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We investigate the possibility of utilizing the chaotic dynamic system for the measurement matrix design in the CS-MIMO radar
system.TheCS-MIMO radar achieves better detection performance than conventionalMIMO radar with fewermeasurements. For
exactly recovering from compressedmeasurements, we should carefully design themeasurementmatrix tomake the sensingmatrix
satisfy the restricted isometry property (RIP). AGaussian randommeasurementmatrix (GRMM), typically used in CS problems, is
not satisfied for on-line optimization and the low coherence with the basis matrix corresponding to the MIMO radar scenario can
not be well guaranteed. An optimized measurement matrix design method applying the two-dimensional spatiotemporal chaos is
proposed in this paper. It incorporates the optimization criterion which restricts the coherence of the sensing matrix and singular
value decomposition (SVD) for the optimization process. By varying the initial state of the spatiotemporal chaos and optimizing
each spatiotemporal chaoticmeasurementmatrix (SCMM), we can finally obtain the optimizedmeasurementmatrix. Its simulation
results show that the optimized SCMM can highly reduce the coherence of the sensing matrix and improve the DOA estimation
accuracy for the CS-MIMO radar.

1. Introduction

The application of compressive sensing (CS) to radar systems
has received considerable attention in recent years [1, 2].
The CS theory asserts that a signal that exhibits sparsity in
some domain can be recovered from far fewer samples than
that required by the Nyquist theory [3]. According to the
CS theory, employing CS in multiple-input multiple-output
(MIMO) radar can recover the target scene information from
significantly fewer samples than the traditional methods. For
instance, in colocated CS-MIMO radar, each of the receive
antennas compresses its received signal via a transformation
matrix, referred to as the measurement matrix. The samples
are subsequently forwarded to a fusion center, where an
ℓ1-optimization problem will be solved for recovering the
received signals. Actually, the measurement matrix plays
an important role in this process. According to the RIP,
an important property that measurement matrix Φ should
obey is the low coherence with the basis matrix Ψ [4].
With an orthonormal basis matrix Ψ, the use of a random

measurement matrix Φ leads to a sensing matrix Θ (Θ ≜

ΦΨ) that meets the RIP requirement with overwhelming
probability. Since the basis matrix is constructed specially
based on the given signal model in a MIMO radar scenario,
the measurement matrix is expected to facilitate an efficient
and controllable implementation so as to match the known
basis matrix.

Some works have addressed the measurement matrix
design problem [5–8]. An iterative algorithm using shrinkage
to decrease the average coherence of the sensing matrix was
proposed in [5], and [6] proposed a gradient descent method
to optimize themeasurementmatrix. In [7], an adaptive com-
putational framework for optimizing the transmission wave-
form and Gaussian random measurement matrix separately
and simultaneously was introduced, incorporating the target
scene information for optimization. The framework leads to
smaller cross-correlations between different target responses
but has to bear great computation load when the scene is
varying fast. The work in [8] proposed two approaches: the
first one minimizes a performance penalty which is a linear
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Figure 1: The scheme of using CS in MIMO radar.

combination of the coherence of the sensing matrix (CSM)
and the inverse signal-to-interference ratio (SIR). It aims at
improving the SIR and reducing the coherence of the sensing
matrix at the same time.The second one, aiming at improving
SIR only, imposes a structure on the measurement matrix
and determines the parameters involved. It requires carefully
chosen waveforms to guarantee the desired CS performance.
Their simulation showed that the two measurement matrices
with the proper waveform can improve detection accuracy as
compared to the GRMM.

So far many of the CS schemes employ the Gaussian
or Bernoulli matrix for their measurement matrix design
or optimization. However, as proposed in [8], the Gaussian
random matrix, typically used in the CS problems, is not
necessarily the best choice for a given basis matrix in terms of
the coherence of column pairs in the sensingmatrix. Further-
more, in radar systems, it is difficult for designers to generate
and control a perfect Gaussian random matrix in physical
electric circuit with its randomness being well guaranteed.

