17,377 research outputs found

    Hybrid finite difference/finite element immersed boundary method

    Get PDF
    The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach employs a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach

    An approach for solving the boundary free edge difficulties in SPH modelling: application to a viscous accretion disc in close binaries

    Full text link
    In this work, we propose a SPH interpolating Kernel reformulation suitable also to treat free edge boundaries in the computational domain. Application to both inviscid and viscous stationary low compressibility accretion disc models in Close Binaries (CB) are shown. The investigation carried out in this paper is a consequence of the fact that a low compressibility modelling is crucial to check numerical reliability. Results show that physical viscosity supports a well-bound accretion disc formation, despite the low gas compressibility, when a Gaussian-derived Kernel (from the Error Function) is assumed, in extended particle range - whose Half Width at Half Maximum (HWHM) is fixed to a constant hh value - without any spatial restrictions on its radial interaction (hereinafter GASPHER). At the same time, GASPHER ensures adequate particle interpolations at the boundary free edges. Both SPH and adaptive SPH (hereinafter ASPH) methods lack accuracy if there are not constraints on the boundary conditions, in particular at the edge of the particle envelope: Free Edge (FE) conditions. In SPH, an inefficient particle interpolation involves a few neighbour particles; instead, in the second case, non-physical effects involve both the boundary layer particles themselves and the radial transport. Either in a regime where FE conditions involve the computational domain, or in a viscous fluid dynamics, or both, a GASPHER scheme can be rightly adopted in such troublesome physical regimes. Despite the applied low compressibiity condition, viscous GASPHER model shows clear spiral pattern profiles demonstrating the better quality of results compared to SPH viscous ones. Moreover a successful comparison of results concerning GASPHER 1D inviscid shock tube with analytical solution is also reported.Comment: 18 pages, 12 figure

    ADER-WENO Finite Volume Schemes with Space-Time Adaptive Mesh Refinement

    Full text link
    We present the first high order one-step ADER-WENO finite volume scheme with Adaptive Mesh Refinement (AMR) in multiple space dimensions. High order spatial accuracy is obtained through a WENO reconstruction, while a high order one-step time discretization is achieved using a local space-time discontinuous Galerkin predictor method. Due to the one-step nature of the underlying scheme, the resulting algorithm is particularly well suited for an AMR strategy on space-time adaptive meshes, i.e.with time-accurate local time stepping. The AMR property has been implemented 'cell-by-cell', with a standard tree-type algorithm, while the scheme has been parallelized via the Message Passing Interface (MPI) paradigm. The new scheme has been tested over a wide range of examples for nonlinear systems of hyperbolic conservation laws, including the classical Euler equations of compressible gas dynamics and the equations of magnetohydrodynamics (MHD). High order in space and time have been confirmed via a numerical convergence study and a detailed analysis of the computational speed-up with respect to highly refined uniform meshes is also presented. We also show test problems where the presented high order AMR scheme behaves clearly better than traditional second order AMR methods. The proposed scheme that combines for the first time high order ADER methods with space--time adaptive grids in two and three space dimensions is likely to become a useful tool in several fields of computational physics, applied mathematics and mechanics.Comment: With updated bibliography informatio

    Aeronautical engineering: A continuing bibliography, supplement 122

    Get PDF
    This bibliography lists 303 reports, articles, and other documents introduced into the NASA scientific and technical information system in April 1980

    GIZMO: A New Class of Accurate, Mesh-Free Hydrodynamic Simulation Methods

    Get PDF
    We present two new Lagrangian methods for hydrodynamics, in a systematic comparison with moving-mesh, SPH, and stationary (non-moving) grid methods. The new methods are designed to simultaneously capture advantages of both smoothed-particle hydrodynamics (SPH) and grid-based/adaptive mesh refinement (AMR) schemes. They are based on a kernel discretization of the volume coupled to a high-order matrix gradient estimator and a Riemann solver acting over the volume 'overlap.' We implement and test a parallel, second-order version of the method with self-gravity & cosmological integration, in the code GIZMO: this maintains exact mass, energy and momentum conservation; exhibits superior angular momentum conservation compared to all other methods we study; does not require 'artificial diffusion' terms; and allows the fluid elements to move with the flow so resolution is automatically adaptive. We consider a large suite of test problems, and find that on all problems the new methods appear competitive with moving-mesh schemes, with some advantages (particularly in angular momentum conservation), at the cost of enhanced noise. The new methods have many advantages vs. SPH: proper convergence, good capturing of fluid-mixing instabilities, dramatically reduced 'particle noise' & numerical viscosity, more accurate sub-sonic flow evolution, & sharp shock-capturing. Advantages vs. non-moving meshes include: automatic adaptivity, dramatically reduced advection errors & numerical overmixing, velocity-independent errors, accurate coupling to gravity, good angular momentum conservation and elimination of 'grid alignment' effects. We can, for example, follow hundreds of orbits of gaseous disks, while AMR and SPH methods break down in a few orbits. However, fixed meshes minimize 'grid noise.' These differences are important for a range of astrophysical problems.Comment: 57 pages, 33 figures. MNRAS. A public version of the GIZMO code, user's guide, test problem setups, and movies are available at http://www.tapir.caltech.edu/~phopkins/Site/GIZMO.htm
    corecore