86 research outputs found

    Adaptive Nonlinear RF Cancellation for Improved Isolation in Simultaneous Transmit-Receive Systems

    Get PDF
    This paper proposes an active radio frequency (RF) cancellation solution to suppress the transmitter (TX) passband leakage signal in radio transceivers supporting simultaneous transmission and reception. The proposed technique is based on creating an opposite-phase baseband equivalent replica of the TX leakage signal in the transceiver digital front-end through adaptive nonlinear filtering of the known transmit data, to facilitate highly accurate cancellation under a nonlinear TX power amplifier (PA). The active RF cancellation is then accomplished by employing an auxiliary transmitter chain, to generate the actual RF cancellation signal, and combining it with the received signal at the receiver (RX) low noise amplifier (LNA) input. A closed-loop parameter learning approach, based on the decorrelation principle, is also developed to efficiently estimate the coefficients of the nonlinear cancellation filter in the presence of a nonlinear TX PA with memory, finite passive isolation, and a nonlinear RX LNA. The performance of the proposed cancellation technique is evaluated through comprehensive RF measurements adopting commercial LTE-Advanced transceiver hardware components. The results show that the proposed technique can provide an additional suppression of up to 54 dB for the TX passband leakage signal at the RX LNA input, even at considerably high transmit power levels and with wide transmission bandwidths. Such novel cancellation solution can therefore substantially improve the TX-RX isolation, hence reducing the requirements on passive isolation and RF component linearity, as well as increasing the efficiency and flexibility of the RF spectrum use in the emerging 5G radio networks.Comment: accepted to IEE

    Reduced-complexity Digital Predistortion in Flexible Radio Spectrum Access

    Get PDF
    Wireless communications is nowadays seen as one of the main foundations of technological advancements in, e.g., healthcare, education, agriculture, transportation, computing, personal communications, media, and entertainment. This requires major technological developments and advances at different levels of the wireless communication systems and networks. In particular, it is required to utilize the currently available frequency spectrum in a more and more efficient way, while also adopting new spectral bands. Moreover, it is required that cheaper and smaller electronic components are used to build future wireless communication systems to facilitate increasingly cost-effective solutions. Meanwhile, energy efficiency becomes extremely important in wide scale deployments of the networks both from a running cost point of view, and from an environmental impact point of view. This is the big picture, or the so called ‘bird’s eye view’ of the challenges that are yet to be met in this very interesting and fast developing field of science.The power amplifier (PA) is the most power-hungry component in most RF transmitters. Consequently, its energy efficiency significantly contributes to the overall energy efficiency of the transmitter, and in fact the whole wireless network. Unfortunately, energy efficiency enhancement implies operating the PA closer to its saturation region, which typically results in severe nonlinear distortion that can deteriorate the signal quality and cause interference to neighboring users, both of which negatively impact the system spectral efficiency. Moreover, in flexible spectrum access scenarios, which are essential for improving the spectral efficiency, particular in the form of non-contiguous radio spectrum access, the nonlinear distortion due to the PA becomes even more severe and can significantly impact the overall network performance. For example, in noncontiguous carrier aggregation (CA) in LTE-Advanced, it has been demonstrated that in addition to the classical in-band distortion and regrowth around the main carriers, harmful spurious emission components are generated which can easily violate the spurious emission limits even in the case of user equipment (UE) transmitters.Technological advances in the digital electronics domain have enabled us to approach this problem from a digital signal processing point of view in the form of widely-adopted and researched digital predistortion (DPD) technology. However, when the signal bandwidth gets larger, and flexible or non-contiguous spectrum access is introduced, the complexity of the DPD increases and the power consumed in the digital domain by the DPD itself becomes higher and higher, to the extent that it might be close to, or even surpass, the energy savings achieved from using a more efficient PA. The problem becomes even more challenging at the UE side which has relatively limited computational capabilities and lower transmit power. This dilemma can be resolved by developing novel reduced-complexity DPD solutions in such flexible spectrum access and/or wide bandwidth scenarios while not sacrificing the DPD performance, which is the main topic area that this thesis work contributes to.The first contribution of this thesis is the development of a spur-injection based sub-band DPD structure for spurious emission mitigation in noncontiguous transmission scenarios. A novel and effective learning algorithm is also introduced, for the proposed sub-band DPD, based on the decorrelation principle. Mathematical models of the unwanted emissions are formulated based on realistic PA models with memory, followed by developing an efficient DPD structure for mitigating these emissions with reducedcomplexity in both the DPD main processing and learning paths while providing excellent spurious emission suppression. In the special case when the spurious emissions overlap with the own RX band in frequency division duplexing (FDD) transceivers, a novel subband DPD solution is also developed that uses the main RX for DPD learning without requiring any additional observation RX, thus further reducing the DPD complexity.The second contribution is the development of a novel reduced-complexity concurrent DPD, with a single-feedback receiver path, for carrier aggregation-like scenarios. The proposed solution is based on a simple and flexible DPD structure with decorrelationbased parameter learning. Practical simulations and RF measurements demonstrate that the proposed concurrent DPD provides excellent linearization performance, in terms of in-band error vector magnitude (EVM) and adjacent channel leakage ratio (ACLR), when compared to state-of-the-art concurrent DPD solutions, despite its reduced computational complexity in both the DPD main path processing and parameter learning.The third contribution is the development of a new and novel frequency-optimized DPD solution which can tailor its linearization capabilities to any particular regions of the spectrum. Detailed mathematical expressions of the power spectrum at the PA output as a function of the DPD coefficients are formulated. A Newton-Raphson optimization routine is then utilized to optimize the suppression of unwanted emissions at arbitrary pre-specified frequencies at the PA output. From a complexity reduction perspective, this means that for a given linearization performance at a particular frequency range, an optimized and reduced-complexity DPD can be used.Detailed quantitative complexity analysis, of all the proposed DPD solutions, is performed in this thesis. The complexity and linearization performance are also compared to state-of-the-art DPD solutions in the literature to validate and demonstrate the complexity reduction aspect without sacrificing the linearization performance. Moreover, all the DPD solutions developed in this thesis are tested in practical RF environments using real cellular power amplifiers that are commercially used in the latest wireless communication systems, both at the base station side and at the mobile terminal side. These experiments, along with the strong theoretical foundation of the developed DPD solutions prove that they can be commercially used as such to enhance the performance, energy efficiency, and cost effectiveness of next generation wireless transmitters