Chaos is a nonlinear dynamical system, which can
generate pseudorandom matrix in deterministic approach.
It is easy to be implemented in physical electric circuit
and only one initial state is necessary to be memorized.
Moreover, since a chaotic dynamic system is quite sensitive
to its initial state, slight changes will lead to quite different
chaotic behaviors. This property can be applied for adjust-
ing the chaotic measurement matrix to match the known
basis matrix corresponding to a MIMO radar scenario, thus
realizing on-line optimization in CS-MIMO radar systems.
Several literatures have proposed the idea of using chaos
in CS [9, 10], where different types of chaotic systems have
been investigated, such as the logisticmap, Chua’s circuit, and
Lorenz system. In [9], a mathematical statement is made to
prove that the chaotic sequence is approximately independent
and that the matrix constructed by the sampled chaotic
sequence can satisfy RIP with overwhelming probability.
The work in [10] capitalized on chaotic coded waveform
to construct measurement operator in a monostatic MIMO
noise radar system.

However, all of the proposed approaches have just applied
one-dimensional chaotic systems for a simple CS recovery
framework. The fact is, all of the methods have to tolerate
the unexpected loss of the independence and randomness of
the chaotic sequences during reshaping the sequence into a
matrix for CS. In this paper, we propose a novel measurement
matrix design method using spatiotemporal chaos for CS-
MIMO radar. The measurement matrix for CS-MIMO radar
is generated directly by the two-dimensional spatiotemporal

chaos. Compared to the low-dimensional chaotic system,
spatiotemporal chaos possesses higher complexity and ran-
domness [11, 12]. Therefore it is a more excellent candidate
for measurement matrix. Considering that the basis matrix
is known in a particular MIMO radar scenario, a joint
optimization method with the goal of further reducing the
coherence between the chaotic measurement matrix and the
fixed basis matrix is proposed by varying the initial state of
the spatiotemporal chaos and applying SVD on two specific
structures to iteratively solve a minimization problem with
respect to SCMM.

The scheme of CS-MIMO radar in this paper is demon-
strated in Figure 1, in which the measurement matrix design
and optimization are the key steps of our work.

The remainder of the paper is organized as follows. In
Section 2, we provide the signal model of the monostatic CS-
MIMO radar system. In Section 3 we propose our approach
for designing the measurement matrix using the spatiotem-
poral chaos and provide the optimization method based on
SVD. Experimental results are given in Section 4. Finally,
some concluding remarks are presented in Section 5.

2. Signal Model of Monostatic MIMO Radar
and Basis Matrix Construction

We consider a monostatic MIMO radar system consisting
of 𝑁
𝑡
transmit antennas and 𝑁

𝑟
receiver antennas, both of

which are closely distributed uniform linear arrays (ULA).
Assume that𝐾 targets are in the far-field of the antenna plane.
For simplicity, the Doppler shift is negligible. Let 𝑥

𝑖
denote

the orthogonal waveform transmitted by the 𝑖th transmit
antenna:

X = [𝑥
1

(𝑙) , 𝑥
2

(𝑙) , . . . , 𝑥
𝑁
𝑡

(𝑙)]
𝑇

, 𝑙 = 1, 2, . . . , 𝐿, (1)

where 𝐿 denotes the number of the snapshots during one
pulse.

Let 𝜆 denote the wavelength of the transmitted signal
and 𝜃 denote the azimuth angle. The transmitting and
receiving steering vectors can be, respectively, described by
the following expressions:

A (𝜃) = [𝑎
1

(𝜃) , 𝑎
2

(𝜃) , . . . , 𝑎
𝑁
𝑡

(𝜃)]
𝑇

,

B (𝜃) = [𝑏
1

(𝜃) , 𝑏
2

(𝜃) , . . . , 𝑏
𝑁
𝑟

(𝜃)]
𝑇

,

(2)
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where

𝑎
𝑖
(𝜃) = exp(

𝑗2𝜋 (𝑖 − 1) 𝑑 sin 𝜃

𝜆
) , 𝑖 = 1, 2, . . . , 𝑁

𝑡
,

𝑏
𝑗

(𝜃) = exp(
𝑗2𝜋 (𝑗 − 1) 𝑑 sin 𝜃

𝜆
) , 𝑗 = 1, 2, . . . , 𝑁

𝑟
.

