639 research outputs found

    A Vector Channel Based Approach to MIMO Radar Waveform Design for Extended Targets

    Get PDF
    Radar systems have been used for many years for estimating, detecting, classifying, and imaging objects of interest (targets). Stealthier targets and more cluttered environments have created a need for more sophisticated radar systems to gain more precise information about the radar environment. Because modern radar systems are largely defined in software, adaptive radar systems have emerged that tailor system parameters such as the transmitted waveform and receiver filter to the target and environment in order to address this need. The basic structure of a radar system exhibits many similarities to the structure of a communication system. Recognizing the parallel composition of radar systems and information transmission systems, initial works have begun to explore the application of information theory to radar system design, but a great deal of work still remains to make a full and clear connection between the problems addressed by radar systems and communication systems. Forming a comprehensive definition of this connection between radar systems and information transmission systems and associated problem descriptions could facilitate the cross-discipline transfer of ideas and accelerate the development and improvement of new system design solutions in both fields. In particular, adaptive radar system design is a relatively new field which stands to benefit from the maturity of information theory developed for information transmission if a parallel can be drawn to clearly relate similar radar and communication problems. No known previous work has yet drawn a clear parallel between the general multiple-input multiple-output (MIMO) radar system model considering both the detection and estimation of multiple extended targets and a similar multiuser vector channel information transmission system model. The goal of this dissertation is to develop a novel vector channel framework to describe a MIMO radar system and to study information theoretic adaptive radar waveform design for detection and estimation of multiple radar targets within this framework. Specifically, this dissertation first provides a new compact vector channel model for representing a MIMO radar system which illustrates the parallel composition of radar systems and information transmission systems. Second, using the proposed framework this dissertation contributes a compressed sensing based information theoretic approach to waveform design for the detection of multiple extended targets in noiseless and noisy scenarios. Third, this dissertation defines the multiple extended target estimation problem within the framework and proposes a greedy signal to interference-plus-noise ratio (SINR) maximizing procedure based on a similar approach developed for a collaborative multibase wireless communication system to optimally design wave forms in this scenario

    MIMO Radar Waveform Design and Sparse Reconstruction for Extended Target Detection in Clutter

    Get PDF
    This dissertation explores the detection and false alarm rate performance of a novel transmit-waveform and receiver filter design algorithm as part of a larger Compressed Sensing (CS) based Multiple Input Multiple Output (MIMO) bistatic radar system amidst clutter. Transmit-waveforms and receiver filters were jointly designed using an algorithm that minimizes the mutual coherence of the combined transmit-waveform, target frequency response, and receiver filter matrix product as a design criterion. This work considered the Probability of Detection (P D) and Probability of False Alarm (P FA) curves relative to a detection threshold, τ th, Receiver Operating Characteristic (ROC), reconstruction error and mutual coherence measures for performance characterization of the design algorithm to detect both known and fluctuating targets and amidst realistic clutter and noise. Furthermore, this work paired the joint waveform-receiver filter design algorithm with multiple sparse reconstruction algorithms, including: Regularized Orthogonal Matching Pursuit (ROMP), Compressive Sampling Matching Pursuit (CoSaMP) and Complex Approximate Message Passing (CAMP) algorithms. It was found that the transmit-waveform and receiver filter design algorithm significantly outperforms statically designed, benchmark waveforms for the detection of both known and fluctuating extended targets across all tested sparse reconstruction algorithms. In particular, CoSaMP was specified to minimize the maximum allowable P FA of the CS radar system as compared to the baseline ROMP sparse reconstruction algorithm of previous work. However, while the designed waveforms do provide performance gains and CoSaMP affords a reduced peak false alarm rate as compared to the previous work, fluctuating target impulse responses and clutter severely hampered CS radar performance when either of these sparse reconstruction techniques were implemented. To improve detection rate and, by extension, ROC performance of the CS radar system under non-ideal conditions, this work implemented the CAMP sparse reconstruction algorithm in the CS radar system. It was found that detection rates vastly improve with the implementation of CAMP, especially in the case of fluctuating target impulse responses amidst clutter or at low receive signal to noise ratios (β n). Furthermore, where previous work considered a τ th=0, the implementation of a variable τ th in this work offered novel trade off between P D and P FA in radar design to the CS radar system. In the simulated radar scene it was found that τ th could be moderately increased retaining the same or similar P D while drastically improving P FA. This suggests that the selection and specification of the sparse reconstruction algorithm and corresponding τ th for this radar system is not trivial. Rather, a tradeoff was noted between P D and P FA based on the choice and parameters of the sparse reconstruction technique and detection threshold, highlighting an engineering trade-space in CS radar system design. Thus, in CS radar system design, the radar designer must carefully choose and specify the sparse reconstruction technique and appropriate detection threshold in addition to transmit-waveforms, receiver filters and building the dictionary of target impulse responses for detection in the radar scene

    Optimized Measurement Matrix Design Using Spatiotemporal Chaos for CS-MIMO Radar

    Get PDF
    We investigate the possibility of utilizing the chaotic dynamic system for the measurement matrix design in the CS-MIMO radar system. The CS-MIMO radar achieves better detection performance than conventional MIMO radar with fewer measurements. For exactly recovering from compressed measurements, we should carefully design the measurement matrix to make the sensing matrix satisfy the restricted isometry property (RIP). A Gaussian random measurement matrix (GRMM), typically used in CS problems, is not satisfied for on-line optimization and the low coherence with the basis matrix corresponding to the MIMO radar scenario can not be well guaranteed. An optimized measurement matrix design method applying the two-dimensional spatiotemporal chaos is proposed in this paper. It incorporates the optimization criterion which restricts the coherence of the sensing matrix and singular value decomposition (SVD) for the optimization process. By varying the initial state of the spatiotemporal chaos and optimizing each spatiotemporal chaotic measurement matrix (SCMM), we can finally obtain the optimized measurement matrix. Its simulation results show that the optimized SCMM can highly reduce the coherence of the sensing matrix and improve the DOA estimation accuracy for the CS-MIMO radar

