22 research outputs found

    Adaptive Contact Networks Change Effective Disease Infectiousness and Dynamics

    Get PDF
    Human societies are organized in complex webs that are constantly reshaped by a social dynamic which is influenced by the information individuals have about others. Similarly, epidemic spreading may be affected by local information that makes individuals aware of the health status of their social contacts, allowing them to avoid contact with those infected and to remain in touch with the healthy. Here we study disease dynamics in finite populations in which infection occurs along the links of a dynamical contact network whose reshaping may be biased based on each individual's health status. We adopt some of the most widely used epidemiological models, investigating the impact of the reshaping of the contact network on the disease dynamics. We derive analytical results in the limit where network reshaping occurs much faster than disease spreading and demonstrate numerically that this limit extends to a much wider range of time scales than one might anticipate. Specifically, we show that from a population-level description, disease propagation in a quickly adapting network can be formulated equivalently as disease spreading on a well-mixed population but with a rescaled infectiousness. We find that for all models studied here – SI, SIS and SIR – the effective infectiousness of a disease depends on the population size, the number of infected in the population, and the capacity of healthy individuals to sever contacts with the infected. Importantly, we indicate how the use of available information hinders disease progression, either by reducing the average time required to eradicate a disease (in case recovery is possible), or by increasing the average time needed for a disease to spread to the entire population (in case recovery or immunity is impossible)

    Modeling epidemics on adaptively evolving networks: a data-mining perspective

    Full text link
    The exploration of epidemic dynamics on dynamically evolving ("adaptive") networks poses nontrivial challenges to the modeler, such as the determination of a small number of informative statistics of the detailed network state (that is, a few "good observables") that usefully summarize the overall (macroscopic, systems level) behavior. Trying to obtain reduced, small size, accurate models in terms of these few statistical observables - that is, coarse-graining the full network epidemic model to a small but useful macroscopic one - is even more daunting. Here we describe a data-based approach to solving the first challenge: the detection of a few informative collective observables of the detailed epidemic dynamics. This will be accomplished through Diffusion Maps, a recently developed data-mining technique. We illustrate the approach through simulations of a simple mathematical model of epidemics on a network: a model known to exhibit complex temporal dynamics. We will discuss potential extensions of the approach, as well as possible shortcomings.Comment: 24 pages, 8 figures, submitted to Virulenc

    Integrating social behaviour, demography and disease dynamics in network models: applications to disease management in declining wildlife populations

    Get PDF
    This is the final version. Available on open access from the Royal Society via the DOI in this record.The emergence and spread of infections can contribute to the decline and extinction of populations, particularly in conjunction with anthropogenic environmental change. The importance of heterogeneity in processes of transmission, resistance and tolerance is increasingly well understood in theory, but empirical studies that consider both the demographic and behavioural implications of infection are scarce. Non-random mixing of host individuals can impact the demographic thresholds that determine the amplification or attenuation of disease prevalence. Risk assessment and management of disease in threatened wildlife populations must therefore consider not just host density, but also the social structure of host populations. Here we integrate the most recent developments in epidemiological research from a demographic and social network perspective and synthesise the latest developments in social network modelling for wildlife disease, to explore their applications to disease management in populations in decline and at risk of extinction. We use simulated examples to support our key points and reveal how disease-management strategies can and should exploit both behavioural and demographic information to prevent or control the spread of disease. Our synthesis highlights the importance of considering the combined impacts of demographic and behavioural processes in epidemics to successful disease management in a conservation context.Natural Environment Research Council (NERC)Animal and Plant Health AgencyUniversity of Exete

    Characterising Livestock System Zoonoses Hotspots

    Get PDF
    A systematic review of the published literature was undertaken, to explore the ability of different types of model to help identify the relative importance of different drivers leading to the development of zoonoses hotspots. We estimated that out of 373 papers we included in our review, 108 papers touched upon the objective of 'Assessment of interventions and intervention policies', 75 addressed the objective of 'Analysis of economic aspects of disease outbreaks and interventions', 67 the objective of 'Prediction of future outbreaks', but only 37 broadly addressed the objective of 'Sensitivity analysis to identify criteria leading to enhanced risk'. Most models of zoonotic diseases are currently capturing outbreaks over relatively short time and largely ignoring socio-economic drivers leading to pathogen emergence, spill-over and spread. In order to study long-term changes we need to understand how socio-economic and climatic changes affect structure of livestock production and how these in turn affect disease emergence and spread. Models capable of describing this processes do not appear to exist, although some progress has been made in linking social and economical aspects of livestock production and in linking economics to disease dynamics. Henceforth we conclude that a new modelling framework is required that expands and formalises the 'one world, one health' strategy, enabling its deployment in the re-thinking of prevention and control strategies. Although modelling can only provide means to identify risks associated with socio-economic changes, it can never be a substitute for data collection. Finally, we note that uncertainty analysis and uncertainty communication form a key element of modelling process and yet are rarely addressed

    What’s next in complex networks? Capturing the concept of attacking play in invasive team sports

    Get PDF
    The evolution of performance analysis within sports sciences is tied to technology development and practitioner demands. However, how individual and collective patterns self-organize and interact in invasive team sports remains elusive. Social network analysis has been recently proposed to resolve some aspects of this problem, and has proven successful in capturing collective features resulting from the interactions between team members as well as a powerful communication tool. Despite these advances, some fundamental team sports concepts such as an attacking play have not been properly captured by the more common applications of social network analysis to team sports performance. In this article, we propose a novel approach to team sports performance centered on sport concepts, namely that of an attacking play. Network theory and tools including temporal and bipartite or multilayered networks were used to capture this concept. We put forward eight questions directly related to team performance to discuss how common pitfalls in the use of network tools for capturing sports concepts can be avoided. Some answers are advanced in an attempt to be more precise in the description of team dynamics and to uncover other metrics directly applied to sport concepts, such as the structure and dynamics of attacking plays. Finally, we propose that, at this stage of knowledge, it may be advantageous to build up from fundamental sport concepts toward complex network theory and tools, and not the other way around.info:eu-repo/semantics/acceptedVersio

    Multiopinion coevolving voter model with infinitely many phase transitions

    Get PDF
    We consider an idealized model in which individuals’ changing opinions and their social network coevolve, with disagreements between neighbors in the network resolved either through one imitating the opinion of the other or by reassignment of the discordant edge. Specifically, an interaction between x and one of its neighbors y leads to x imitating y with probability (1−α) and otherwise (i.e., with probability α) x cutting its tie to y in order to instead connect to a randomly chosen individual. Building on previous work about the two-opinion case, we study the multiple-opinion situation, finding that the model has infinitely many phase transitions (in the large graph limit with infinitely many initial opinions). Moreover, the formulas describing the end states of these processes are remarkably simple when expressed as a function of β = α/(1 − α)
    corecore