2,028 research outputs found

    Optimisation of Bluetooth wireless personal area networks

    Get PDF
    In recent years there has been a marked growth in the use of wireless cellular telephones, PCs and the Internet. This proliferation of information technology has hastened the advent of wireless networks which aim to increase the accessibility and reach of communications devices. Ambient Intelligence (Ami) is a vision of the future of computing in which all kinds of everyday objects will contain intelligence. To be effective, Ami requires Ubiquitous Computing and Communication, the latter being enabled by wireless networking. The IEEE's 802.11 task group has developed a series of radio based replacements for the familiar wired ethernet LAN. At the same time another IEEE standards task group, 802.15, together with a number of industry consortia, has introduced a new level of wireless networking based upon short range, ad-hoc connections. Currently, the most significant of these new Wireless Personal Area Network (WPAN) standards is Bluetooth, one of the first of the enabling technologies of Ami to be commercially available. Bluetooth operates in the internationally unlicensed Industrial, Scientific and Medical (ISM) band at 2.4 GHz. unfortunately, this spectrum is particularly crowded. It is also used by: WiFi (IEEE 802.11); a new WPAN standard called Zig- Bee; many types of simple devices such as garage door openers; and is polluted by unintentional radiators. The success of a radio specification for ubiquitous wireless communications is, therefore, dependant upon a robust tolerance to high levels of electromagnetic noise. This thesis addresses the optimisation of low power WPANs in this context, with particular reference to the physical layer radio specification of the Bluetooth system

    FSK Demodulation and Bit String Extraction: A Python-Centric Approach in SDR Systems

    Full text link
    Frequency Shift Keying (FSK) modulation is widely utilized in various communication systems for data transmission due to its simplicity and robustness. In this paper, we present a Python-centric approach for demodulating FSK signals and extracting bit strings in Software Defined Radio (SDR) systems. Leveraging the flexibility and power of Python programming language along with SDR platforms, we explore the intricacies of FSK demodulation techniques and efficient bit string extraction methods. Our approach focuses on real-time processing capabilities, enabling rapid decoding of FSK signals with minimal latency. We discuss the implementation details, performance considerations, and optimization strategies, highlighting the advantages and challenges of utilizing Python in SDR applications. Furthermore, we demonstrate the effectiveness of our approach through experimental results and comparisons with existing methods. This paper serves as a comprehensive guide for researchers and practitioners interested in implementing FSK demodulation and bit string extraction algorithms using Python within the context of SDR systems

    Novel multiuser detection and multi-rate schemes for multi-carrier CDMA

    Get PDF
    A large variety of services is [sic] expected for wireless systems, in particular, high data rate services, such as wireless Internet access. Users with different data rates and quality of service (QoS) requirements must be accommodated. A suitable multiple access scheme is key to enabling wireless systems to support both the high data rate and the integrated multiple data rate transmissions with satisfactory performance and flexibility. A multi-carrier code division multiple access (MC-CDMA) scheme is a promising candidate for emerging broadband wireless systems. MC-CDMA is a hybrid of orthogonal frequency division multiplexing (OFDM) and code division multiple access (CDMA). The most salient feature of MC-CDMA is that the rate of transmission is not limited by the wireless channel\u27s frequency-selective fading effects caused by multipath propagation. In MC-CDMA, each chip of the desired user\u27s spreading code, multiplied by the current data bit, is modulated onto a separate subcarrier. Therefore, each subcarrier has a narrow bandwidth and undergoes frequency-flat fading. Two important issues for an MC-CDMA wireless system, multiuser detection and multi-rate access, are discussed in this dissertation. Several advanced receiver structures capable of suppressing multiuser interference in an uplink MC-CDMA system, operating in a frequency-selective fading channel, are studied in this dissertation. One receiver is based on a so-called multishot structure, in which the interference introduced by the asynchronous reception of different users is successfully suppressed by a receiver based on the minimum mean-square error (MMSE) criterion with a built-in de-biasing feature. Like many other multiuser schemes, this receiver is very sensitive to a delay estimation error. A blind adaptive two-stage decorrelating receiver based on the bootstrap algorithm is developed to combat severe performance degradation due to a delay estimation error. It is observed that in the presence of a delay estimation error the blind adaptive bootstrap receiver is more near-far resistant than the MMSE receiver. Furthermore, a differential bootstrap receiver is proposed to extend the limited operating range of the two-stage bootstrap receiver which suffers from a phase ambiguity problem. Another receiver is based on a partial sampling (PS) demodulation structure, which further reduces the sensitivity to unknown user delays in an uplink scenario. Using this partial sampling structure, it is no longer necessary to synchronize the receiver with the desired user. Following the partial sampling demodulator, a minimum mean-square error combining (MMSEC) detector is applied. The partial sampling MMSEC (PS-MMSEC) receiver is shown to have strong interference suppression and timing acquisition capabilities. The complexity of this receiver can be reduced significantly, with negligible performance loss, by choosing a suitable partial sampling rate and using a structure called reduced complexity PS-MMSEC (RPS-MMSEC). The adaptive implementation of these receivers yields a superior rate of convergence and symbol error rate performance in comparison to a conventional MMSEC receiver with known timing. All the above receiver structures are for a single-rate MC-CDMA. Three novel multi-rate access schemes for multi-rate MC-CDMA, fixed spreading length (FSL), coded FSL (CFSL) and variable spreading length (VSL), have been developed. These multi-rate access schemes enable users to transmit information at different data rates in one MC-CDMA system. Hence, voice, data, image and video can be transmitted seamlessly through a wireless infrastructure. The bit error rate performance of these schemes is investigated for both low-rate and high-rate users

