804 research outputs found

    Adaptive Bandwidth Management and Joint Call Admission Control to Enhance System Utilization and QoS in Heterogeneous Wireless Networks

    Get PDF
    :The coexistence of different cellular networks in the same area necessitates joint radio resource management for enhanced QoS provisioning and efficient radio resource utilization. We propose adaptive bandwidth management and joint call admission control (JCAC) scheme for heterogeneous cellular networks. The objectives of the proposed adaptive JCAC scheme are to enhance average system utilization, guarantee QoS requirements of all accepted calls, and reduce new call blocking probability and handoff call dropping probability in heterogeneous wireless networks. We develop a Markov chain model for the adaptive JCAC scheme and derive new call blocking probability, handoff call dropping probability, and average system utilization. Performance of the proposed adaptive JCAC scheme is compared with that of nonadaptive JCAC scheme in the same heterogeneous wireless network. Results show an improvement in average system utilization of up to 20%. Results also show that connection-level QoS can be significantly improved by using the proposed adaptive JCAC scheme

    Efficient joint call admission control and bandwidth management schemes for QoS provisioning in heterogeneous wireless networks

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 150-157).Next generation wireless network (NGWN) will be heterogeneous where different radio access technologies (RATs) coexist. This coexistence of different RATs necessitates joint radio resource management (JRRM) for enhanced QoS provisioning and efficient radio resource utilization. Joint call admission control (JCAC) algorithm is one of the joint radio resource management algorithms. The basic functions of a JCAC algorithm are to decide whether or not an incoming call can be accepted into a heterogeneous wireless network, and to determine which of the available RATs is most suitable to admit the incoming call. The objective of a JCAC algorithm is to guarantee the QoS requirements of all accepted calls and at the same time make the best use of the available radio resources. Traditional call admission control algorithms designed for homogeneous wireless networks do not provide a single solution to address the heterogeneous architecture, which characterizes NGWN. Consequently, there is need to develop JCAC algorithms for heterogeneous wireless networks. The thesis proposes three JCAC schemes for improving QoS and radio resource utilization, which are of primary concerns, in heterogeneous wireless networks. The first scheme combines adaptive bandwidth management and joint call admission control. The objectives of the first scheme are to enhance average system utilization, guarantee QoS requirements of all accepted calls, and reduce new call blocking probability and handoff call dropping probability in heterogeneous wireless networks. The scheme consists of three components namely: joint call admission controller, bandwidth reservation unit, and bandwidth adaptation unit. Using Markov decision process, an analytical model is developed to evaluate the performance of the proposed scheme considering three performance metrics, which are new call blocking probability, handoff call dropping probability, and system utilization. Numerical results show that the proposed scheme improves system utilization and reduces both new call blocking probability and handoff call dropping probability. The second proposed JCAC scheme minimizes call blocking probability by determining the optimal call allocation policy among the available RATs. The scheme measures the arrival rates of different classes of calls into the heterogeneous wireless network. Using linear programming technique, the JCAC scheme determines the call allocation policy that minimizes call-blocking probability in the heterogeneous network. Numerical results show that the proposed scheme reduces call-blocking probability in the heterogeneous wireless network

    Radio Resource Management in Heterogeneous Cellular Networks

    Get PDF

    An optimum dynamic priority-based call admission control scheme for universal mobile telecommunications system

    Get PDF
    The dynamism associated with quality of service (QoS) requirement for traffic emanating from smarter end users devices founded on the internet of things (IoTs) drive, places a huge demand on modern telecommunication infrastructure. Most telecom networks, currently utilize robust call admission control (CAC) policies to ameliorate this challenge. However, the need for smarter CAC has becomes imperative owing to the sensitivity of traffic currently being supported. In this work, we developed a prioritized CAC algorithm for third Generation (3G) wireless cellular network. Based on the dynamic priority CAC (DP-CAC) model, we proposed an optimal dynamic priority CAC (ODP-CAC) scheme for Universal Mobile Telecommunication System (UMTS). We then carried out simulation under heavy traffic load while also exploiting renegotiation among different call traffic classes. Also, we introduced queuing techniques to enhance the new calls success probability while still maintaining a good handoff failure across the network. Results show that ODP-CAC provides an improved performance with regards to the probability of call drop for new calls, network load utilization and grade of service with average percentage value of 15.7%, 5.4% and 0.35% respectively

