemes. It offers robustness to NI/SNI-type model uncertainties and fault-tolerance to a sudden loss of robots due to hardware/communication fault. The feasibility and usefulness of the proposed formation tracking scheme were validated by lab-based real-time hardware experiments involving miniature mobile robots
    • …
    corecore