5,120 research outputs found

    Deep generative models for network data synthesis and monitoring

    Get PDF
    Measurement and monitoring are fundamental tasks in all networks, enabling the down-stream management and optimization of the network. Although networks inherently have abundant amounts of monitoring data, its access and effective measurement is another story. The challenges exist in many aspects. First, the inaccessibility of network monitoring data for external users, and it is hard to provide a high-fidelity dataset without leaking commercial sensitive information. Second, it could be very expensive to carry out effective data collection to cover a large-scale network system, considering the size of network growing, i.e., cell number of radio network and the number of flows in the Internet Service Provider (ISP) network. Third, it is difficult to ensure fidelity and efficiency simultaneously in network monitoring, as the available resources in the network element that can be applied to support the measurement function are too limited to implement sophisticated mechanisms. Finally, understanding and explaining the behavior of the network becomes challenging due to its size and complex structure. Various emerging optimization-based solutions (e.g., compressive sensing) or data-driven solutions (e.g. deep learning) have been proposed for the aforementioned challenges. However, the fidelity and efficiency of existing methods cannot yet meet the current network requirements. The contributions made in this thesis significantly advance the state of the art in the domain of network measurement and monitoring techniques. Overall, we leverage cutting-edge machine learning technology, deep generative modeling, throughout the entire thesis. First, we design and realize APPSHOT , an efficient city-scale network traffic sharing with a conditional generative model, which only requires open-source contextual data during inference (e.g., land use information and population distribution). Second, we develop an efficient drive testing system — GENDT, based on generative model, which combines graph neural networks, conditional generation, and quantified model uncertainty to enhance the efficiency of mobile drive testing. Third, we design and implement DISTILGAN, a high-fidelity, efficient, versatile, and real-time network telemetry system with latent GANs and spectral-temporal networks. Finally, we propose SPOTLIGHT , an accurate, explainable, and efficient anomaly detection system of the Open RAN (Radio Access Network) system. The lessons learned through this research are summarized, and interesting topics are discussed for future work in this domain. All proposed solutions have been evaluated with real-world datasets and applied to support different applications in real systems

    Securing NextG networks with physical-layer key generation: A survey

    Get PDF
    As the development of next-generation (NextG) communication networks continues, tremendous devices are accessing the network and the amount of information is exploding. However, with the increase of sensitive data that requires confidentiality to be transmitted and stored in the network, wireless network security risks are further amplified. Physical-layer key generation (PKG) has received extensive attention in security research due to its solid information-theoretic security proof, ease of implementation, and low cost. Nevertheless, the applications of PKG in the NextG networks are still in the preliminary exploration stage. Therefore, we survey existing research and discuss (1) the performance advantages of PKG compared to cryptography schemes, (2) the principles and processes of PKG, as well as research progresses in previous network environments, and (3) new application scenarios and development potential for PKG in NextG communication networks, particularly analyzing the effect and prospects of PKG in massive multiple-input multiple-output (MIMO), reconfigurable intelligent surfaces (RISs), artificial intelligence (AI) enabled networks, integrated space-air-ground network, and quantum communication. Moreover, we summarize open issues and provide new insights into the development trends of PKG in NextG networks

    Analysis and Design of Non-Orthogonal Multiple Access (NOMA) Techniques for Next Generation Wireless Communication Systems

    Get PDF
    The current surge in wireless connectivity, anticipated to amplify significantly in future wireless technologies, brings a new wave of users. Given the impracticality of an endlessly expanding bandwidth, there’s a pressing need for communication techniques that efficiently serve this burgeoning user base with limited resources. Multiple Access (MA) techniques, notably Orthogonal Multiple Access (OMA), have long addressed bandwidth constraints. However, with escalating user numbers, OMA’s orthogonality becomes limiting for emerging wireless technologies. Non-Orthogonal Multiple Access (NOMA), employing superposition coding, serves more users within the same bandwidth as OMA by allocating different power levels to users whose signals can then be detected using the gap between them, thus offering superior spectral efficiency and massive connectivity. This thesis examines the integration of NOMA techniques with cooperative relaying, EXtrinsic Information Transfer (EXIT) chart analysis, and deep learning for enhancing 6G and beyond communication systems. The adopted methodology aims to optimize the systems’ performance, spanning from bit-error rate (BER) versus signal to noise ratio (SNR) to overall system efficiency and data rates. The primary focus of this thesis is the investigation of the integration of NOMA with cooperative relaying, EXIT chart analysis, and deep learning techniques. In the cooperative relaying context, NOMA notably improved diversity gains, thereby proving the superiority of combining NOMA with cooperative relaying over just NOMA. With EXIT chart analysis, NOMA achieved low BER at mid-range SNR as well as achieved optimal user fairness in the power allocation stage. Additionally, employing a trained neural network enhanced signal detection for NOMA in the deep learning scenario, thereby producing a simpler signal detection for NOMA which addresses NOMAs’ complex receiver problem