    Adaptive Signal Processing Techniques and Realistic Propagation Modeling for Multiantenna Vital Sign Estimation

    Get PDF
    TÀmÀn työn keskeisimpÀnÀ tavoitteena on ihmisen elintoimintojen tarkkailu ja estimointi kÀyttÀen radiotaajuisia mittauksia ja adaptiivisia signaalinkÀsittelymenetelmiÀ monen vastaanottimen kantoaaltotutkalla. TyössÀ esitellÀÀn erilaisia adaptiivisia menetelmiÀ, joiden avulla hengityksen ja sydÀmen vÀrÀhtelyn aiheuttamaa micro-Doppler vaihemodulaatiota sisÀltÀvÀt eri vastaanottimien signaalit voidaan yhdistÀÀ. TyössÀ johdetaan lisÀksi realistinen malli radiosignaalien etenemiselle ja heijastushÀviöille, jota kÀytettiin moniantennitutkan simuloinnissa esiteltyjen menetelmien vertailemiseksi. Saatujen tulosten perusteella voidaan osoittaa, ettÀ adaptiiviset menetelmÀt parantavat langattoman elintoimintojen estimoinnin luotettavuutta, ja mahdollistavat monitoroinnin myös pienillÀ signaali-kohinasuhteen arvoilla.This thesis addresses the problem of vital sign estimation through the use of adaptive signal enhancement techniques with multiantenna continuous wave radar. The use of different adaptive processing techniques is proposed in a novel approach to combine signals from multiple receivers carrying the information of the cardiopulmonary micro-Doppler effect caused by breathing and heartbeat. The results are based on extensive simulations using a realistic signal propagation model derived in the thesis. It is shown that these techniques provide a significant increase in vital sign rate estimation accuracy, and enable monitoring at lower SNR conditions