    Transceivers as a Resource: Scheduling Time and Bandwidth in Software-Defined Radio

    Get PDF
    In the future, software-defined radio may enable a mobile device to support multiple wireless protocols implemented as software applications. These applications, often referred to as waveform applications, could be added, updated, or removed from a software-radio device to meet changing demands. Current software-defined radio solutions grant an active waveform exclusive ownership of a specific transceiver or analog front-end. Since a wireless device has a limited number of front-ends, this approach puts a hard constraint on the number of concurrent waveform applications a device can support. A growing trend in software-defined radio research is to virtualize front-ends to allow sharing and reuse among active waveform applications. This poses a difficult scheduling challenge. This article proposes a new approach in which shared access to front-ends is managed by a mixed-integer linear programming model. This model ties together the technique of time-division sharing and front-end bandwidth channelization. This scheduling model is evaluated in simulation under several different scenarios and workloads. Simulation results show that the proposed approach reduces hardware contention and missed radio accesses compared to existing techniques

    Full-duplex wireless communications: challenges, solutions and future research directions

    No full text
    The family of conventional half-duplex (HD) wireless systems relied on transmitting and receiving in different time-slots or frequency sub-bands. Hence the wireless research community aspires to conceive full-duplex (FD) operation for supporting concurrent transmission and reception in a single time/frequency channel, which would improve the attainable spectral efficiency by a factor of two. The main challenge encountered in implementing an FD wireless device is the large power difference between the self-interference (SI) imposed by the device’s own transmissions and the signal of interest received from a remote source. In this survey, we present a comprehensive list of the potential FD techniques and highlight their pros and cons. We classify the SI cancellation techniques into three categories, namely passive suppression, analog cancellation and digital cancellation, with the advantages and disadvantages of each technique compared. Specifically, we analyse the main impairments (e.g. phase noise, power amplifier nonlinearity as well as in-phase and quadrature-phase (I/Q) imbalance, etc.) that degrading the SI cancellation. We then discuss the FD based Media Access Control (MAC)-layer protocol design for the sake of addressing some of the critical issues, such as the problem of hidden terminals, the resultant end-to-end delay and the high packet loss ratio (PLR) due to network congestion. After elaborating on a variety of physical/MAC-layer techniques, we discuss potential solutions conceived for meeting the challenges imposed by the aforementioned techniques. Furthermore, we also discuss a range of critical issues related to the implementation, performance enhancement and optimization of FD systems, including important topics such as hybrid FD/HD scheme, optimal relay selection and optimal power allocation, etc. Finally, a variety of new directions and open problems associated with FD technology are pointed out. Our hope is that this treatise will stimulate future research efforts in the emerging field of FD communication

    Modeling and Digital Mitigation of Transmitter Imperfections in Radio Communication Systems