    Optical Wireless Communications Using Intelligent Walls

    Full text link
    This chapter is devoted to discussing the integration of intelligent reflecting surfaces (IRSs), or intelligent walls, in optical wireless communication (OWC) systems. IRS technology is a revolutionary concept that enables communication systems to harness the surrounding environment to control the propagation of light signals. Based on this, specific key performance indicators could be achieved by altering the electromagnetic response of the IRSs. In the following, we discuss the background theory and applications of IRSs and present a case study for an IRS-assisted indoor light-fidelity (LiFi) system. We then highlight some of the challenges related to this emerging concept and elaborate on future research directions

    On Age-of-Information Aware Resource Allocation for Industrial Control-Communication-Codesign

    Get PDF
    Unter dem Überbegriff Industrie 4.0 wird in der industriellen Fertigung die zunehmende Digitalisierung und Vernetzung von industriellen Maschinen und Prozessen zusammengefasst. Die drahtlose, hoch-zuverlĂ€ssige, niedrig-latente Kommunikation (engl. ultra-reliable low-latency communication, URLLC) – als Bestandteil von 5G gewĂ€hrleistet höchste DienstgĂŒten, die mit industriellen drahtgebundenen Technologien vergleichbar sind und wird deshalb als Wegbereiter von Industrie 4.0 gesehen. Entgegen diesem Trend haben eine Reihe von Arbeiten im Forschungsbereich der vernetzten Regelungssysteme (engl. networked control systems, NCS) gezeigt, dass die hohen DienstgĂŒten von URLLC nicht notwendigerweise erforderlich sind, um eine hohe RegelgĂŒte zu erzielen. Das Co-Design von Kommunikation und Regelung ermöglicht eine gemeinsame Optimierung von RegelgĂŒte und Netzwerkparametern durch die Aufweichung der Grenze zwischen Netzwerk- und Applikationsschicht. Durch diese VerschrĂ€nkung wird jedoch eine fundamentale (gemeinsame) Neuentwicklung von Regelungssystemen und Kommunikationsnetzen nötig, was ein Hindernis fĂŒr die Verbreitung dieses Ansatzes darstellt. Stattdessen bedient sich diese Dissertation einem Co-Design-Ansatz, der beide DomĂ€nen weiterhin eindeutig voneinander abgrenzt, aber das Informationsalter (engl. age of information, AoI) als bedeutenden Schnittstellenparameter ausnutzt. Diese Dissertation trĂ€gt dazu bei, die EchtzeitanwendungszuverlĂ€ssigkeit als Folge der Überschreitung eines vorgegebenen Informationsalterschwellenwerts zu quantifizieren und fokussiert sich dabei auf den Paketverlust als Ursache. Anhand der Beispielanwendung eines fahrerlosen Transportsystems wird gezeigt, dass die zeitlich negative Korrelation von Paketfehlern, die in heutigen Systemen keine Rolle spielt, fĂŒr Echtzeitanwendungen Ă€ußerst vorteilhaft ist. Mit der Annahme von schnellem Schwund als dominanter Fehlerursache auf der Luftschnittstelle werden durch zeitdiskrete Markovmodelle, die fĂŒr die zwei Netzwerkarchitekturen Single-Hop und Dual-Hop prĂ€sentiert werden, Kommunikationsfehlerfolgen auf einen Applikationsfehler abgebildet. Diese Modellierung ermöglicht die analytische Ableitung von anwendungsbezogenen ZuverlĂ€ssigkeitsmetriken wie die durschnittliche Dauer bis zu einem Fehler (engl. mean time to failure). FĂŒr Single-Hop-Netze wird das neuartige Ressourcenallokationsschema State-Aware Resource Allocation (SARA) entwickelt, das auf dem Informationsalter beruht und die AnwendungszuverlĂ€ssigkeit im Vergleich zu statischer Multi-KonnektivitĂ€t um GrĂ¶ĂŸenordnungen erhöht, wĂ€hrend der Ressourcenverbrauch im Bereich von konventioneller EinzelkonnektivitĂ€t bleibt. Diese ZuverlĂ€ssigkeit kann auch innerhalb eines Systems von Regelanwendungen, in welchem mehrere Agenten um eine begrenzte Anzahl Ressourcen konkurrieren, statistisch garantiert werden, wenn die Anzahl der verfĂŒgbaren Ressourcen pro Agent um ca. 10 % erhöht werden. FĂŒr das Dual-Hop Szenario wird darĂŒberhinaus ein Optimierungsverfahren vorgestellt, das eine benutzerdefinierte Kostenfunktion minimiert, die niedrige AnwendungszuverlĂ€ssigkeit, hohes Informationsalter und hohen durchschnittlichen Ressourcenverbrauch bestraft und so das benutzerdefinierte optimale SARA-Schema ableitet. Diese Optimierung kann offline durchgefĂŒhrt und als Look-Up-Table in der unteren Medienzugriffsschicht zukĂŒnftiger industrieller Drahtlosnetze implementiert werden.:1. Introduction 1 1.1. The Need for an Industrial Solution . . . . . . . . . . . . . . . . . . . 3 1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. Related Work 7 2.1. Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2. Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Codesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1. The Need for Abstraction – Age of Information . . . . . . . . 11 2.4. Dependability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3. Deriving Proper Communications Requirements 17 3.1. Fundamentals of Control Theory . . . . . . . . . . . . . . . . . . . . 18 3.1.1. Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.2. Performance Requirements . . . . . . . . . . . . . . . . . . . 21 3.1.3. Packet Losses and Delay . . . . . . . . . . . . . . . . . . . . . 22 3.2. Joint Design of Control Loop with Packet Losses . . . . . . . . . . . . 23 3.2.1. Method 1: Reduced Sampling . . . . . . . . . . . . . . . . . . 23 3.2.2. Method 2: Markov Jump Linear System . . . . . . . . . . . . . 25 3.2.