13 research outputs found

    Adaptive Fuzzy Output Regulation for Formation Control of Unmanned Surface Vehicles

    Get PDF

    Adaptive Fuzzy Containment Control for Uncertain Nonlinear Multiagent Systems

    Get PDF
    This paper considers the containment control problem for uncertain nonlinear multiagent systems under directed graphs. The followers are governed by nonlinear systems with unknown dynamics while the multiple leaders are neighbors of a subset of the followers. Fuzzy logic systems (FLSs) are used to identify the unknown dynamics and a distributed state feedback containment control protocol is proposed. This result is extended to the output feedback case, where observers are designed to estimate the unmeasurable states. Then, an output feedback containment control scheme is presented. The developed state feedback and output feedback containment controllers guarantee that the states of all followers converge to the convex hull spanned by the dynamic leaders. Based on Lyapunov stability theory, it is proved that the containment control errors are uniformly ultimately bounded (UUB). An example is provided to show the effectiveness of the proposed control method

    Graph rigidity-based formation control of planar multi-agent systems

    Get PDF
    A multi-agent system is a network of interacting agents that collectively perform a complex task. This dissertation is concerned with the decentralized formation control of multi-agent systems moving in the plane. The formation problem is defined as designing control inputs for the agents so that they form and maintain a pre-defined, planar geometric shape. The focus is on three related problems with increasing level of complexity: formation acquisition, formation maneuvering, and target interception. Three different dynamic models, also with increasing level of complexity, are considered for the motion of the agents: the single-integrator model, the double-integrator model, and the full mechanical dynamic model. Rigid graph theory and Lyapunov theory are the primary tools utilized in this work for solving the aforementioned formation problems for the three models. The backstepping control technique also plays a key role in the cases of the double-integrator and full dynamic models. Starting with the single-integrator model, a basic formation acquisition controller is proposed that is only a function of the relative position of agents in an infinitesimally and minimally rigid graph. A Lyapunov analysis shows that the origin of the inter-agent distance error system is exponentially stable. It is then shown how an extra term can be added to the controller to enable formation maneuvering or target interception. The three controllers for the single-integrator model are used as a stepping stone and extended to the double-integrator model with the aid of backstepping. Finally, an actuator-level, formation acquisition control law is developed for multiple robotic vehicles that accounts for the vehicle dynamics. Specifically, a class of underactuated vehicles modeled by Euler-Lagrange-like equations is considered. The backstepping technique is again employed while exploiting the structural properties of the system dynamics. Computer simulations are provided throughout the dissertation to show the proposed control laws in action

    Formation Control of Unmanned Surface Vehicles with Sensing Constraints Using Exponential Remapping Method

    Get PDF
    This paper presents a formation control strategy for unmanned surface vehicles (USVs) with sensing constraints moving in a leader-follower formation. Each USV is assumed to be equipped with a vision-based sensor, which is able to get the line-of-sight (LOS) range and bearing information. Most existing literature assumes that the USVs in formation control are with no sensing limitations or with 360-degree sensing fields; however, in our research, the vision-based sensor’s capability is restricted due to limited Field of View (FOV) and visual range. We consider that each USV in formation problem is equipped with a sector-like sensing field sensor for the leader-follower formation in two-dimensional space. The formation controller is developed by employing backstepping control technique and exponential remapping. The backstepping controller is designed to stabilize the triangular formation of three USVs, and the proposed exponential remapping method is to deal with the sector-like sensing constraint problem. Comparative analysis with three exponential remapping methods using numerical simulations is given to demonstrate the effectiveness of the proposed method

    A multirobot platform based on autonomous surface and underwater vehicles with bio-inspired neurocontrollers for long-term oil spills monitoring

