637 research outputs found

    Adaptive access class barring for efficient mMTC

    Full text link
    [EN] In massive machine-type communications (mMTC), an immense number of wireless devices communicate autonomously to provide users with ubiquitous access to information and services. The current 4G LTE-A cellular system and its Internet of Things (IoT) implementation, the narrowband IoT (NB-IoT), present appealing options for the interconnection of these wireless devices. However, severe congestion may arise whenever a massive number of highly-synchronized access requests occur. Consequently, access control schemes, such as the access class barring (ACB), have become a major research topic. In the latter, the precise selection of the barring parameters in a real-time fashion is needed to maximize performance, but is hindered by numerous characteristics and limitations of the current cellular systems. In this paper, we present a novel ACB configuration (ACBC) scheme that can be directly implemented at the cellular base stations. In our ACBC scheme, we calculate the ratio of idle to total available resources, which then serves as the input to an adaptive filtering algorithm. The main objective of the latter is to enhance the selection of the barring parameters by reducing the effect of the inherent randomness of the system. Results show that our ACBC scheme greatly enhances the performance of the system during periods of high congestion. In addition, the increase in the access delay during periods of light traffic load is minimal.This research has been supported in part by the Ministry of Economy and Competitiveness of Spain under Grant TIN2013-47272-C2-1-R and Grant TEC2015-71932-REDT. The research of I. Leyva-Mayorga was partially funded by grant 383936 CONACYT-GEM 2014.Leyva-Mayorga, I.; Rodríguez-Hernández, MA.; Pla, V.; Martínez Bauset, J.; Tello-Oquendo, L. (2019). Adaptive access class barring for efficient mMTC. Computer Networks. 149:252-264. https://doi.org/10.1016/j.comnet.2018.12.003S25226414

    Compressing Sparse Sequences under Local Decodability Constraints

    Full text link
    We consider a variable-length source coding problem subject to local decodability constraints. In particular, we investigate the blocklength scaling behavior attainable by encodings of rr-sparse binary sequences, under the constraint that any source bit can be correctly decoded upon probing at most dd codeword bits. We consider both adaptive and non-adaptive access models, and derive upper and lower bounds that often coincide up to constant factors. Notably, such a characterization for the fixed-blocklength analog of our problem remains unknown, despite considerable research over the last three decades. Connections to communication complexity are also briefly discussed.Comment: 8 pages, 1 figure. First five pages to appear in 2015 International Symposium on Information Theory. This version contains supplementary materia

    Adaptive Access Control System

    Get PDF
    Technology has provided efficiency and practicality for daily routines of people and companies. The market has solutions to flexibilize access that usually uses hard security controls which needs constant actions from a manager. This way, the paper aims to formalize a control access model that uses artificial intelligence techniques to adapt itself to the users behavior changes. Still, we present a case study of the implementation of this model. It was verified that the model presented satisfactory performance and it is suggested, as future works, the use of neural networks to make a comparison with this work.Special Issue dedicated to JAIIO 2018 (Jornadas Argentinas de Informática).Sociedad Argentina de Informática e Investigación Operativ

    Run-time generation, transformation, and verification of access control models for self-protection

    Get PDF
    Self-adaptive access control, in which self-* properties are applied to protecting systems, is a promising solution for the handling of malicious user behaviour in complex infrastructures. A major challenge in self-adaptive access control is ensuring that chosen adaptations are valid, and produce a satisfiable model of access. The contribution of this paper is the generation, transformation and verification of Role Based Access Control (RBAC) models at run-time, as a means for providing assurances that the adaptations to be deployed are valid. The goal is to protect the system against insider threats by adapting at run-time the access control policies associated with system resources, and access rights assigned to users. Depending on the type of attack, and based on the models from the target system and its environment, the adapted access control models need to be evaluated against the RBAC metamodel, and the adaptation constraints related to the application. The feasibility of the proposed approach has been demonstrated in the context of a fully working prototype using malicious scenarios inspired by a well documented case of insider attack

    Adaptive access and rate control of CSMA for energy, rate and delay optimization

    Get PDF
    In this article, we present a cross-layer adaptive algorithm that dynamically maximizes the average utility function. A per stage utility function is defined for each link of a carrier sense multiple access-based wireless network as a weighted concave function of energy consumption, smoothed rate, and smoothed queue size. Hence, by selecting weights we can control the trade-off among them. Using dynamic programming, the utility function is maximized by dynamically adapting channel access, modulation, and coding according to the queue size and quality of the time-varying channel. We show that the optimal transmission policy has a threshold structure versus the channel state where the optimal decision is to transmit when the wireless channel state is better than a threshold. We also provide a queue management scheme where arrival rate is controlled based on the link state. Numerical results show characteristics of the proposed adaptation scheme and highlight the trade-off among energy consumption, smoothed data rate, and link delay.This study was supported in part by the Spanish Government, Ministerio de Ciencia e Innovación (MICINN), under projects COMONSENS (CSD2008-00010, CONSOLIDER-INGENIO 2010 program) and COSIMA (TEC2010-19545-C04-03), in part by Iran Telecommunication Research Center under contract 6947/500, and in part by Iran National Science Foundation under grant number 87041174. This study was completed while M. Khodaian was at CEIT and TECNUN (University of Navarra)

    Derandomizing from Random Strings

    Full text link
    In this paper we show that BPP is truth-table reducible to the set of Kolmogorov random strings R_K. It was previously known that PSPACE, and hence BPP is Turing-reducible to R_K. The earlier proof relied on the adaptivity of the Turing-reduction to find a Kolmogorov-random string of polynomial length using the set R_K as oracle. Our new non-adaptive result relies on a new fundamental fact about the set R_K, namely each initial segment of the characteristic sequence of R_K is not compressible by recursive means. As a partial converse to our claim we show that strings of high Kolmogorov-complexity when used as advice are not much more useful than randomly chosen strings

    Addictive links: The motivational value of adaptive link annotation

    Get PDF
    Adaptive link annotation is a popular adaptive navigation support technology. Empirical studies of adaptive annotation in the educational context have demonstrated that it can help students to acquire knowledge faster, improve learning outcomes, reduce navigational overhead, and encourage non-sequential navigation. In this paper, we present our exploration of a lesser known effect of adaptive annotation, its ability to significantly increase students' motivation to work with non-mandatory educational content. We explored this effect and confirmed its significance in the context of two different adaptive hypermedia systems. The paper presents and discusses the results of our work

    Adaptation “in the Wild”: Ontology-Based Personalization of Open-Corpus Learning Material

    Get PDF
    Abstract. Teacher and students can use WWW as a limitless source of learning material for nearly any subject. Yet, such abundance of content comes with the problem of finding the right piece at the right time. Conventional adaptive educational systems cannot support personalized access to open-corpus learning material as they rely on manually constructed content models. This paper presents an approach to this problem that does not require intervention from a human expert. The approach has been implemented in an adaptive system that recommends students supplementary reading material and adaptively annotates it. The results of the evaluation experiment have demonstrated several significant effects of using the system on students ’ learning
    corecore