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3. Focus Application: The AGV Use Case . . . . . . . . . . . . . . . . . . 31 3.3.1. Control Loop Model . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.2. Control Performance Requirements . . . . . . . . . . . . . . . 33 3.3.3. Joint Modeling: Applying Reduced Sampling . . . . . . . . . . 34 3.3.4. Joint Modeling: Applying MJLS . . . . . . . . . . . . . . . . . 34 3.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4. Modeling Control-Communication Failures 43 4.1. Communication Assumptions . . . . . . . . . . . . . . . . . . . . . . 43 4.1.1. Small-Scale Fading as a Cause of Failure . . . . . . . . . . . . 44 4.1.2. Connectivity Models . . . . . . . . . . . . . . . . . . . . . . . 46 4.2. Failure Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.1. Single-hop network . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.2. Dual-hop network . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.1. Mean Time to Failure . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.2. Packet Loss Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3.3. Average Number of Assigned Channels . . . . . . . . . . . . . 57 4.3.4. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 57 4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5. Single Hop – Single Agent 61 5.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 61 5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.3. Erroneous Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 67 5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6. Single Hop – Multiple Agents 71 6.1. Failure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.1. Admission Control . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.2. Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . 73 6.1.3. Computational Complexity . . . . . . . . . . . . . . . . . . . 74 6.1.4. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 75 6.2. Illustration Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.1. Verification through System-Level Simulation . . . . . . . . . 78 6.3.2. Applicability on the System Level . . . . . . . . . . . . . . . . 79 6.3.3. Comparison of Admission Control Schemes . . . . . . . . . . 80 6.3.4. Impact of the Packet Loss Tolerance . . . . . . . . . . . . . . . 82 6.3.5. Impact of the Number of Agents . . . . . . . . . . . . . . . . . 84 6.3.6. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.7. Channel Saturation Ratio . . . . . . . . . . . . . . . . . . . . 86 6.3.8. Enforcing Full Channel Saturation . . . . . . . . . . . . . . . 86 6.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 7. Dual Hop – Single Agent 91 7.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 91 7.2. Optimization Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.3.1. Extensive Simulation . . . . . . . . . . . . . . . . . . . . . . . 96 7.3.2. Non-Integer-Constrained Optimization . . . . . . . . . . . . . 98 7.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8. Conclusions and Outlook 105 8.1. Key Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 105 8.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 A. DC Motor Model 111 Bibliography 113 Publications of the Author 127 List of Figures 129 List of Tables 131 List of Operators and Constants 133 List of Symbols 135 List of Acronyms 137 Curriculum Vitae 139In industrial manufacturing, Industry 4.0 refers to the ongoing convergence of the real and virtual worlds, enabled through intelligently interconnecting industrial machines and processes through information and communications technology. Ultrareliable low-latency communication (URLLC) is widely regarded as the enabling technology for Industry 4.0 due to its ability to fulfill highest quality-of-service (QoS) comparable to those of industrial wireline connections. In contrast to this trend, a range of works in the research domain of networked control systems have shown that URLLC’s supreme QoS is not necessarily required to achieve high quality-ofcontrol; the co-design of control and communication enables to jointly optimize and balance both quality-of-control parameters and network parameters through blurring the boundary between application and network layer. However, through the tight interlacing, this approach requires a fundamental (joint) redesign of both control systems and communication networks and may therefore not lead to short-term widespread adoption. Therefore, this thesis instead embraces a novel co-design approach which keeps both domains distinct but leverages the combination of control and communications by yet exploiting the age of information (AoI) as a valuable interface metric. This thesis contributes to quantifying application dependability as a consequence of exceeding a given peak AoI with the particular focus on packet losses. The beneficial influence of negative temporal packet loss correlation on control performance is demonstrated by means of the automated guided vehicle use case. Assuming small-scale fading as the dominant cause of communication failure, a series of communication failures are mapped to an application failure through discrete-time Markov models for single-hop (e.g, only uplink or downlink) and dual-hop (e.g., subsequent uplink and downlink) architectures. This enables the derivation of application-related dependability metrics such as the mean time to failure in closed form. For single-hop networks, an AoI-aware resource