859 research outputs found

    Robust H

    Get PDF

    Static anti-windup compensator design for locally Lipschitz systems under input and output delays

    Get PDF
    This paper proposes a static anti-windup compensator (AWC) design methodology for the locally Lipschitz nonlinear systems, containing time-varying interval delays in input and output of the system in the presence of actuator saturation. Static AWC design is proposed for the systems by considering a delay-range-dependent methodology to consider less conservative delay bounds. The approach has been developed by utilizing an improved Lyapunov-Krasovskii functional, locally Lipschitz nonlinearity property, delay-interval, delay derivative upper bound, local sector condition, L2 gain reduction from exogenous input to exogenous output, improved Wirtinger inequality, additive time-varying delays, and convex optimization algorithms to obtain convex conditions for AWC gain calculations. In contrast to the existing results, the present work considers both input and output delays for the AWC design (along with their combined additive effect) and deals with a more generic locally Lipschitz class of nonlinear systems. The effectiveness of the proposed methodology is demonstrated via simulations for a nonlinear DC servo motor system, possessing multiple time-delays, dynamic nonlinearity and actuator constraints

    Event-triggered synchronization of saturated lur’e type systems

    Get PDF
    This dissertation addresses the problem of master-slave synchronization of nonlinear discrete-time Lur’e systems subject to input saturation via event-triggered control (ETC) techniques. Synchronization, which is considered a remarkable property in the physics literature specially when chaotic systems are under investigation, is achieved through the stabilization of the error between the states of the master and the slave system. Regarding the Lur’e type nonlinearity, two different cases are studied along this work: generic slope-restricted state-dependent nonlinearity and piecewise-affine function. In the ETC paradigm, the control signal is updated aperiodically only after the occurrence of an event, which is generated according to a triggering criterion that depends on the evaluation of a triggering function. In the emulation-based design, a synchronization error feedback controller is given a priori and the task is to compute the event generator parameters ensuring performance and closed-loop stability. On the other hand, in the co-design approach the event generator and the control law are simultaneously designed. Theoretical results are obtained for three types of event-triggered mechanism (ETM), namely: static, dynamic and relaxed. In the last case, practical synchronization conditions are derived as form of ultimately boundedness stability. In order to tune the parameters of the event-based strategy, optimization problems are formulated aiming to reduce the number of control signal updates (number of events) with respect to a time-triggered implementation. Numerical simulations are presented to illustrate the application of the proposed methods.Esta dissertação aborda o problema de sincronização mestre-escravo de sistemas Lur’e não lineares de tempo discreto sujeitos à saturação de entrada via técnicas de controle baseado em eventos. A sincronização, que é considerada uma propriedade importante na literatura de Física especialmente quando sistemas caóticos são investigados, é alcançada através da estabilização do erro entre os estados do mestre e do sistema escravo. Em relação à não linearidade do tipo Lur’e, dois casos diferentes são estudados ao longo do trabalho: não linearidade genérica dependente do estado e restrita em inclinação e função afim por partes. No paradigma de controle baseado em eventos (ETC), o sinal de controle é atualizado aperiodicamente apenas após a ocorrência de um evento, que é gerado de acordo com um critério de disparo que depende da avaliação de uma função de disparo. No projeto baseado em emulação, um controlador por realimentação do erro de sincronização é dado a priori e a tarefa é calcular os parâmetros do gerador de eventos garantindo desempenho e estabilidade em malha fechada. Na abordagem de co-design, o gerador de eventos e a lei de controle são projetados simultaneamente. Resultados teóricos são obtidos para três tipos de mecanismo de geração de eventos (ETM), nomeadamente: estático, dinâmico e relaxado. Neste último caso, condições de sincronização prática são derivadas como uma forma de estabilidade ultimamente limitada. Para sintonizar os parâmetros da estratégia baseada em eventos, problemas de otimização são formulados visando reduzir o número de atualizações do sinal de controle (número de eventos) em relação a uma implementação time-triggered. Simulações numéricas são apresentadas para ilustrar a aplicação dos métodos propostos

    Cascaded Control for Improved Building HVAC Performance

    Get PDF
    As of 2011 buildings consumed 41% of all primary energy in the U.S. and can represent more than 70% of peak demand on the electrical grid. Usage by this sector has grown almost 50% since the 1980s and projections foresee an additional growth of 17% by 2035 due to increases in population, new home construction, and commercial development. Three-quarters of building energy is derived from fossil fuels making it a large contributor of the country’s CO2 and NOx output both of which greatly affect the environment and local air quality. Up to half of energy used by the building sector is related to Heating, Ventilation, and Air-Condition systems. Focusing on improving building HVAC control therefore has a large aggregate effect on US energy usage with economic and environmental benefits for end users. This dissertation develops cascaded loop architectures as a solution to common HVAC control issues. These systems display strong load-dependent nonlinearities and coupling behaviors that can lead to actuator hunting (sustained input oscillations) from standard PI controllers that waste energy and cost money. Cascaded loops offer a simple way to eliminate hunting and decouple complex HVAC systems with minimal a priori knowledge of system dynamics. As cascaded loops are easily implementable in building automation systems they can be readily and widely adopted in the field. An examination of the current state of PI control in HVAC and discussion of coordinated, optimal control strategies being developed for reduced energy usage are discussed in Chapter 1. The following two chapters outline the structure and benefits of the cascaded architecture and demonstrate the same using a series of simulation case studies. Implementation approaches and parameterizations of the architecture are explored in Chapter 4 with a derivation showing that the addition of an additional feedback path (i.e., inner loop control) provides more design freedom and ultimately allows for improved control. Finally, Chapter 5 details results from initial cascaded loop implementation at three campus buildings. Results showed improved control performance and an elimination of identified hunting behavior

    Advances in PID Control

    Get PDF
    Since the foundation and up to the current state-of-the-art in control engineering, the problems of PID control steadily attract great attention of numerous researchers and remain inexhaustible source of new ideas for process of control system design and industrial applications. PID control effectiveness is usually caused by the nature of dynamical processes, conditioned that the majority of the industrial dynamical processes are well described by simple dynamic model of the first or second order. The efficacy of PID controllers vastly falls in case of complicated dynamics, nonlinearities, and varying parameters of the plant. This gives a pulse to further researches in the field of PID control. Consequently, the problems of advanced PID control system design methodologies, rules of adaptive PID control, self-tuning procedures, and particularly robustness and transient performance for nonlinear systems, still remain as the areas of the lively interests for many scientists and researchers at the present time. The recent research results presented in this book provide new ideas for improved performance of PID control applications

    Control Theory in Engineering

    Get PDF
    The subject matter of this book ranges from new control design methods to control theory applications in electrical and mechanical engineering and computers. The book covers certain aspects of control theory, including new methodologies, techniques, and applications. It promotes control theory in practical applications of these engineering domains and shows the way to disseminate researchers’ contributions in the field. This project presents applications that improve the properties and performance of control systems in analysis and design using a higher technical level of scientific attainment. The authors have included worked examples and case studies resulting from their research in the field. Readers will benefit from new solutions and answers to questions related to the emerging realm of control theory in engineering applications and its implementation
    corecore