    Computational Imaging and Artificial Intelligence: The Next Revolution of Mobile Vision

    Full text link
    Signal capture stands in the forefront to perceive and understand the environment and thus imaging plays the pivotal role in mobile vision. Recent explosive progresses in Artificial Intelligence (AI) have shown great potential to develop advanced mobile platforms with new imaging devices. Traditional imaging systems based on the "capturing images first and processing afterwards" mechanism cannot meet this unprecedented demand. Differently, Computational Imaging (CI) systems are designed to capture high-dimensional data in an encoded manner to provide more information for mobile vision systems.Thanks to AI, CI can now be used in real systems by integrating deep learning algorithms into the mobile vision platform to achieve the closed loop of intelligent acquisition, processing and decision making, thus leading to the next revolution of mobile vision.Starting from the history of mobile vision using digital cameras, this work first introduces the advances of CI in diverse applications and then conducts a comprehensive review of current research topics combining CI and AI. Motivated by the fact that most existing studies only loosely connect CI and AI (usually using AI to improve the performance of CI and only limited works have deeply connected them), in this work, we propose a framework to deeply integrate CI and AI by using the example of self-driving vehicles with high-speed communication, edge computing and traffic planning. Finally, we outlook the future of CI plus AI by investigating new materials, brain science and new computing techniques to shed light on new directions of mobile vision systems

    A Unified Multi-Functional Dynamic Spectrum Access Framework: Tutorial, Theory and Multi-GHz Wideband Testbed

    Get PDF
    Dynamic spectrum access is a must-have ingredient for future sensors that are ideally cognitive. The goal of this paper is a tutorial treatment of wideband cognitive radio and radar—a convergence of (1) algorithms survey, (2) hardware platforms survey, (3) challenges for multi-function (radar/communications) multi-GHz front end, (4) compressed sensing for multi-GHz waveforms—revolutionary A/D, (5) machine learning for cognitive radio/radar, (6) quickest detection, and (7) overlay/underlay cognitive radio waveforms. One focus of this paper is to address the multi-GHz front end, which is the challenge for the next-generation cognitive sensors. The unifying theme of this paper is to spell out the convergence for cognitive radio, radar, and anti-jamming. Moore’s law drives the system functions into digital parts. From a system viewpoint, this paper gives the first comprehensive treatment for the functions and the challenges of this multi-function (wideband) system. This paper brings together the inter-disciplinary knowledge

    Polarization techniques for mitigation of low grazing angle sea clutter

    Full text link
    Maritime surveillance radars are critical in commerce, transportation, navigation, and defense. However, the sea environment is perhaps the most challenging of natural radar backdrops because maritime radars must contend with electromagnetic backscatter from the sea surface, or sea clutter. Sea clutter poses unique challenges in very low grazing angle geometries, where typical statistical assumptions regarding sea clutter backscatter do not hold. As a result, traditional constant false alarm rate (CFAR) detection schemes may yield a large number of false alarms while objects of interest may be challenging to detect. Solutions posed in the literature to date have been either computationally impractical or lacked robustness. This dissertation explores whether fully polarimetric radar offers a means of enhancing detection performance in low grazing angle sea clutter. To this end, MIT Lincoln Laboratory funded an experimental data collection using a fully polarimetric X-band radar assembled largely from commercial off-the-shelf components. The Point de Chene Dataset, collected on the Atlantic coast of Massachusetts’ Cape Ann in October 2015, comprises multiple sea states, bandwidths, and various objects of opportunity. The dataset also comprises three different polarimetric transmit schemes. In addition to discussing the radar, the dataset, and associated post-processing, this dissertation presents a derivation showing that an established multiple input, multiple output radar technique provides a novel means of simultaneous polarimetric scattering matrix measurement. A novel scheme for polarimetric radar calibration using a single active calibration target is also presented. Subsequent research leveraged this dataset to develop Polarimetric Co-location Layering (PCL), a practical algorithm for mitigation of low grazing angle sea clutter, which is the most significant contribution of this dissertation. PCL routinely achieves a significant reduction in the standard CFAR false alarm rate while maintaining detections on objects of interest. Moreover, PCL is elegant: It exploits fundamental characteristics of both sea clutter and object returns to determine which CFAR detections are due to sea clutter. We demonstrate that PCL is robust across a range of bandwidths, pulse repetition frequencies, and object types. Finally, we show that PCL integrates in parallel into the standard radar signal processing chain without incurring a computational time penalty

    A Novel Coherence Reduction Method in Compressed Sensing for DOA Estimation

    Get PDF
    A novel method named as coherent column replacement method is proposed to reduce the coherence of a partially deterministic sensing matrix, which is comprised of highly coherent columns and random Gaussian columns. The proposed method is to replace the highly coherent columns with random Gaussian columns to obtain a new sensing matrix. The measurement vector is changed accordingly. It is proved that the original sparse signal could be reconstructed well from the newly changed measurement vector based on the new sensing matrix with large probability. This method is then extended to a more practical condition when highly coherent columns and incoherent columns are considered, for example, the direction of arrival (DOA) estimation problem in phased array radar system using compressed sensing. Numerical simulations show that the proposed method succeeds in identifying multiple targets in a sparse radar scene, where the compressed sensing method based on the original sensing matrix fails. The proposed method also obtains more precise estimation of DOA using one snapshot compared with the traditional estimation methods such as Capon, APES, and GLRT, based on hundreds of snapshots
    corecore