allocation strategy termed state-aware resource allocation (SARA) is proposed that increases the application reliability by orders of magnitude compared to static multi-connectivity while keeping the resource consumption in the range of best-effort single-connectivity. This dependability can also be statistically guaranteed on a system level – where multiple agents compete for a limited number of resources – if the provided amount of resources per agent is increased by approximately 10 %. For the dual-hop scenario, an AoI-aware resource allocation optimization is developed that minimizes a user-defined penalty function that punishes low application reliability, high AoI, and high average resource consumption. This optimization may be carried out offline and each resulting optimal SARA scheme may be implemented as a look-up table in the lower medium access control layer of future wireless industrial networks.:1. Introduction 1 1.1. The Need for an Industrial Solution . . . . . . . . . . . . . . . . . . . 3 1.2. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2. Related Work 7 2.1. Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2. Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3. Codesign . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.3.1. The Need for Abstraction – Age of Information . . . . . . . . 11 2.4. Dependability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3. Deriving Proper Communications Requirements 17 3.1. Fundamentals of Control Theory . . . . . . . . . . . . . . . . . . . . 18 3.1.1. Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.2. Performance Requirements . . . . . . . . . . . . . . . . . . . 21 3.1.3. Packet Losses and Delay . . . . . . . . . . . . . . . . . . . . . 22 3.2. Joint Design of Control Loop with Packet Losses . . . . . . . . . . . . 23 3.2.1. Method 1: Reduced Sampling . . . . . . . . . . . . . . . . . . 23 3.2.2. Method 2: Markov Jump Linear System . . . . . . . . . . . . . 25 3.2.3. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3. Focus Application: The AGV Use Case . . . . . . . . . . . . . . . . . . 31 3.3.1. Control Loop Model . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.2. Control Performance Requirements . . . . . . . . . . . . . . . 33 3.3.3. Joint Modeling: Applying Reduced Sampling . . . . . . . . . . 34 3.3.4. Joint Modeling: Applying MJLS . . . . . . . . . . . . . . . . . 34 3.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4. Modeling Control-Communication Failures 43 4.1. Communication Assumptions . . . . . . . . . . . . . . . . . . . . . . 43 4.1.1. Small-Scale Fading as a Cause of Failure . . . . . . . . . . . . 44 4.1.2. Connectivity Models . . . . . . . . . . . . . . . . . . . . . . . 46 4.2. Failure Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.1. Single-hop network . . . . . . . . . . . . . . . . . . . . . . . . 49 4.2.2. Dual-hop network . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.1. Mean Time to Failure . . . . . . . . . . . . . . . . . . . . . . . 54 4.3.2. Packet Loss Ratio . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3.3. Average Number of Assigned Channels . . . . . . . . . . . . . 57 4.3.4. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 57 4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5. Single Hop – Single Agent 61 5.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 61 5.2. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.3. Erroneous Acknowledgments . . . . . . . . . . . . . . . . . . . . . . 67 5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6. Single Hop – Multiple Agents 71 6.1. Failure Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.1. Admission Control . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.2. Transition Probabilities . . . . . . . . . . . . . . . . . . . . . . 73 6.1.3. Computational Complexity . . . . . . . . . . . . . . . . . . . 74 6.1.4. Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 75 6.2. Illustration Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.1. Verification through System-Level Simulation . . . . . . . . . 78 6.3.2. Applicability on the System Level . . . . . . . . . . . . . . . . 79 6.3.3. Comparison of Admission Control Schemes . . . . . . . . . . 80 6.3.4. Impact of the Packet Loss Tolerance . . . . . . . . . . . . . . . 82 6.3.5. Impact of the Number of Agents . . . . . . . . . . . . . . . . . 84 6.3.6. Age of Information . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.7. Channel Saturation Ratio . . . . . . . . . . . . . . . . . . . . 86 6.3.8. Enforcing Full Channel Saturation . . . . . . . . . . . . . . . 86 6.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 7. Dual Hop – Single Agent 91 7.1. State-Aware Resource Allocation . . . . . . . . . . . . . . . . . . . . 91 7.2. Optimization Targets . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 7.3.1. Extensive Simulation . . . . . . . . . . . . . . . . . . . . . . . 96 7.3.2. Non-Integer-Constrained Optimization . . . . . . . . . . . . . 98 7.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8. Conclusions and Outlook 105 8.1. Key Results and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 105 8.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 A. DC Motor Model 111 Bibliography 113 Publications of the Author 127 List of Figures 129 List of Tables 131 List of Operators and Constants 133 List of Symbols 135 List of Acronyms 137 Curriculum Vitae 13