(3)

Then the echo received by the 𝑗th receive antenna is given
by

𝑦
𝑗

(𝑙) =

𝐾

∑

𝑘=1

𝑏
𝑗

(𝜃
𝑘
)A𝑇 (𝜃

𝑘
)X𝛽
𝑘

+ 𝑒
𝑗

(𝑙) , (4)

where (⋅)
𝑇 denotes the transpose,𝛽

𝑘
is the complex amplitude

proportional to the radar cross-section (RCS) of the point
target, and 𝑒

𝑗
denotes the interference-plus-noise term.

By discretizing the angle space as 𝛼 = [𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑁
],

where 𝑁 is the number of the grid points, we can rewrite (4)
as

𝑦
𝑗

(𝑙) =

𝑁

∑

𝑛=1

𝑏
𝑗

(𝛼
𝑛
)A𝑇 (𝛼

𝑛
)X𝑠
𝑛

+ 𝑒
𝑗

(𝑙) , (5)

where

𝑠
𝑛

= {
𝛽
𝑘
, if there is a target at 𝛼

𝑛

0, else.
(6)

In the matrix form we have 𝑦
𝑗

= Ψ
𝑗
𝑠 + 𝑒

𝑗
, where

Ψ
𝑗

= 𝑏
𝑗
A𝑇X is the basis matrix for the 𝑗th antenna and s =

[𝑠
1
, 𝑠
2
, . . . 𝑠
𝑁

]
𝑇. According to the CS theory, if the number

of the targets is smaller than 𝑁, the targets are sparse in
the azimuth angle space and s is a sparse vector. A nonzero
element with index 𝑛 in s indicates that there is a target at the
angle 𝛼

𝑛
.

Using the measurement matrix Φ, we can obtain the
compressed measurements by placing the output of 𝑁

𝑟

receive antennas in vector Z:

Z = ΦΨs +Φe. (7)

The parameter s is the unknown parameter to be estimated.
As the basis matrix is fixed, the recovery accuracy for the tar-
gets scene mainly depends on the design of the measurement
matrix.

3. Measurement Matrix Design Using
Spatiotemporal Chaos

In this section, we present the idea of using spatiotemporal
chaos for measurement matrix design. Subsequently, an
SVD-based optimization is performedon the SCMMwith the
purpose of further reducing the coherence of column pairs in
the sensing matrix.

3.1. Measurement Matrix Design Using Spatiotemporal Chaos.
Spatiotemporal chaos typically shows disorder in both space

and timedomain and is capable of exhibiting chaotic behavior
for certain parameter values [13]. The spatiotemporal chaos
model we applied here is the coupled map lattice (CML).The
one-way coupled map lattice (OCOML) model is [14]

𝑥
𝑛+1

(𝑖) = (1 − 𝜀) 𝑓 (𝑥
𝑛

(𝑖)) + 𝜀𝑓 (𝑥
𝑛

(𝑖 − 1)) ,

𝑖 = 1, 2, . . . , 𝑃,

(8)

where 𝑥
𝑛
is the variable state, 𝑛 is the time index, 𝑖 is the

lattice site index, 𝑃 is the length of OCOML, 𝜀 is the coupling
constant in the range [0, 1], and 𝑓(𝑥) is a nonlinear map.
Given an initial sequence of length 𝑃, a spatiotemporal
chaotic matrix can be obtained by (8). In this paper, we take
the well-known logisticmap as the nonlinearmap to generate
the initial sequence.

Compared with the low-dimensional chaotic systems,
spatiotemporal chaos has more complex behavior and more
abundant characteristics, which makes it an excellent candi-
date for pseudorandom matrix design.

According to the signal model proposed in Section 2,
the length of the initial driving sequence should be set to
𝑁
𝑟
𝐿 (𝑃 = 𝑁

𝑟
× 𝐿), which is the number of columns in Φ.

