2,532 research outputs found

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    Indoor Intruder Tracking Using Visible Light Communications

    Get PDF
    This paper proposes a comprehensive study of indoor intruder tracking using visible light communication (VLC). A realistic indoor VLC channel was developed, taking into consideration reflections, shadowing, and ambient noise. The intruder was considered smart and aiming to escape tracking. This was modelled by adding noise and disturbance to the intruder’s trajectory. We propose to extend the application of minimax filtering from state estimation in the radio frequency (RF) domain to intruder tracking using VLC. The performance of the proposed method was examined and compared with Kalman filter for both VLC and RF. The simulation results showed that the minimax filter provided marginally better tracking and was more robust to the adversary behavior of the intruder than Kalman filter, with less than 0.5 cm estimation error. In addition, minimax was significantly better than Kalman filter for RF tracking applications

    Dynamic Adjustment of Measurement Noise Covariance Matrix in an Infrared-based Positioning and Tracking System

    Get PDF
    2022 IEEE 12th International Conference on Indoor Positioning and Indoor Navigation (IPIN), 5-8 September, 2022, Beijing, China.The accuracy of optical positioning systems can be compromised by multiple factors (reflections, calibration, etc.). As an alternative to the triangulation, multilateration, or fingerprinting techniques typically used in these systems, stochastic estimation techniques can be used, such as Kalman Filters (KF) in its different variants. They estimate the receiver position based on the acquired measurements and the estimated positions in previous iterations. This work presents the evaluation of a 3D optical positioning system, based on four LED beacons and a quadrant receiver, using an Extended Kalman Filter (EKF). The implementation of a measurement noise covariance matrix that is adjusted depending on the angle and distance between transmitters and receiver, obtained in the previous iteration, is analysed. The receiver position estimation using both a dynamic and a static measurement noise covariance matrix is evaluated and compared with simulations and experimental tests. In simulations, the achieved errors are below 6 cm and 12 cm in 75% of the cases when using a dynamic and a static noise matrix, respectively. In the experimental tests, the obtained errors in 75% of the cases for the position in plane XY and the rotation angle ? are smaller than 7.44 cm and 1.06 ? with a dynamic noise matrix; and below 7.59 cm and 1.62 ? for a static one.Agencia Estatal de InvestigaciónUniversidad de Alcal

    Sensor Modalities and Fusion for Robust Indoor Localisation

    Get PDF

    Adaptive Indoor Pedestrian Tracking Using Foot-Mounted Miniature Inertial Sensor

    Get PDF
    This dissertation introduces a positioning system for measuring and tracking the momentary location of a pedestrian, regardless of the environmental variations. This report proposed a 6-DOF (degrees of freedom) foot-mounted miniature inertial sensor for indoor localization which has been tested with simulated and real-world data. To estimate the orientation, velocity and position of a pedestrian we describe and implement a Kalman filter (KF) based framework, a zero-velocity updates (ZUPTs) methodology, as well as, a zero-velocity (ZV) detection algorithm. The novel approach presented in this dissertation uses the interactive multiple model (IMM) filter in order to determine the exact state of pedestrian with changing dynamics. This work evaluates the performance of the proposed method in two different ways: At first a vehicle traveling in a straight line is simulated using commonly used kinematic motion models in the area of tracking (constant velocity (CV), constant acceleration (CA) and coordinated turn (CT) models) which demonstrates accurate state estimation of targets with changing dynamics is achieved through the use of multiple model filter models. We conclude by proposing an interactive multiple model estimator based adaptive indoor pedestrian tracking system for handling dynamic motion which can incorporate different motion types (walking, running, sprinting and ladder climbing) whose threshold is determined individually and IMM adjusts itself adaptively to correct the change in motion models. Results indicate that the overall IMM performance will at all times be similar to the best individual filter model within the IMM
    corecore