123 research outputs found

    5G NR-V2X: Towards Connected and Cooperative Autonomous Driving

    Full text link
    This paper is concerned with the key features and fundamental technology components for 5G New Radio (NR) for genuine realization of connected and cooperative autonomous driving. We discuss the major functionalities of physical layer, Sidelink features and its resource allocation, architecture flexibility, security and privacy mechanisms, and precise positioning techniques with an evolution path from existing cellular vehicle-to-everything (V2X) technology towards NR-V2X. Moreover, we envisage and highlight the potential of machine learning for further enhancement of various NR-V2X services. Lastly, we show how 5G NR can be configured to support advanced V2X use cases in autonomous driving

    Mobile 5G millimeter-wave multi-antenna systems

    Get PDF
    In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of Universitat Politècnica de Catalunya's products or services. Internal or personal use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted material for advertising or promotional purposes or for creating new collective works for resale or redistribution, please go to http://www.ieee.org/publications_standards/publications/rights/rights_link.html to learn how to obtain a License from RightsLink.Tesi en modalitat de compendi de publicacionsMassive antenna architectures and millimeter-wave bands appear on the horizon as the enabling technologies of future broadband wireless links, promising unprecedented spectral efficiency and data rates. In the recently launched fifth generation of mobile communications, millimetric bands are already introduced but their widespread deployment still presents several feasibility issues. In particular, high-mobility environments represent the most challenging scenario when dealing with directive patterns, which are essential for the adequate reception of signals at those bands. Vehicular communications are expected to exploit the full potential of future generations due to the massive number of connected users and stringent requirements in terms of reliability, latency, and throughput while moving at high speeds. This thesis proposes two solutions to completely take advantage of multi-antenna systems in those cases: beamwidth adaptation of cellular stations when tracking vehicular users based on positioning and Doppler information and a tailored radiation diagram from a panel-based system of antennas mounted on the vehicle. Apart from cellular base stations and vehicles, a third entity that cannot be forgotten in future mobile communications are pedestrians. Past generations were developed around the figure of human users and, now, they must still be able to seamlessly connect with any other user of the network and exploit the new capabilities promised by 5G. The use of millimeter-waves is already been considered by handset manufacturers but the impact of the user (and the interaction with the phone) is drastically changed. The last part of this thesis is devoted to the study of human user dynamics and how they influence the achievable coverage with different distributed antenna systems on the phone.Les arquitectures massives d'antenes i les bandes mil·limètriques apareixen a l'horitzó com les tecnologies que impulsaran els futurs enllaços sense fils amb gran ample de banda i prometen una eficiència espectral i velocitat de transmissió sense precedents. A la recent cinquena generació de comunicacions mòbils, les bandes mil·limètriques ja en són una part constitutiva però el seu desplegament encara presenta certes dificultats. En concret, els entorns d'alta mobilitat representen el major repte quan es fan servir diagrames de radiació directius, els quals són essencials per una correcta recepció del senyal en aquestes bandes. S'espera que les comunicacions vehiculars delimitin les capacitats de les xarxes en futures generacions degut al gran nombre d'usuaris simultanis i els requeriments estrictes en termes de fiabilitat, retard i flux de dades mentre es mouen a grans velocitats. Aquesta tesi proposa dues solucions per tal d'explotar al màxim els sistemes de múltiples antenes en tals casos: un ample de feix adaptatiu de les estacions bases quan estiguin fent el seguiment d'un vehicle usuari basat en informació de la posició i el Doppler i el disseny d'un diagrama de radiació adequat al costat del vehicle basat en una estructura de múltiples panells muntats a l'estructura del mateix. A més de les estacions base i els vehicles, un tercer element que no pot ser obviat en aquests escenaris són els vianants. Les generacions anteriors van ser desenvolupades al voltant de la figura d'usuaris humans i ara han de seguir tenint la capacitat de connexió ininterrumpuda amb la resta d'usuaris i explotar les capacitats de 5G. L'ús de frequències mil·limètriques també es té en compte en la fabricació de telèfons mòbils però l'impacte de l'usuari és completament diferent. La última part de la tesis tracta l'estudi de les dinàmiques de l'usuari humà i com influeixen en la cobertura amb diferent sistemes distribuïts d'antenes.Postprint (published version