We can obtain the following logistic sequence:

𝑥
1

(𝑖 + 1) = 𝜇𝑥
1

(𝑖) (1 − 𝑥
1

(𝑖)) . (9)

The boundary condition of the OCOML model is [14]

𝑥
𝑛+1

(1) = (1 − 𝜀) 𝜇𝑥
𝑛

(1) (1 − 𝑥
𝑛

(1)) ,

𝑥
𝑛+1

(𝑃) = (1 − 𝜀) 𝜇𝑥
𝑛

(𝑃) (1 − 𝑥
𝑛

(𝑃))

+ 𝜀𝜇𝑥
𝑛

(𝑃 − 1) (1 − 𝑥
𝑛

(𝑃 − 1)) .

(10)

By substituting (9) into (8), a measurement matrix Φ of the
size 𝑀 × 𝑁

𝑟
𝐿, where 𝑀 is the number of the compressive

measurements, can be obtained and expressed as

Φ
𝑛+1,𝑖

= 𝑥
𝑛+1

(𝑖)

= (1 − 𝜀) 𝜇𝑥
𝑛

(𝑖) (1 − 𝑥
𝑛

(𝑖))

+ 𝜀𝜇𝑥
𝑛

(𝑖 − 1) (1 − 𝑥
𝑛

(𝑖 − 1)) ,

(11)

where 𝑛 = 1, 2, . . . , 𝑀 and 𝑖 = 1, 2, . . . , 𝑁
𝑟

× 𝐿.
Despite the deterministic definition via ordinary dif-

ference expressions, spatiotemporal chaotic dynamical sys-
tems exhibit unpredictable behaviour. The detailed proof
that chaotic matrix could satisfy RIP with overwhelming
probability is presented in [9], which also works well for the
SCMM Φ in this paper.

3.2. Optimization of the Spatiotemporal Chaotic Measurement
Matrix. The goal of the optimization is to further reduce the
cross-correlations between the measurement matrices Φ and
Ψ. We firstly change the initial state of the spatiotemporal
chaos to obtain different SCMMs. Then we optimize each
SCMM by applying SVD to solve a minimization prob-
lem with a certain criterion. Finally, the optimized SCMM
is selected depending on the minimum cross-correlations
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with Ψ. The definition of the normalized cross-correlation
between all columns in the sensing matrix proposed in [5]
has the following expression:

𝑐𝑐
Θ

= max
𝑖 ̸= 𝑗



⟨Θ
𝑖
,Θ
𝑗
⟩

Θ𝑖
2 ⋅


Θ
𝑗

2



. (12)

However, the normalized cross-correlation is difficult for
us to design Φ as an optimization criterion. An alternative
criterion is proposed in [7] as follows:

arg min
Θ

G − G∗
2

𝐹
, (13)

whereG = Θ
𝐻
Θ is the Grammatrix,G∗ is a diagonal matrix,

G∗ = diag(𝑔
1,1

, 𝑔
2,2

, . . . , 𝑔
𝑁,𝑁

), and 𝑔
𝑖,𝑖

= Θ
𝐻

𝑖
Θ
𝑖
. Actually,

G∗ is obtained under the ideal assumption that minimum
possible coherence occurs. Our goal is to make the Gram
matrix as close to G∗ as possible.

With the successful case in [7], simpler criterion can be
expressed to replace (13) and written as

arg min
Φ,Γ


ΦΨ(g∗)−1 − Γ



2

𝐹

s.t. Γ𝐻Γ = Ι

‖Φ‖
2

𝐹
= 𝑐,

(14)

where g∗ = diag(√𝑔
1,1

,√𝑔
2,2

, . . . , √𝑔
𝑁,𝑁

), Γ is a semiunitary
matrix (i.e., Γ𝐻Γ = Ι), and 𝑐 is a constant. To solve this
minimization problem, we can calculate one variable with
the other fixed and iterate this process until convergence is
achieved.