    Performance enhancement for LTE and beyond systems

    Get PDF
    A thesis submitted to the University of Bedfordshire, in partial fulfilment of the requirements for the degree of Doctor of PhilosophyWireless communication systems have undergone fast development in recent years. Based on GSM/EDGE and UMTS/HSPA, the 3rd Generation Partnership Project (3GPP) specified the Long Term Evolution (LTE) standard to cope with rapidly increasing demands, including capacity, coverage, and data rate. To achieve this goal, several key techniques have been adopted by LTE, such as Multiple-Input and Multiple-Output (MIMO), Orthogonal Frequency-Division Multiplexing (OFDM), and heterogeneous network (HetNet). However, there are some inherent drawbacks regarding these techniques. Direct conversion architecture is adopted to provide a simple, low cost transmitter solution. The problem of I/Q imbalance arises due to the imperfection of circuit components; the orthogonality of OFDM is vulnerable to carrier frequency offset (CFO) and sampling frequency offset (SFO). The doubly selective channel can also severely deteriorate the receiver performance. In addition, the deployment of Heterogeneous Network (HetNet), which permits the co-existence of macro and pico cells, incurs inter-cell interference for cell edge users. The impact of these factors then results in significant degradation in relation to system performance. This dissertation aims to investigate the key techniques which can be used to mitigate the above problems. First, I/Q imbalance for the wideband transmitter is studied and a self-IQ-demodulation based compensation scheme for frequencydependent (FD) I/Q imbalance is proposed. This combats the FD I/Q imbalance by using the internal diode of the transmitter and a specially designed test signal without any external calibration instruments or internal low-IF feedback path. The instrument test results show that the proposed scheme can enhance signal quality by 10 dB in terms of image rejection ratio (IRR). In addition to the I/Q imbalance, the system suffers from CFO, SFO and frequency-time selective channel. To mitigate this, a hybrid optimum OFDM receiver with decision feedback equalizer (DFE) to cope with the CFO, SFO and doubly selective channel. The algorithm firstly estimates the CFO and channel frequency response (CFR) in the coarse estimation, with the help of hybrid classical timing and frequency synchronization algorithms. Afterwards, a pilot-aided polynomial interpolation channel estimation, combined with a low complexity DFE scheme, based on minimum mean squared error (MMSE) criteria, is developed to alleviate the impact of the residual SFO, CFO, and Doppler effect. A subspace-based signal-to-noise ratio (SNR) estimation algorithm is proposed to estimate the SNR in the doubly selective channel. This provides prior knowledge for MMSE-DFE and automatic modulation and coding (AMC). Simulation results show that this proposed estimation algorithm significantly improves the system performance. In order to speed up algorithm verification process, an FPGA based co-simulation is developed. Inter-cell interference caused by the co-existence of macro and pico cells has a big impact on system performance. Although an almost blank subframe (ABS) is proposed to mitigate this problem, the residual control signal in the ABS still inevitably causes interference. Hence, a cell-specific reference signal (CRS) interference cancellation algorithm, utilizing the information in the ABS, is proposed. First, the timing and carrier frequency offset of the interference signal is compensated by utilizing the cross-correlation properties of the synchronization signal. Afterwards, the reference signal is generated locally and channel response is estimated by making use of channel statistics. Then, the interference signal is reconstructed based on the previous estimate of the channel, timing and carrier frequency offset. The interference is mitigated by subtracting the estimation of the interference signal and LLR puncturing. The block error rate (BLER) performance of the signal is notably improved by this algorithm, according to the simulation results of different channel scenarios. The proposed techniques provide low cost, low complexity solutions for LTE and beyond systems. The simulation and measurements show good overall system performance can be achieved

    Secure OFDM System Design for Wireless Communications

    Get PDF
    Wireless communications is widely employed in modern society and plays an increasingly important role in people\u27s daily life. The broadcast nature of radio propagation, however, causes wireless communications particularly vulnerable to malicious attacks, and leads to critical challenges in securing the wireless transmission. Motivated by the insufficiency of traditional approaches to secure wireless communications, physical layer security that is emerging as a complement to the traditional upper-layer security mechanisms is investigated in this dissertation. Five novel techniques toward the physical layer security of wireless communications are proposed. The first two techniques focus on the security risk assessment in wireless networks to enable a situation-awareness based transmission protection. The third and fourth techniques utilize wireless medium characteristics to enhance the built-in security of wireless communication systems, so as to prevent passive eavesdropping. The last technique provides an embedded confidential signaling link for secure transmitter-receiver interaction in OFDM systems

    Coherent optical binary polarisation shift keying heterodyne system in the free-space optical turbulence channel

    Get PDF
    In this paper, analytical and simulation results for the bit error rate (BER) performance and fading penalty of a coherent optical binary polarization shift keying (2PolSK) heterodyne system adopted for a free space optical (FSO) communication link modeled as the log-normal and the negative exponential atmospheric turbulence channels are presented. The conditional and unconditional BER expressions are derived, demonstrating the comprehensive similarity between the 2PolSK and the binary frequency shift keying (2FSK) schemes with regards to the system sensitivity. The power penalty due to the non-ideal polarization beam splitter (PBS) is also analyzed. The receiver sensitivity employing 2PolSK is compared with other modulation schemes in the presence of turbulence and the phase noise. The results show that 2PolSK offers improved signal-to-noise ratio (SNR) performance compared to the binary amplitude shift keying (2ASK)

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER
    • 

    corecore