    A Survey of Beam Management for mmWave and THz Communications Towards 6G

    Full text link
    Communication in millimeter wave (mmWave) and even terahertz (THz) frequency bands is ushering in a new era of wireless communications. Beam management, namely initial access and beam tracking, has been recognized as an essential technique to ensure robust mmWave/THz communications, especially for mobile scenarios. However, narrow beams at higher carrier frequency lead to huge beam measurement overhead, which has a negative impact on beam acquisition and tracking. In addition, the beam management process is further complicated by the fluctuation of mmWave/THz channels, the random movement patterns of users, and the dynamic changes in the environment. For mmWave and THz communications toward 6G, we have witnessed a substantial increase in research and industrial attention on artificial intelligence (AI), reconfigurable intelligent surface (RIS), and integrated sensing and communications (ISAC). The introduction of these enabling technologies presents both open opportunities and unique challenges for beam management. In this paper, we present a comprehensive survey on mmWave and THz beam management. Further, we give some insights on technical challenges and future research directions in this promising area.Comment: accepted by IEEE Communications Surveys & Tutorial

    LiDAR aided simulation pipeline for wireless communication in vehicular traffic scenarios

    Get PDF
    Abstract. Integrated Sensing and Communication (ISAC) is a modern technology under development for Sixth Generation (6G) systems. This thesis focuses on creating a simulation pipeline for dynamic vehicular traffic scenarios and a novel approach to reducing wireless communication overhead with a Light Detection and Ranging (LiDAR) based system. The simulation pipeline can be used to generate data sets for numerous problems. Additionally, the developed error model for vehicle detection algorithms can be used to identify LiDAR performance with respect to different parameters like LiDAR height, range, and laser point density. LiDAR behavior on traffic environment is provided as part of the results in this study. A periodic beam index map is developed by capturing antenna azimuth and elevation angles, which denote maximum Reference Signal Receive Power (RSRP) for a simulated receiver grid on the road and classifying areas using Support Vector Machine (SVM) algorithm to reduce the number of Synchronization Signal Blocks (SSBs) that are needed to be sent in Vehicle to Infrastructure (V2I) communication. This approach effectively reduces the wireless communication overhead in V2I communication

    Evaluation of IEEE 802.11ad for mmWave V2V Communications

    Full text link
    Autonomous vehicles can construct a more accurate perception of their surrounding environment by exchanging rich sensor data with nearby vehicles. Such exchange can require larger bandwidths than currently provided by ITS-G5/DSRC and Cellular V2X. Millimeter wave (mmWave) communications can provide higher bandwidth and could complement current V2X standards. Recent studies have started investigating the potential of IEEE 802.11ad to support high bandwidth vehicular communications. This paper introduces the first performance evaluation of the IEEE 802.11ad MAC (Medium Access Control) and beamforming mechanism for mmWave V2V communications. The study highlights existing opportunities and shortcomings that should guide the development of mmWave communications for V2V communications.Comment: 6 pages, 5 figures, 1 tabl

    Integrated Sensing and Communications: Towards Dual-functional Wireless Networks for 6G and Beyond

    Get PDF
    As the standardization of 5G solidifies, researchers are speculating what 6G will be. The integration of sensing functionality is emerging as a key feature of the 6G Radio Access Network (RAN), allowing for the exploitation of dense cell infrastructures to construct a perceptive network. In this IEEE Journal on Selected Areas in Commmunications (JSAC) Special Issue overview, we provide a comprehensive review on the background, range of key applications and state-of-the-art approaches of Integrated Sensing and Communications (ISAC). We commence by discussing the interplay between sensing and communications (S&C) from a historical point of view, and then consider the multiple facets of ISAC and the resulting performance gains. By introducing both ongoing and potential use cases, we shed light on the industrial progress and standardization activities related to ISAC. We analyze a number of performance tradeoffs between S&C, spanning from information theoretical limits to physical layer performance tradeoffs, and the cross-layer design tradeoffs. Next, we discuss the signal processing aspects of ISAC, namely ISAC waveform design and receive signal processing. As a step further, we provide our vision on the deeper integration between S&C within the framework of perceptive networks, where the two functionalities are expected to mutually assist each other, i.e., via communication-assisted sensing and sensing-assisted communications. Finally, we identify the potential integration of ISAC with other emerging communication technologies, and their positive impacts on the future of wireless networks
    corecore