446 research outputs found

    MOVING OBJECT DETECTION USING BIT PLANE SLICING

    Get PDF
    This thesis presents moving object detection algorithm using bit plane extraction of successive frames and comparing the respective bit planes by XOR operation. The proposed methodworks on 8-bit grayscale video frames obtained from a static camera. This algorithm is able to detect the motion of single and multiple objects in outside and inside environments. Algorithm has been implemented in MATLAB by using several videos from VISOR database and was compared to existing conventional methods to show its effectiveness. Performance of an algorithm was evaluated based on ground truth metrics and results in terms of sensitivity, specificity, positive prediction and accuracy proved the validity of it. Results show that the proposed algorithm performs better in terms of mentioned metrics in comparison to other algorithms.

    Visualizing the Motion Flow of Crowds

    Get PDF
    In modern cities, massive population causes problems, like congestion, accident, violence and crime everywhere. Video surveillance system such as closed-circuit television cameras is widely used by security guards to monitor human behaviors and activities to manage, direct, or protect people. With the quantity and prolonged duration of the recorded videos, it requires a huge amount of human resources to examine these video recordings and keep track of activities and events. In recent years, new techniques in computer vision field reduce the barrier of entry, allowing developers to experiment more with intelligent surveillance video system. Different from previous research, this dissertation does not address any algorithm design concerns related to object detection or object tracking. This study will put efforts on the technological side and executing methodologies in data visualization to find the model of detecting anomalies. It would like to provide an understanding of how to detect the behavior of the pedestrians in the video and find out anomalies or abnormal cases by using techniques of data visualization

    Integrated region- and pixel-based approach to background modelling

    Get PDF
    In this paper a new probabilistic method for background modelling is proposed, aimed at the application in video surveillance tasks using a monitoring static camera. Recently, methods employing Time-Adaptive, Per Pixel, Mixture of Gaussians (TAPPMOG) modelling have become popular due to their intrinsic appealing properties. Nevertheless, they are not able per se to monitor global changes in the scene, because they model the background as a set of independent pixel processes. In this paper, we propose to integrate this kind of pixel-based information with higher level region-based information, that permits to manage also sudden changes of the background. These pixel- and regionbased modules are naturally and effectively embedded in a probabilistic Bayesian framework called particle filtering, that allows a multi-object tracking. Experimental comparison with a classic pixel-based approach reveals that the proposed method is really effective in recovering from situations of sudden global illumination changes of the background, as well as limited non-uniform changes of the scene illumination.

    A Computer-Aided Training (CAT) System for Short Track Speed Skating

    Get PDF
    Short track speed skating has become popular all over the world. The demands of a computer-aided training (CAT) system are booming due to this fact. However, the existing commercial systems for sports are highly dependent on expensive equipment and complicated hardware calibration. This dissertation presents a novel CAT system for tracking multiple skaters in short track skating competitions. Aiming at the challenges, we utilize global rink information to compensate camera motion and obtain the global spatial information of skaters; apply Random Forest to fuse multiple cues and predict the blobs for each of the skaters; and finally develop a silhouette and edge-based template matching and blob growing method to allocate each blob to corresponding skaters. The proposed multiple skaters tracking algorithm organically integrates multi-cue fusion, dynamic appearance modeling, machine learning, etc. to form an efficient and robust CAT system. The effectiveness and robustness of the proposed method are presented through experiments

    Markerless Motion Capture via Convolutional Neural Network

    Get PDF
    A human motion capture system can be defined as a process that digitally records the movements of a person and then translates them into computer-animated images. To achieve this goal, motion capture systems usually exploit different types of algorithms, which include techniques such as pose estimation or background subtraction: this latter aims at segmenting moving objects from the background under multiple challenging scenarios. Recently, encoder-decoder-type deep neural networks designed to accomplish this task have reached impressive results, outperforming classical approaches. The aim of this thesis is to evaluate and discuss the predictions provided by the multi-scale convolutional neural network FgSegNet_v2, a deep learning-based method which represents the current state-of-the-art for implementing scene-specific background subtraction. In this work, FgSegNet_v2 is trained and tested on BBSoF S.r.l. dataset, extending its scene- specific use to a more general application in several environments

