9 research outputs found

    Channel Estimation for Ambient Backscatter Communication Systems with Massive-Antenna Reader

    Get PDF
    Ambient backscatter, an emerging green communication technology, has aroused great interest from both academia and industry. One open problem for ambient backscatter communication (AmBC) systems is channel estimation for a massive-antenna reader. In this paper, we focus on channel estimation problem in AmBC systems with uniform linear array (ULA) at the reader which consists of large number of antennas. We first design a two-step method to jointly estimate channel gains and direction of arrivals (DoAs), and then refine the estimates through angular rotation. Additionally, Cramer-Rao lower bounds (CRLBs) are derived for both the modulus of the channel gain and the DoA estimates. Simulations are then provided to validate the analysis, and to show the efficiency of the proposed approach.Comment: 5 figures, submitted to IEEE Transactions on Vehicular Technology, 29 March, 201

    Sum Throughput Maximization in Multi-Tag Backscattering to Multiantenna Reader

    Full text link
    Backscatter communication (BSC) is being realized as the core technology for pervasive sustainable Internet-of-Things applications. However, owing to the resource-limitations of passive tags, the efficient usage of multiple antennas at the reader is essential for both downlink excitation and uplink detection. This work targets at maximizing the achievable sum-backscattered-throughput by jointly optimizing the transceiver (TRX) design at the reader and backscattering coefficients (BC) at the tags. Since, this joint problem is nonconvex, we first present individually-optimal designs for the TRX and BC. We show that with precoder and {combiner} designs at the reader respectively targeting downlink energy beamforming and uplink Wiener filtering operations, the BC optimization at tags can be reduced to a binary power control problem. Next, the asymptotically-optimal joint-TRX-BC designs are proposed for both low and high signal-to-noise-ratio regimes. Based on these developments, an iterative low-complexity algorithm is proposed to yield an efficient jointly-suboptimal design. Thereafter, we discuss the practical utility of the proposed designs to other application settings like wireless powered communication networks and BSC with imperfect channel state information. Lastly, selected numerical results, validating the analysis and shedding novel insights, demonstrate that the proposed designs can yield significant enhancement in the sum-backscattered throughput over existing benchmarks.Comment: 17 pages, 5 figures, accepted for publication in IEEE Transactions on Communication

    On Energy Allocation and Data Scheduling in Backscatter Networks with Multi-antenna Readers

    Get PDF
    In this paper, we study the throughput utility functions in buffer-equipped monostatic backscatter communication networks with multi-antenna Readers. In the considered model, the backscatter nodes (BNs) store the data in their buffers before transmission to the Reader. We investigate three utility functions, namely, the sum, the proportional and the common throughput. We design online admission policies, corresponding to each utility function, to determine how much data can be admitted in the buffers. Moreover, we propose an online data link control policy for jointly controlling the transmit and receive beamforming vectors as well as the reflection coefficients of the BNs. The proposed policies for data admission and data link control jointly optimize the throughput utility, while stabilizing the buffers. We adopt the min-drift-plus-penalty (MDPP) method in designing the control policies. Following the MDPP method, we cast the optimal data link control and the data admission policies as solutions of two independent optimization problems which should be solved in each time slot. The optimization problem corresponding to the data link control is non-convex and does not have a trivial solution. Using Lagrangian dual and quadratic transforms, we find a closed-form iterative solution. Finally, we use the results on the achievable rates of finite blocklength codes to study the system performance in the cases with short packets. As demonstrated, the proposed policies achieve optimal utility and stabilize the data buffers in the BNs

    Ambient backcom in beyond 5G NOMA networks: A multi-cell resource allocation framework

    Get PDF
    The research of Non-Orthogonal Multiple Access (NOMA) is extensively used to improve the capacity of networks beyond the fifth-generation. The recent merger of NOMA with ambient Backscatter Communication (BackCom), though opening new possibilities for massive connectivity, poses several challenges in dense wireless networks. One of such challenges is the performance degradation of ambient BackCom in multi-cell NOMA networks under the effect of inter-cell interference. Driven by providing an efficient solution to the issue, this article proposes a new resource allocation framework that uses a duality theory approach. Specifically, the sum rate of the multi-cell network with backscatter tags and NOMA user equipments is maximized by formulating a joint optimization problem. To find the efficient base station transmit power and backscatter reflection coefficient in each cell, the original problem is first divided into two subproblems, and then the closed form solution is derived. A comparison with the Orthogonal Multiple Access (OMA) ambient BackCom and pure NOMA transmission has been provided. Simulation results of the proposed NOMA ambient BackCom indicate a significant improvement over the OMA ambient BackCom and pure NOMA in terms of sum-rate gains

    Adaptive Ambient Backscatter Communication Systems With MRC

    No full text
    corecore