    The 2023 terahertz science and technology roadmap

    Get PDF
    Terahertz (THz) radiation encompasses a wide spectral range within the electromagnetic spectrum that extends from microwaves to the far infrared (100 GHz–∌30 THz). Within its frequency boundaries exist a broad variety of scientific disciplines that have presented, and continue to present, technical challenges to researchers. During the past 50 years, for instance, the demands of the scientific community have substantially evolved and with a need for advanced instrumentation to support radio astronomy, Earth observation, weather forecasting, security imaging, telecommunications, non-destructive device testing and much more. Furthermore, applications have required an emergence of technology from the laboratory environment to production-scale supply and in-the-field deployments ranging from harsh ground-based locations to deep space. In addressing these requirements, the research and development community has advanced related technology and bridged the transition between electronics and photonics that high frequency operation demands. The multidisciplinary nature of THz work was our stimulus for creating the 2017 THz Science and Technology Roadmap (Dhillon et al 2017 J. Phys. D: Appl. Phys. 50 043001). As one might envisage, though, there remains much to explore both scientifically and technically and the field has continued to develop and expand rapidly. It is timely, therefore, to revise our previous roadmap and in this 2023 version we both provide an update on key developments in established technical areas that have important scientific and public benefit, and highlight new and emerging areas that show particular promise. The developments that we describe thus span from fundamental scientific research, such as THz astronomy and the emergent area of THz quantum optics, to highly applied and commercially and societally impactful subjects that include 6G THz communications, medical imaging, and climate monitoring and prediction. Our Roadmap vision draws upon the expertise and perspective of multiple international specialists that together provide an overview of past developments and the likely challenges facing the field of THz science and technology in future decades. The document is written in a form that is accessible to policy makers who wish to gain an overview of the current state of the THz art, and for the non-specialist and curious who wish to understand available technology and challenges. A such, our experts deliver a 'snapshot' introduction to the current status of the field and provide suggestions for exciting future technical development directions. Ultimately, we intend the Roadmap to portray the advantages and benefits of the THz domain and to stimulate further exploration of the field in support of scientific research and commercial realisation