    Get PDF
    To satisfy the continuously growing demands for higher data rates, modern radio communication systems employ larger bandwidths and more complex waveforms. Furthermore, radio devices are expected to support a rich mixture of standards such as cellular networks, wireless local-area networks, wireless personal area networks, positioning and navigation systems, etc. In general, a "smart'' device should be flexible to support all these requirements while being portable, cheap, and energy efficient. These seemingly conflicting expectations impose stringent radio frequency (RF) design challenges which, in turn, call for their proper understanding as well as developing cost-effective solutions to address them. The direct-conversion transceiver architecture is an appealing analog front-end for flexible and multi-standard radio systems. However, it is sensitive to various circuit impairments, and modern communication systems based on multi-carrier waveforms such as Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency Division Multiple Access (OFDMA) are particularly vulnerable to RF front-end non-idealities.This thesis addresses the modeling and digital mitigation of selected transmitter (TX) RF impairments in radio communication devices. The contributions can be divided into two areas. First, new modeling and digital mitigation techniques are proposed for two essential front-end impairments in direct-conversion architecture-based OFDM and OFDMA systems, namely inphase and quadrature phase (I/Q) imbalance and carrier frequency offset (CFO). Both joint and de-coupled estimation and compensation schemes for frequency-selective TX I/Q imbalance and channel distortions are proposed for OFDM systems, to be adopted on the receiver side. Then, in the context of uplink OFDMA and Single Carrier FDMA (SC-FDMA), which are the air interface technologies of the 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) and LTE-Advanced systems, joint estimation and equalization techniques of RF impairments and channel distortions are proposed. Here, the challenging multi-user uplink scenario with unequal received power levels is investigated where I/Q imbalance causes inter-user interference. A joint mirror subcarrier processing-based minimum mean-square error (MMSE) equalizer with an arbitrary number of receiver antennas is formulated to effectively handle the mirror sub-band users of different power levels. Furthermore, the joint channel and impairments filter responses are efficiently approximated with polynomial-based basis function models, and the parameters of basis functions are estimated with the reference signals conforming to the LTE uplink sub-frame structure. The resulting receiver concept adopting the proposed techniques enables improved link performance without modifying the design of RF transceivers.Second, digital baseband mitigation solutions are developed for the TX leakage signal-induced self-interference in frequency division duplex (FDD) transceivers. In FDD transceivers, a duplexer is used to connect the TX and receiver (RX) chains to a common antenna while also providing isolation to the receiver chain against the powerful transmit signal. In general, the continuous miniaturization of hardware and adoption of larger bandwidths through carrier aggregation type noncontiguous allocations complicates achieving sufficient TX-RX isolation. Here, two different effects of the transmitter leakage signal are investigated. The first is TX out-of-band (OOB) emissions and TX spurious emissions at own receiver band, due to the transmitter nonlinearity, and the second is nonlinearity of down-converter in the RX that generates second-order intermodulation distortion (IMD2) due to the TX in-band leakage signal. This work shows that the transmitter leakage signal-induced interference depends on an equivalent leakage channel that models the TX path non-idealities, duplexer filter responses, and the RX path non-idealities. The work proposes algorithms that operate in the digital baseband of the transceiver to estimate the TX-RX non-idealities and the duplexer filter responses, and subsequently regenerating and canceling the self-interference, thereby potentially relaxing the TX-RX isolation requirements as well as increasing the transceiver flexibility.Overall, this thesis provides useful signal models to understand the implications of different RF non-idealities and proposes compensation solutions to cope with certain RF impairments. This is complemented with extensive computer simulations and practical RF measurements to validate their application in real-world radio transceivers

    Autonomous Component Carrier Selection for 4G Femtocells

    Get PDF

    LTE Advanced: Technology and Performance Analysis

    Get PDF
    Wireless data usage is increasing at a phenomenal rate and driving the need for continued innovations in wireless data technologies to provide more capacity and higher quality of service. In October 2009, 3rd Generation Partnership Project (3GPP) submitted LTE-Advanced to the ITU as a proposed candidate IMT-Advanced technology for which specifications could become available in 2011 through Release-10 . The aim of “LTE-Advanced” is to further enhance LTE radio access in terms of system performance and capabilities compared to current cellular systems, including the first release of LTE, with a specific goal to ensure that LTE fulfills and even surpass the requirements of “IMT-Advanced” as defined by the International Telecommunication Union (ITU-R) . This thesis offers an introduction to the mobile communication standard known as LTE Advanced, depicting the evolution of the standard from its roots and discussing several important technologies that help it evolve to accomplishing the IMT-Advanced requirements. A short history of the LTE standard is offered, along with a discussion of its standards and performance. LTE-Advanced details include analysis on the physical layer by investigating the performance of SC-FDMA and OFDMA of LTE physical layer. The investigation is done by considering different modulation schemes (QPSK, 16QAM and 64QAM) on the basis of PAPR, BER, power spectral density (PSD) and error probability by simulating the model of SC-FDMA & OFDMA. To evaluate the performance in presence of noise, an Additive White Gaussian Noise (AWGN) channel was introduced. A set of conclusions is derived from our results describing the effect of higher order modulation schemes on BER and error probability for both OFDMA and SC-FDMA. The power spectral densities of both the multiple access techniques (OFDMA and SC-FDMA) are calculated and result shows that the OFDMA has higher power spectral density.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format
    corecore