SVD is applied twice during the whole process. The first
SVD is performedonΦΨ(g∗)−1 to calculateΓ, and the second
one is used to facilitate the LS estimator when part ofΨ(g∗)−1
is filled with zero. The detailed steps are given below.

(1) Calculate Γwith the knownΦ in (14) by the following
solution:

Γ = Γ
1
Γ
𝐻

2
, (15)

where Γ
1
and Γ

2
can be obtained by the SVD expression

ΦΨ(g∗)−1 = Γ
1
ΣΓ
𝐻

2
, (16)

where Σ is a diagonal matrix with the singular values as its
diagonal elements.

(2) FindΦ with given Γ by the solution

Q𝐻Φ𝐻 = Γ
𝐻

, (17)

whereQ = Ψ(g∗)−1. Note that part ofQ is filled with zero and
QQ𝐻 tends to be ill-posed. The LS estimator cannot be used
directly. This problem can be solved by the SVD of Q which
can be expressed as

Q = U
1

(
Δ 0

0 0
)U𝐻
2

, (18)

Generate the spatiotemporal

expression in (14)

Done

Yes

No

chaotic measurement matrix Φ

Calculate the SVD of ΦΨ(g∗)−1

Update Φ by (19) and minimize the

to obtain the matrix Γ

‖ ‖Φ(i)
− Φ(i+1) 2

F < 𝜎

Figure 2: The optimization approach for each SCMM.

where U
1
and U

2
are unitary matrices. Δ = diag(Δ

1
, Δ
2
, . . . ,

Δ
𝑞
), and 𝑞 is the number of nonzero singular values ofQ.

(3) Use the LS estimator to calculate the SCMM

Φ = [U𝐻
1

(
Δ
−1

0

0 0
)U
2
Γ
𝐻

]

𝐻

. (19)

In summary, the optimization approach is demonstrated
in Figure 2.

By optimizing each SCMM, the optimized SCMM is
finally chosen with the criterion that it has the minimum
normalized cross-correlations with the fixed basis matrix.

4. Simulation Results

In this section, we will carry out computer simulations on
three aspects. Firstly the coherence of the sensing matrix will
be calculated to show the effectiveness of using spatiotem-
poral chaos for measurement matrix design. Secondly the
examples of DOA estimation will be given to demonstrate
the excellent performance of the CS-MIMO radar with the
optimized SCMM. Thirdly the Monte Carlo simulation is
employed to verify the recovery accuracy versus various
system conditions.

4.1. Coherence of the Sensing Matrix. We consider the CS-
MIMO radar with 𝑁

𝑡
= 32 transmitting antennas and 𝑁

𝑟
=

15 receiving antennas. The orthogonal Hadamard code of
length 𝐿 = 32 is used as the transmit waveform. The CS-
MIMO radar system observes the angle space in the range
[−5
∘
, 5
∘
] with the grid step of 0.2

∘. We generate the SCMM by
setting the initial value of the logistic map and the coupling
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Figure 3: Histogram for the cross-correlations of the sensing matrix using (a) GRMM, (b) SCMM, (c) optimized GRMM, and (d) optimized
SCMM.

Table 1: Average and maximum normalized cross-correlations.

Measurement matrix Average Maximum
GRMM 0.3624 0.9455
SCMM 0.3549 0.7075
Optimized GRMM 0.2844 0.5702
Optimized SCMM 0.2286 0.4383

constant of the spatiotemporal chaos 𝜀 to be 0.5015 and 0.95,
respectively.

Figure 3 shows the histogram of the normalized cross-
correlations of the sensing matrix Θ with four different
measurement matrices: the GRMM, the SCMM, the opti-
mized GRMM, and the optimized SCMM. The detailed
average and maximum normalized cross-correlations of the
four different sensing matrices are given in Table 1. One
can see that the GRMM and SCMM lead to almost similar
coherence distributions but the maximum normalized cross-
correlation of the latter is smaller. Both the average and
maximum normalized cross-correlations of the optimized
SCMM are smaller than the optimized GRMM. Moreover,

the coherence when using the optimized SCMM, shown in
Figure 3(c), is obviously smaller than that of the GRMM.
The average and maximum cross-correlations are reduced
to about 0.1338 and 0.5072, respectively. Compared with
the coherence distribution illustrated in [8], the maximum
normalized cross-correlation is much smaller when using the
proposed SCMM.