    Crowd Scene Analysis in Video Surveillance

    Get PDF
    There is an increasing interest in crowd scene analysis in video surveillance due to the ubiquitously deployed video surveillance systems in public places with high density of objects amid the increasing concern on public security and safety. A comprehensive crowd scene analysis approach is required to not only be able to recognize crowd events and detect abnormal events, but also update the innate learning model in an online, real-time fashion. To this end, a set of approaches for Crowd Event Recognition (CER) and Abnormal Event Detection (AED) are developed in this thesis. To address the problem of curse of dimensionality, we propose a video manifold learning method for crowd event analysis. A novel feature descriptor is proposed to encode regional optical flow features of video frames, where adaptive quantization and binarization of the feature code are employed to improve the discriminant ability of crowd motion patterns. Using the feature code as input, a linear dimensionality reduction algorithm that preserves both the intrinsic spatial and temporal properties is proposed, where the generated low-dimensional video manifolds are conducted for CER and AED. Moreover, we introduce a framework for AED by integrating a novel incremental and decremental One-Class Support Vector Machine (OCSVM) with a sliding buffer. It not only updates the model in an online fashion with low computational cost, but also adapts to concept drift by discarding obsolete patterns. Furthermore, the framework has been improved by introducing Multiple Incremental and Decremental Learning (MIDL), kernel fusion, and multiple target tracking, which leads to more accurate and faster AED. In addition, we develop a framework for another video content analysis task, i.e., shot boundary detection. Specifically, instead of directly assessing the pairwise difference between consecutive frames over time, we propose to evaluate a divergence measure between two OCSVM classifiers trained on two successive frame sets, which is more robust to noise and gradual transitions such as fade-in and fade-out. To speed up the processing procedure, the two OCSVM classifiers are updated online by the MIDL proposed for AED. Extensive experiments on five benchmark datasets validate the effectiveness and efficiency of our approaches in comparison with the state of the art

    Compressive Sensing for Target Detection and Tracking within Wireless Visual Sensor Networks-based Surveillance applications

    Get PDF
    Wireless Visual Sensor Networks (WVSNs) have gained significant importance in the last few years and have emerged in several distinctive applications. The main aim of this research is to investigate the use of adaptive Compressive Sensing (CS) for efficient target detection and tracking in WVSN-based surveillance applications. CS is expected to overcome the WVSN resource constraints such as memory limitation, communication bandwidth and battery constraints. In addition, adaptive CS dynamically chooses variable compression rates according to different data sets to represent captured images in an efficient way hence saving energy and memory space. In this work, a literature review on compressive sensing, target detection and tracking for WVSN is carried out to investigate existing techniques. Only single view target tracking is considered to keep minimum number of visual sensor nodes in a wake-up state to optimize the use of nodes and save battery life which is limited in WVSNs. To reduce the size of captured images an adaptive block CS technique is proposed and implemented to compress the high volume data images before being transmitted through the wireless channel. The proposed technique divides the image to blocks and adaptively chooses the compression rate for relative blocks containing the target according to the sparsity nature of images. At the receiver side, the compressed image is then reconstructed and target detection and tracking are performed to investigate the effect of CS on the tracking performance. Least mean square adaptive filter is used to predicts target’s next location, an iterative quantized clipped LMS technique is proposed and compared with other variants of LMS and results have shown that it achieved lower error rates than other variants of lMS. The tracking is performed in both indoor and outdoor environments for single/multi targets. Results have shown that with adaptive block compressive sensing (CS) up to 31% measurements of data are required to be transmitted for less sparse images and 15% for more sparse, while preserving the 33dB image quality and the required detection and tracking performance. Adaptive CS resulted in 82% energy saving as compared to transmitting the required image with no C
    corecore