    Efficient radio resource management in next generation wireless networks

    Get PDF
    The current decade has witnessed a phenomenal growth in mobile wireless communication networks and subscribers. In 2015, mobile wireless devices and connections were reported to have grown to about 7.9 billion, exceeding human population. The explosive growth in mobile wireless communication network subscribers has created a huge demand for wireless network capacity, ubiquitous wireless network coverage, and enhanced Quality of Service (QoS). These demands have led to several challenging problems for wireless communication networks operators and designers. The Next Generation Wireless Networks (NGWNs) will support high mobility communications, such as communication in high-speed rails. Mobile users in such high mobility environment demand reliable QoS, however, such users are plagued with a poor signal-tonoise ratio, due to the high vehicular penetration loss, increased transmission outage and handover information overhead, leading to poor QoS provisioning for the networks' mobile users. Providing a reliable QoS for high mobility users remains one of the unique challenges for NGWNs. The increased wireless network capacity and coverage of NGWNs means that mobile communication users at the cell-edge should have enhanced network performance. However, due to path loss (path attenuation), interference, and radio background noise, mobile communication users at the cell-edge can experience relatively poor transmission channel qualities and subsequently forced to transmit at a low bit transmission rate, even when the wireless communication networks can support high bit transmission rate. Furthermore, the NGWNs are envisioned to be Heterogeneous Wireless Networks (HWNs). The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an integral core of radio resource management. One crucial decision making in HWNs is network selection. Network selection addresses the problem of how to select the best available access network for a given network user connection. For the integrated platform of HWNs to be truly seamless and efficient, a robust and stable wireless access network selection algorithm is needed. To meet these challenges for the different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless network capacity, coverage, QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been proposed as a solution to providing reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA) Call Admission Control (CAC) algorithm for improving the QoS and radio resource utilization of the mobile hotspot networks, which are of critical importance for communicating nodes in moving wireless networks is proposed. The performance of proposed ATMA CAC scheme is investigated and compare it with the traditional CAC scheme. The ATMA scheme exploits the mobility events in the highspeed mobility communication environment and the calls (new and handoff calls) generation pattern to enhance the QoS (new call blocking and handoff call dropping probabilities) of the mobile users. The numbers of new and handoff calls in wireless communication networks are dynamic random processes that can be effectively modeled by the Continuous Furthermore, the NGWNs are envisioned to be Heterogeneous Wireless Networks (HWNs). The NGWNs are going to be the integration platform of diverse homogeneous wireless communication networks for a convergent wireless communication network. The HWNs support single and multiple calls (group calls), simultaneously. Decision making is an integral core of radio resource management. One crucial decision making in HWNs is network selection. Network selection addresses the problem of how to select the best available access network for a given network user connection. For the integrated platform of HWNs to be truly seamless and efficient, a robust and stable wireless access network selection algorithm is needed. To meet these challenges for the different mobile wireless communication network users, the NGWNs will have to provide a great leap in wireless network capacity, coverage, QoS, and radio resource utilization. Moving wireless communication networks (mobile hotspots) have been proposed as a solution to providing reliable QoS to high mobility users. In this thesis, an Adaptive Thinning Mobility Aware (ATMA) Call Admission Control (CAC) algorithm for improving the QoS and radio resource utilization of the mobile hotspot networks, which are of critical importance for communicating nodes in moving wireless networks is proposed

    A source-destination based dynamic pricing scheme to optimize resource utilization in heterogeneous wireless networks

    Get PDF
    Mobile wireless resources demand is rapidly growing due to the proliferation of bandwidth-hungry mobile devices and applications. This has resulted in congestion in mobile wireless networks (MWN) especially during the peak hours when user traffic can be as high as tenfold the average traffic. Mobile network operators (MNOs) have been trying to solve this problem in various ways. First, MNOs have tried to expand the network capacity but have still been unable to meet the peak hour demand. Focus has then shifted to economic and behavioral mechanisms. The widely used of these economic mechanisms is dynamic pricing which varies the MWN resources' price according to the congestion level in the MWN. This encourages users to shift their non-critical traffic from the busy hour, when the MWN is congested, to off-peak hours when the network is under-utilized. As a result, congestion of the MWN during the peak hours is reduced. At the same time, the MWN utilization during the off-peak hours is also increased. The current dynamic pricing schemes, however, only consider the congestion level in the call-originating cell and neglect the call-destination cell when computing the dynamic price. Due to this feature, we refer the current dynamic pricing schemes as source–based dynamic pricing (SDP) schemes in this work. The main problem with these schemes is that, when the majority of the users in a congested cell are callees, dynamic pricing is ineffective because callers and not callees pay for network services, and resources used by callers and callees are the same for symmetric services. For example, application of dynamic pricing does not deter a callee located in a congested cell from receiving a call, which originates from a caller located in an uncongested cell. Also, when the distribution of prospective callees is higher than that of callers in an underutilized cell, SDP schemes are ineffective as callees do not pay for a call and therefore low discounts do not entice them to increase utilization. In this distribution, dynamic pricing entices prospective callers to make calls but since their distribution is low, the MWN resource utilization does not increase by any significant margin. To address these problems, we have developed a source-destination based dynamic pricing (SDBDP) scheme, which considers congestion levels in both the call-originating and calldestination cells to compute the dynamic price to be paid by a caller. This SDBDP scheme is integrated with a load-based joint call admission control (JCAC) algorithm for admitting incoming service requests in to the least utilized radio access technology (RAT). The load-based JCAC algorithm achieves uniform traffic distribution in the heterogeneous wireless network (HWN). To test the SDBDP scheme, we have developed an analytical model based on M/M/m/m queuing model. New or handoff service requests, arriving when all the RATs in the HWN are fully utilized, lead to call blocking for new calls and call dropping for handoff calls. The call blocking probability, call dropping probability and percentage MWN utilization are used as the performance metrics in evaluating the SDBDP scheme. An exponential demand model is used to approximate the users' response to the presented dynamic price. The exponential demand model captures both the price elasticity of demand and the demand shift constant for different users. The matrix laboratory (MATLAB) tool has been used to carry out the numerical simulations. An evaluation scenario consisting of four groups of co-located cells each with three RATs is used. Both SDP and the developed SDBDP schemes have been subjected under the evaluation scenario. Simulation results show that the developed SDBDP scheme reduces both the new call blocking and handoff call dropping probabilities during the peak hours, for all callercallee distributions. On the other hand, the current SDP scheme only reduces new call blocking and handoff call dropping probabilities only under some caller –callee distributions (When the callers were the majority in the HWN). Also, the SDBDP scheme increases the percentage MWN utilization during the off-peak for all the caller-callee distributions in the HWN. On the other hand, the SDP scheme is found to increase the percentage MWN utilization only when the distribution of callers is higher than that of callees in the HWN. From analyzing the simulations results, we conclude that the SDBDP scheme achieves better congestion control and MWN resource utilization than the existing SDP schemes, under arbitrary caller-callee distribution
    • …
    corecore