4.2. DOA Estimation Using the Optimized SCMM. We as-
sume that several far-field point targets fall on the angle space
and the received signal is mixed with zero mean Gaussian
noise. At each receive antenna, themeasurementmatrix com-
presses the echo signal and acquires the measurements of
length 𝑀 = 50. Let 𝑁

𝑡
= 64 and 𝑁

𝑟
= 20. The other param-

eters of the system are the same as in Section 4.1. Then the
target scene will be reconstructed by the measurements from
all the receiver antennas. The reconstruction algorithm we
applied here is orthogonal matching pursuit (OMP) [15]:

min ‖𝑠‖
1

s.t. ‖𝑍 − ΦΨ𝑠‖
∞

≤ 𝛿, (20)

where 𝛿 > 0 takes into account the possibility of noise in the
linear measurements and of nonexact sparsity.
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(d) Optimized SCMM

Figure 4: DOA estimation results when using (a) GRMM, (b) optimized GRMM, (c) SCMM, and (d) optimized SCMM.

We tested the CS-MIMO radar system with five targets to
demonstrate the performance improvement induced by the
optimized SCMM. The far-field targets are assumed to have
the same complex amplitudes with 𝛽

𝑘
= 1. Figures 4(a) and

4(b) give the DOA estimation results when using GRMM
and optimized GRMM. The estimation performance when
using SCMM and optimized SCMM is shown in Figures 4(c)
and 4(d). It is obvious that in Figure 4(d) the five targets
are all successfully recovered, which is better than the results
in Figure 4(b) when using the optimized GRMM. Although
only three targets are correctly located, the reconstruction
performance with SCMM is better than that of using GRMM.

4.3. Monte Carlo Simulations for Proposed Method. Monte
Carlo simulations are applied here to verify the robustness
of the proposed method. The parameters of the CS-MIMO
radar system are similar to previous examples. Figure 5 shows
the recovery error versus the target scene sparsity 𝐾 with
the other parameters fixed. It is obvious that the recovery
errors of the optimized SCMM are stably smaller than that

of the optimized GRMM. Also, the SCMM achieves smaller
recovery errors than the GRMM.

The recovery errors versus the initial value and the cou-
pling constant of the spatiotemporal chaos in the OCOML
model are given in Figures 6 and 7, respectively. One can
see in Figure 6 that when the coupling constant is fixed, the
recovery errors vary irregularly within an acceptable range
according to different initial values. A similar result occurs
in Figure 7. The fluctuating is caused by the sensitivity to
the initial conditions of the spatiotemporal chaos and can be
utilized to obtain the right measurement matrix for the given
basis matrix, which is very practical for CS-MIMO radar
systems to implement on-line experiments.

5. Conclusion

In this paper, a new notion of applying nonlinear dynamic
chaotic system formeasurementmatrix design incorporating
an SVD-based optimization method is proposed for CS-
MIMO radar systems. Exploiting the statistical properties of
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Figure 6: Recovery error versus the initial value of the spatiotem-
poral chaos.
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Figure 7: Recovery error versus coupling constant of the spatiotem-
poral chaos.

the spatiotemporal chaos, a pseudorandom but deterministic
matrix is obtained to match the basis matrix constructed by
the MIMO radar signal model. The iterative optimization is
performed to update the generated chaotic matrix aiming
at further reducing the coherence of the sensing matrix.
Simulation results have proved that the proposed method
outperforms that of the GRMM in exact recovery and DOA
estimation. In summary, the proposed method has several
advantages over the method using GRMM: it possesses low
coherence of the sensingmatrix which enables more accurate
recovery and DOA estimation results for the MIMO radar
system; it is easy to implement in electric circuit and only
one initial state is necessary to be memorized; it can realize
on-line optimization only by changing the initial states of the
chaotic system, which is practical for the real radar system.
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