2,847 research outputs found

    Separating Agent-Functioning and Inter-Agent Coordination by Activated Modules: The DECOMAS Architecture

    Full text link
    The embedding of self-organizing inter-agent processes in distributed software applications enables the decentralized coordination system elements, solely based on concerted, localized interactions. The separation and encapsulation of the activities that are conceptually related to the coordination, is a crucial concern for systematic development practices in order to prepare the reuse and systematic integration of coordination processes in software systems. Here, we discuss a programming model that is based on the externalization of processes prescriptions and their embedding in Multi-Agent Systems (MAS). One fundamental design concern for a corresponding execution middleware is the minimal-invasive augmentation of the activities that affect coordination. This design challenge is approached by the activation of agent modules. Modules are converted to software elements that reason about and modify their host agent. We discuss and formalize this extension within the context of a generic coordination architecture and exemplify the proposed programming model with the decentralized management of (web) service infrastructures

    A Survey on Sensor Networks from a Multiagent Perspective

    Get PDF
    Sensor networks (SNs) have arisen as one of the most promising technologies for the next decades. The recent emergence of small and inexpensive sensors based upon microelectromechanical systems ease the development and proliferation of this kind of networks in a wide range of actual-world applications. Multiagent systems (MAS) have been identified as one of the most suitable technologies to contribute to the deployment of SNs that exhibit flexibility, robustness and autonomy. The purpose of this survey is 2-fold. On the one hand, we review the most relevant contributions of agent technologies to this emerging application domain. On the other hand, we identify the challenges that researchers must address to establish MAS as the key enabling technology for SNs.This work has been funded by projects IEA(TIN2006-15662-C02-01), Agreement Technologies (CONSOLIDER CSD2007-0022, INGENIO 2010), EVE (TIN2009-14702-C02-01,TIN2009-14702-C02-02) and Generalitat de Catalunya under the gran t2009-SGR-1434. Meritxell Vinyals is supported by the Spanish Ministry of Education (FPU grant AP2006-04636)Peer Reviewe

    Sequential Decision Making with Untrustworthy Service Providers

    No full text
    In this paper, we deal with the sequential decision making problem of agents operating in computational economies, where there is uncertainty regarding the trustworthiness of service providers populating the environment. Specifically, we propose a generic Bayesian trust model, and formulate the optimal Bayesian solution to the exploration-exploitation problem facing the agents when repeatedly interacting with others in such environments. We then present a computationally tractable Bayesian reinforcement learning algorithm to approximate that solution by taking into account the expected value of perfect information of an agent's actions. Our algorithm is shown to dramatically outperform all previous finalists of the international Agent Reputation and Trust (ART) competition, including the winner from both years the competition has been run

    Ordered Preference Elicitation Strategies for Supporting Multi-Objective Decision Making

    Full text link
    In multi-objective decision planning and learning, much attention is paid to producing optimal solution sets that contain an optimal policy for every possible user preference profile. We argue that the step that follows, i.e, determining which policy to execute by maximising the user's intrinsic utility function over this (possibly infinite) set, is under-studied. This paper aims to fill this gap. We build on previous work on Gaussian processes and pairwise comparisons for preference modelling, extend it to the multi-objective decision support scenario, and propose new ordered preference elicitation strategies based on ranking and clustering. Our main contribution is an in-depth evaluation of these strategies using computer and human-based experiments. We show that our proposed elicitation strategies outperform the currently used pairwise methods, and found that users prefer ranking most. Our experiments further show that utilising monotonicity information in GPs by using a linear prior mean at the start and virtual comparisons to the nadir and ideal points, increases performance. We demonstrate our decision support framework in a real-world study on traffic regulation, conducted with the city of Amsterdam.Comment: AAMAS 2018, Source code at https://github.com/lmzintgraf/gp_pref_elici

    A Multi-phase Approach for Improving Information Diffusion in Social Networks

    Full text link
    For maximizing influence spread in a social network, given a certain budget on the number of seed nodes, we investigate the effects of selecting and activating the seed nodes in multiple phases. In particular, we formulate an appropriate objective function for two-phase influence maximization under the independent cascade model, investigate its properties, and propose algorithms for determining the seed nodes in the two phases. We also study the problem of determining an optimal budget-split and delay between the two phases.Comment: To appear in Proceedings of The 14th International Conference on Autonomous Agents & Multiagent Systems (AAMAS), 201
    corecore