    Get PDF
    This paper describes the BUSCAMOS-Oil monitoring system, which is a robotic platform consisting of an autonomous surface vessel combined with an underwater vehicle. The system has been designed for the long-term monitoring of oil spills, including the search for the spill, and transmitting information on its location, extent, direction and speed. Both vehicles are controlled by two different types of bio-inspired neural networks: a Self-Organization Direction Mapping Network for trajectory generation and a Neural Network for Avoidance Behaviour for avoiding obstacles. The systems’ resilient capabilities are provided by bio-inspired algorithms implemented in a modular software architecture and controlled by redundant devices to give the necessary robustness to operate in the difficult conditions typically found in long-term oil-spill operations. The efficacy of the vehicles’ adaptive navigation system and long-term mission capabilities are shown in the experimental results.This work was partially supported by the BUSCAMOS Project (ref. 1003211003700) under the program DN8644 COINCIDENTE of the Spanish Defense Ministry, the “Research Programme for Groups of Scientific Excellence at Region of Murcia” of the Seneca Foundation (Agency for Science and Technology of the Region of Murcia-19895/GERM/15)”, and the Spanish Government’s cDrone (ref. TIN2013-45920-R) and ViSelTR (ref. TIN2012-39279) projects

    Experimental Validation Of A Robust Surge Speed Controller For Marine Surface Vessels

    Get PDF
    The focus of the current work is on providing experimental validation for the robust performance and good tracking characteristic of a surge speed controller for autonomous piloting of an under-actuated 16 ft boat in the completely uncontrolled setting of open-water Lake Saint Clair, Michigan. The controller is designed based on the sliding mode methodology and completely ignores the dynamics of the marine surface vessel (MSV) in its formulation. The testing was conducted under considerable unstructured uncertainties and unpredictable environmental disturbances induced by waves, sea-currents, and wind. The experimental results serve to validate the robust tracking characteristic of the controller and prove the successful implementation of the controller without prior knowledge of the system dynamics; thus, yielding a robust model-less controller

    Adaptive Dynamic Surface Control for Formations of Autonomous Surface Vehicles With Uncertain Dynamics

    No full text
    National Nature Science Foundation of China [60674037, 61074017, 61074004]; Program for Liaoning Excellent Talents in Universities [2009R06]; Fundamental Research Funds for the Central UniversitiesIn this brief, we consider the formation control problem of underactuated autonomous surface vehicles (ASVs) moving in a leader-follower formation, in the presence of uncertainties and ocean disturbances. A robust adaptive formation controller is developed by employing neural network and dynamic surface control technique. The stability of the design is proven via Lyapunov analysis where semiglobal uniform ultimate boundedness of the closed-loop signals is guaranteed. The advantages of the proposed formation controller are that: first, the proposed method only uses the measurements of line-of-sight range and angle by local sensors, no other information about the leader is required for control implementation; second, the developed neural formation controller is able to capture the vehicle dynamics without exact information of coriolis and centripetal force, hydrodynamic damping and disturbances from the environment. Comparative analysis with a model-based approach is given to demonstrate the effectiveness of the proposed method

    Adaptive Formation Control of Cooperative Multi-Vehicle Systems

    Get PDF
    The literature comprises many approaches and results for the formation control of multi-vehicle systems; however, the results established for the cases where the vehicles contain parametric uncertainties are limited. Motivated by the need for explicit characterization of the effects of uncertainties on multi-vehicle formation motions, we study distributed adaptive formation control of multi-vehicle systems in this thesis, focusing on different interrelated sub-objectives. We first examine the cohesive motion control problem of minimally persistent formations of autonomous vehicles. Later, we consider parametric uncertainties in vehicle dynamics in such autonomous vehicle formations. Following an indirect adaptive control approach and exploiting the features of the certainty equivalence principle, we propose control laws to solve maneuvering problem of the formations, robust to parametric modeling uncertainties. Next, as a formation acquisition/closing ranks problem, we study the adaptive station keeping problem, which is defined as positioning an autonomous mobile vehicle AA inside a multi-vehicle network, having specified distances from the existing vehicles of the network. In this setting, a single-integrator model is assumed for the kinematics for the vehicle AA, and AA is assumed to have access to only its own position and its continuous distance measurements to the vehicles of the network. We partition the problem into two sub-problems; localization of the existing vehicles of the network using range-only measurements and motion control of AA to its desired location within the network with respect to other vehicles. We design an indirect adaptive control scheme, provide formal stability and convergence analysis and numerical simulation results, demonstrating the characteristics and performance of the design. Finally, we study re-design of the proposed station keeping scheme for the more challenging case where the vehicle AA has non-holonomic motion dynamics and does not have access to its self-location information. Overall, the thesis comprises methods and solutions to four correlated formation control problems in the direction of achieving a unified distributed adaptive formation control framework for multi-vehicle systems
    corecore