    Potential of machine learning/Artificial Intelligence (ML/AI) for verifying configurations of 5G multi Radio Access Technology (RAT) base station

    Get PDF
    Abstract. The enhancements in mobile networks from 1G to 5G have greatly increased data transmission reliability and speed. However, concerns with 5G must be addressed. As system performance and reliability improve, ML and AI integration in products and services become more common. The integration teams in cellular network equipment creation test devices from beginning to end to ensure hardware and software parts function correctly. Radio unit integration is typically the first integration phase, where the radio is tested independently without additional network components like the BBU and UE. 5G architecture and the technology that it is using are explained further. The architecture defined by 3GPP for 5G differs from previous generations, using Network Functions (NFs) instead of network entities. This service-based architecture offers NF reusability to reduce costs and modularity, allowing for the best vendor options for customer radio products. 5G introduced the O-RAN concept to decompose the RAN architecture, allowing for increased speed, flexibility, and innovation. NG-RAN provided this solution to speed up the development and implementation process of 5G. The O-RAN concept aims to improve the efficiency of RAN by breaking it down into components, allowing for more agility and customization. The four protocols, the eCPRI interface, and the functionalities of fronthaul that NGRAN follows are expressed further. Additionally, the significance of NR is described with an explanation of its benefits. Some benefits are high data rates, lower latency, improved spectral efficiency, increased network flexibility, and improved energy efficiency. The timeline for 5G development is provided along with different 3GPP releases. Stand-alone and non-stand-alone architecture is integral while developing the 5G architecture; hence, it is also defined with illustrations. The two frequency bands that NR utilizes, FR1 and FR2, are expressed further. FR1 is a sub-6 GHz frequency band. It contains frequencies of low and high values; on the other hand, FR2 contains frequencies above 6GHz, comprising high frequencies. FR2 is commonly known as the mmWave band. Data collection for implementing the ML approaches is expressed that contains the test setup, data collection, data description, and data visualization part of the thesis work. The Test PC runs tests, executes test cases using test libraries, and collects data from various logs to analyze the system’s performance. The logs contain information about the test results, which can be used to identify issues and evaluate the system’s performance. The data collection part describes that the data was initially present in JSON files and extracted from there. The extraction took place using the Python code script and was then fed into an Excel sheet for further analysis. The data description explains the parameters that are taken while training the models. Jupyter notebook has been used for visualizing the data, and the visualization is carried out with the help of graphs. Moreover, the ML techniques used for analyzing the data are described. In total, three methods are used here. All the techniques come under the category of supervised learning. The explained models are random forest, XG Boost, and LSTM. These three models form the basis of ML techniques applied in the thesis. The results and discussion section explains the outcomes of the ML models and discusses how the thesis will be used in the future. The results include the parameters that are considered to apply the ML models to them. SINR, noise power, rxPower, and RSSI are the metrics that are being monitored. These parameters have variance, which is essential in evaluating the quality of the product test setup, the quality of the software being tested, and the state of the test environment. The discussion section of the thesis explains why the following parameters are taken, which ML model is most appropriate for the data being analyzed, and what the next steps are in implementation
    • 

    corecore